Главная · Монтаж · Альфа- бета- и гамма- распады. Элементы физики атомного ядра и элементарных частиц

Альфа- бета- и гамма- распады. Элементы физики атомного ядра и элементарных частиц

Наименование параметра Значение
Тема статьи: АЛЬФА-РАСПАД
Рубрика (тематическая категория) Радио

Условие распада. Альфа-распад характерен для тяжелых ядер, у которых а ростом А наблюдается уменьшение энергии связи, приходящейся на 1 нуклон. В этой области массовых чисел уменьшение числа нуклонов в ядре ведет к образованию более прочно связанного ядра. При этом выйгрыш в энергии при уменьшении А на единицу много меньше энергии связи одного нуклона в ядре, в связи с этим испускание протона или нейтрона, имеющего за пределами ядра энергию связи, равную нулю, невозможно. Испускание же ядра 4 Не оказывается энергетичеки выгодным, так как удельная энергия связи нуклона в данном ядре около 7,1 МэВ. Альфа-распад возможен, в случае если суммарная энергия связи ядра продукта и альфа-частицы больше, чем энергия связи исходного ядра. Или в массовых единицах:

M(A,Z)>M(A-4, Z-2) + M α (3.12)

Увеличение энергии связи нуклонов означает уменьшение энергии покоя как раз на величину выделяющейся при альфа-распаде энергии Е α . По этой причине, в случае если представить альфа-частицу как целое в составе ядра-продукта͵ то она должна занимать уровень с положительной энергией, равной Е α (рис. 3.5).

Рис. 3.5. Схема энергетического уровня альфа-частицы в тяжелом ядре

Когда альфа-частица покидает ядро, то эта энергия выделяется в свободном виде, как кинœетическая энергия продуктов распада: альфа-частицы и нового ядра. Кинœетическая энергия распределяется между этими продуктами распада обратно пропорционально их массам и, поскольку, масса альфа-частицы много меньше массы вновь образовавшегося ядра, практически вся энергия распада уносится альфа-частицей.. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, с большой точностью Е α есть кинœетическая энергия альфа-частицы после распада.

При этом, освобождению энергии препядствует кулоновский потенциальный барьер U k (см. рисунок 3.5), вероятность прохождения которого альфа-частицей мала и очень быстро падает при уменьшении Е α . По этой причине соотношение (3.12) не является достаточным условием альфа-распада.

Высота кулоновского барьера для заряженной частицы, проникающей в ядро или вылетающей из ядра, возрастает пропорционально ее заряду. По этой причине кулоновский барьер составляет еще большее препядствие для вылета из тяжелого ядра других прочно связанных легких ядер, таких как 12 С или 16 О . Средняя энергия связи нуклона в этих ядрах еще выше, чем в ядре 4 Не , в связи с этим в ряде случаев испускание ядра 16 О вместо последовательного вылета четырех альфа-частиц оказалось бы энергетически более выгодным. При этом испускание ядер более тяжелых, чем ядро 4 Не , не наблюдается.

Объяснение распада. Механизм альфа-распада объясняет квантовая механика, т.к в рамках классической физики данный процесс невозможен. Только частица, обладающая волновыми свойствами, может оказаться за пределами потенциальной ямы при E α . Более того, оказывается, что только потенциальный барьер бесконечно большой ширины с вероятностью равной единице, ограничивает пребывание частицы в пределах потенциальной ямы. В случае если же ширина барьера конечна, то вероятность перехода за пределы потенциального барьера принципиально всœегда отлична от нуля. Правда эта вероятность быстро снижается с ростом ширины и высоты барьера. Аппарат квантовой механике приводит к следующему выражению для прозрачности барьера или вероятности ω оказаться частице за пределами потенциального барьера при столкновении с его стенкой:

(3.13)

В случае если представить альфа-частицу внутри сферической потенциальной ямы радиусом R , движущуюся со скоростью v α , то частота ударов о стенки ямы составит v α /R , и тогда вероятность вылета альфа-частицы из ядра на единицу времени, или постоянная распада, будет равна произведению числа попыток в единицу времени на вероятность прохождения барьера при одном столкновении со стенкой:

, (3.14)

где - некоторый неопределœенный коэффициент, поскольку были приняты положения, далекие от истины: альфа-частица не движется свободно в ядре, да и вообще в саставе ядер нет альфа-частиц. Она образуется из четырех нуклонов в момент альфа-распада. Величина имеет смысл вероятности образования в ядре альфа-частицы, частота столкновений которой со стенками потенциальной ямы равна v α /R .

Сравнение с опытом. На основании зависимости (3.14) можно объяснить многие наблюдаемые при альфа-распаде явления. Период полураспада альфа-активных ядер тем больше, чем меньше энергия Е α испускаемых при распаде альфа-частиц. При этом, в случае если периоды полураспада меняются от долей микросœекунды до многих миллиардов лет, то диапазон изменения Е α очень мал и составляет примерно 4-9 МэВ для ядер с массовыми числами A>200. Регулярная зависимость периода полураспада от Е α была давно обнаружена в опытах с естественными а-активными радионуклидами и описана соотношением:

(3.15)

где и - константы, несколько различающиеся для разных радиоактивных семейств.

Это выражение принято называть законом Гейгера-Нэттола и представляет степенную зависимость постоянной распада λ от Е α с очень большим показателœем . Такая сильная зависимость λ от Е α непосредственно вытекает из механизма прохождения альфа-частицей потенциального барьера. Прозрачность барьера, а следовательно и постоянная распада λ зависят от интеграла по области R 1 -R экспоненциально и быстро увеличиваются при росте Е α . Когда Е α приближается к 9 МэВ, время жизни по отношению к альфа-распаду составляет малые доли секунды, ᴛ.ᴇ. при энергии альфа-частиц 9 МэВ альфа-распад происходит практически мгновенно. Интересно, что такое значение Е α еще существенно меньше высоты кулоновского барьера U k , которая у тяжелых ядер для двухзарядной точечной частицы составляет примерно 30 МэВ. Барьер для альфа-частицы конечного размера несколько ниже и должна быть оценен в 20-25 МэВ. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, прохождение кулоновского потенциального барьера альфа-частицей протекает весьма эффективно, исли ее энергия не ниже трети высоты барьера.

Прозрачность кулоновского барьера зависит также от заряда ядра, т.к. от этого заряда зависит высота кулоновского барьера. Альфа-распад наблюдается среди ядер с массовыми числами A>200 и в области A~150 . Понятно, что кулоновский барьер при A~150 заметно ниже и вероятность альфа-распада для одинаковых Е α значительно больше.

Хотя теоретически при любой энергии альфа-частицы существует вероятность проникновения через барьер, есть ограничения в возможности экспериментального определœения этого процесса. Определить альфа-распад ядер с периодом полураспада больше 10 17 – 10 18 лет не удается. Соответствующее минимальное значение Е α выше у более тяжелых ядер и составляет 4 МэВ у ядер с A>200 и около 2 МэВ у ядер с A~150 . Следовательно выполнение соотношения (3.12) не обязательно свидетельствует о неустойчивости ядра по отношению к альфа-распаду. Оказывается, что соотношение (3.12) справедливо для всœех ядер с массовыми числами больше 140, однако в области A>140 находится около одной трети всœех встречающихся в природе стабильных нуклидов.

Границы устойчивости. Радиоактивные семейства. Границы устойчивости тяжелых ядер по отношению к альфа-распаду можно объяснить, используя модель ядерных оболочек. Ядра, имеющие только замкнутые протонные или нейтронные оболочки, являются особо прочно связанными. По этой причине, хотя энергия связи, приходящаяся на один нуклон, у средних и тяжелых ядер снижается при возрастании А , это снижение всœегда замедляется при приближении А к магическому числу и ускоряется после прохождения А через магическое число протонов или нейтронов. В результате, энергия Е α оказывается значительно ниже минимального значения, при котором наблюдается альфа-распад, для магических ядер или массовое число ядра меньше массового числа магического ядра. Напротив, энергия Е α скачкообразно возрастает у ядер с массовыми числами, превышающими значения А магических ядер, и превосходит минимум практической стабильности а отношении альфа-распада.

В области массовых чисел A~150 альфа-активными являются нуклиды, ядра которых содержат на два ли несколько нейтронов больше магического числа 82. Некоторые из таких нуклидов имеют периоды полураспада много больше геологического возраста Земли и в связи с этим представлены в естественном виде - ϶ᴛᴏ нуклиды 144 Nd, 147 Sm, 149 Sm, 152 Gd. Другие были получены в результате ядерных реакций. Последние имеют недостаток нейтронов по сравнению со стабильными нуклидами соответствующих массовых чисел, и у этих нуклидов с альфа-распадом конкурирует обычно β + -распад. Самым тяжелым стабильным нуклидом является 209 Bi , ядро которого содержит магическое число нейтронов 126. Предшествующий висмуту элемент свинœец имеет магическое число протонов 82, а 208 Pb является дважды магическим нуклидом. Все более тяжелые ядра радиоактивны.

Поскольку в результате альфа-распада ядро-продукт обогащается нейтронами, то после нескольких альфа-распадов следует бета-распад. Последний не меняет число нуклонов в ядре, в связи с этим любое ядро с массовым числом A>209 может превратиться в стабильное, только после некоторого числа альфа-распадов. Так как число нуклонов при альфа-распаде уменьшается сразу на 4 единицы, то возможно существование четырех независимых цепочек распада, каждая со своим конечным продуктом. Три из них представлены в природе и называются естественными радиоактивными семействами. Естественные семейства заканчивают свой распад образованием одного из изотопов свинца, конечным продуктом четвертого семейства является нуклид 209 Bi (см. таблицу 3.1).

Существование естественных радиоактивных семейств обязано трем долгоживущим альфа-активным нуклидам – 232 Th, 235 U, 238 U , имеющим периоды полураспада, сравнимые с геологическим возрастом Земли (5.10 9 лет). Наиболее долгоживущим представителœем вымершего четвертого семейства является нуклид 237 Np – изотоп трансуранового элемента нептуния.

Таблица 3.1. Радиоактивные семейства

Сегодня путем бомбардировки тяжелых ядер нейтронами и легкими ядрами получено очень много нуклидов, являющихся изотопами трансурановых элементов (Z>92). Все они неустойчивы и принадлежат к одному из четырех семейств.

Последовательнось распадов в естественных семействах показана на рис. 3.6. В тех случаях, когда вероятности альфа-распада и бета-распада оказываются сравнимыми, образуются вилки, которые соответствуют распадом ядер с испусканием либо альфа- либо бета-частиц. При этом конечный продукт распада остается неизменным.

Рис. 3.6. Схемы распадов в природных семействах.

Приведенные наименования присвоены радионуклидам при первоначальном изучении естественных цепочек распада.

АЛЬФА-РАСПАД - понятие и виды. Классификация и особенности категории "АЛЬФА-РАСПАД" 2017, 2018.

Лекция: Радиоактивность. Альфа-распад. Бета-распад. Электронный β-распад. Позитронный β-распад. Гамма-излучение


Радиоактивность


Радиоактивность была обнаружена совершенно случайно в результате экспериментов, проведенных А. Беккерелем в 1896 году. Недавно открытые рентгеновские лучи привели к тому, что ученый захотел выяснить, не появляются ли они в результате освещение солнечным светом некоторых элементов. Для своего эксперимента Беккерель выбрал соль урана.


Соль была положена на фотопластину и завернута в черную бумагу, для обеспечения качественного эксперимента. В результате того, что соль пролежала несколько часов под прямыми солнечными лучами, на проявленной фотопластине оказался снимок, полностью соответствующий очертаниям кристаллов соли. Данный опыт позволил Беккерелю выступить на конференции, где говорил о новых проявлениях рентгеновских лучей. Через несколько недель он должен был заявить о новых результатах при аналогичных исследованиях.


Однако, ученому помешала погода. Поскольку все время было облачно, соль пролежала завернутой вместе с фотопластиной в черную бумагу, находясь в ящике стола. В отчаянии ученый проявил фотопластину, в результате чего заметил, что соль оставила свой след даже без солнечных лучей.


Оказалось, что уран испускает какие-то лучи, которые так же способны пронизывать бумагу и оставлять след на пластине.

Данное явление получило название радиоактивности.


В последствии оказалось, что не только уран является радиоактивным. Семья Кюри обнаружила аналогичные свойства у тория, полония, а также радия.


Виды радиоактивного излучения


В ходе многочисленных экспериментов, при которых уран помещался в магнитное поле, было выяснено, что любой радиоактивный элемент имеет три основных вида излучения - альфа, бета и гамма.


В результате помещения радиоактивного элемента в свинцовую пластину, на которую действует магнитное поле, на экране наблюдалось три пятна, находящиеся на некотором расстоянии друг от друга.

1. Альфа-лучи (альфа-частицы) - это положительная частица, которая имеет 4 нуклона и два положительных заряда. данное излучение является наиболее слабым. Изменить направление движения альфа-частицы можно даже листком бумаги.

Уравнение и примеры такого распада:

2 . Бетта-излучение или бетта-частица . Данное излучение протекает в результате выбивания одного отрицательного или положительного электрона (позитрона).

3. Гамма-излучение - это излучение, при котором выделяется электромагнитная волна, подобная рентгеновскому излучению.

  • 2.3. Взаимодействие гамма-излучения с веществом
  • 2.4. Взаимодействие нейтронов с веществом
  • 2.5. Методы регистрации ионизирующих излучений
  • 3. ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ
  • 3.1. Деление тяжелых ядер. Цепная реакция деления
  • 3.2. Понятие о ядерном реакторе и принципе его работы
  • 4. ДОЗИМЕТРИЧЕСКИЕ ВЕЛИЧИНЫ И ИХ ЕДИНИЦЫ
  • 5.1. Естественный радиационный фон
  • 6. БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
  • 6.1. Механизмы повреждения клеток и тканей при воздействии ионизирующих излучений
  • 6.2. Радиочувствительность клеток и тканей
  • 6.4. Действие на организм малых доз излучения
  • Контрольные вопросы
  • 7. АВАРИЯ НА ЧЕРНОБЫЛЬСКОЙ АЭС И ЕЕ ПОСЛЕДСТВИЯ
  • 7.2. Причины аварии на ЧАЭС, начальные ее последствия и состояние остановленного реактора
  • 7.3. Радиоэкологическая обстановка в Республике Беларусь
  • 7.4. Экономические последствия катастрофы на ЧАЭС
  • 8. СПОСОБЫ И СРЕДСТВА ЗАЩИТЫ НАСЕЛЕНИЯ ОТ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
  • 8.1. Общие принципы защиты населения от ионизирующих излучений
  • 8.2. Хранение, учет и перевозка радиоактивных веществ, ликвидация отходов
  • 8.3. Государственная программа Республики Беларусь по ликвидации последствий аварии на Чернобыльской атомной электростанции
  • 9. НОРМИРОВАНИЕ ОБЛУЧЕНИЯ И ОЦЕНКА РАДИАЦИОННОЙ ОБСТАНОВКИ
  • 9.1. Обоснование допустимых доз облучения
  • 9.2. Методика оценки радиационной обстановки
  • 10. БЕЗОПАСНОСТЬ НЕИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
  • 10.2 Воздействие электромагнитных излучений на организм человека
  • 10.3. Ультрафиолетовая радиация, воздействие на организм
  • 10.4. Гигиенические аспекты тепловой радиации
  • ЛИТЕРАТУРА
  • 1. ХАРАКТЕРИСТИКА ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ И ПРИЧИНЫ ИХ ВОЗНИКНОВЕНИЯ
  • 1.1 Понятие о чрезвычайных ситуациях и их классификация
  • 1.2 Природные чрезвычайные ситуации, характерные для Республики Беларусь
  • 1.3 Действия населения при стихийных бедствиях
  • 3. Характеристика очага химического поражения
  • 3.2 Отравляющие химические вещества как оружие массового поражения
  • 3.3 Формирование зоны химического заражения
  • 4. Характеристика очага бактериологического (биологического) поражения
  • 4.1 Краткая характеристика биологических очагов
  • 4.2 Характеристика некоторых очагов особо опасных инфекций
  • 4.3 Организация помощи пострадавшим в очагах биологического поражения
  • 5. Государственная структура управления действиями по защите населения и хозяйственных объектов в чрезвычайных ситуациях
  • 5.1 Организационная структура и задачи гражданской обороны
  • 5.2 Силы гражданской обороны
  • 5.3 Система оповещения гражданской обороны
  • 6. ЗАЩИТА НАСЕЛЕНИЯ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ
  • 6.1 Принципы обеспечения безопасности и защиты населения
  • 6.2 Основные способы защиты населения
  • 7.1 Понятие об устойчивости работы промышленного объекта народного хозяйства
  • 7.4 Нормы проектирования инженерно-технических мероприятий гражданской обороны
  • 8.1 Основы спасательных и других неотложных работ
  • 8.2 Проведение СиДНР в очаге ядерного поражения
  • 8.3 Спасательные работы в очагах химического и бактериологического (биологического) поражения
  • 8.4 Ведение спасательных и других неотложных работ при ликвидации последствий стихийных бедствий
  • 8.5 Содержание работы командира формирования по организации и проведению спасательных работ
  • 8.6 Виды обеспечения формирований и населения в очагах поражения
  • 8.7 Организация и проведение специальная обработка
  • 9. Организация обучения населения по гражданской обороне
  • 9.1 Задачи и организация обучения населения
  • 9.2.2 Подготовка и проведение тактико-специальных учений
  • ЛИТЕРАТУРА
  • СОДЕРЖАНИЕ
  • 1.3. Альфа-распады, бета-распады и гамма-излучения радиоактивных ядер

    Альфа-распадом называется самопроизвольное испускание радиоактивным ядром альфа-частиц, представляющих ядра атома гелия. Распад протекает по схеме

    AmZ X → AmZ − − 42 Y + 2 4He .

    В выражении (1.13) буквой Х обозначен химический символ распадающегося (материнского) ядра, буквой Y – химический символ образующегося (дочернего) ядра. Как видно из схемы (1.13), атомный номер дочернего ядра на две, а массового числа – на четыре единицы меньше, чем у исходного ядра.

    Заряд альфа-частицы положительный. Альфа-частицы характеризуют дву-

    мя основными параметрами: длиной пробега (в воздухе до 9 см, в биологической ткани до 10-3 см) и кинетической энергией в пределах 2…9 МэВ.

    Альфа-распад наблюдается только у тяжелых ядер с Аm>200 и зарядовым числом Z >82. Внутри таких ядер происходит образование обособленных частиц из двух протонов и двух нейтронов. Обособлению этой группы нуклонов способствует насыщение ядерных сил, так что сформировавшаяся альфачастица подвержена меньшему действию ядерных сил притяжения, чем отдельные нуклоны. Одновременно альфа-частица испытывает большее действие кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Этим объясняется вылет из ядра альфа-частиц, а не отдельных нуклонов.

    В большинстве случаев радиоактивное вещество испускает несколько групп альфа-частиц близкой, но различной энергии, т.е. группы имеют спектр энергии. Это обусловлено тем, что дочернее ядро может возникнуть не только в основном, но и в возбужденных состояниях с различными энергетическими уровнями.

    Время жизни возбужденных состояний для большинства ядер лежит в пре-

    делах от 10 − 8 до 10 − 15 с. За это время дочернее ядро переходит в основное или более низкое возбужденное состояние, испуская гамма-квант соответствующей энергии, равной разности энергии предыдущего и последующего состояний. Возбужденное ядро может испустить также какую-либо частицу: протон, нейтрон, электрон или альфа-частицу. Оно может и отдать избыток энергии одному из окружающих ядро электронов внутреннего слоя. Передача энергии от ядра к самому близкому электрону К-слоя происходит без испускания гаммакванта. Получивший энергию электрон вылетает из атома. Этот процесс называется внутренней конверсией. Образовавшееся вакантное место заполняется электронами с вышележащих энергетических уровней. Электронные переходы во внутренних слоях атома приводят к испусканию рентгеновских лучей, имеющих дискретный энергетический спектр (характеристических рентгеновских лучей). Всего известно около 25 естественных и около 100 искусственных альфа-радиоактивных изотопов.

    Бета-распад объединяет три вида ядерных превращений: электронный (β− )

    и позитронный (β+ ) распады, а также электронный захват или К-захват. Первые два вида превращений состоят в том, что ядро испускает электрон и антинейтрино (при β− – распаде) или позитрон и нейтрино (при β+ – распаде). Элек-

    трон (позитрон) и антинейтрино (нейтрино) не существуют в атомных ядрах. Эти процессы происходят путем превращения одного вида нуклона в ядре в другой – нейтрона в протон или протона в нейтрон. Результатом указанных превращений являются β-распады, схемы которых имеют вид:

    Am Z X→ Z Am + 1 Y+ − 1 e0 + 0 ~ ν0 (β− – распад),

    Am Z X→ Am Z − 1 Y+ + 1 e0 + 0 ν0 (β+ – распад),

    где − 1 e0 и + 1 e0 – обозначение электрона и позитрона,

    0 ν0 и 0 ~ ν0 – обозначение нейтрино и антинейтрино.

    При отрицательном бета-распаде зарядовое число радионуклида увеличивается на единицу, а при положительном бета-распаде – уменьшается на единицу.

    Электронный распад (β − – распад) могут испытывать как естественные, так и искусственные радионуклиды. Именно этот вид распада характерен для подавляющего числа экологически наиболее опасных радионуклидов, попавших в окружающую среду в результате Чернобыльской аварии. В их числе

    134 55 Cs,137 55 Cs,90 38 Sr,131 53 I и др.

    Позитронный распад (β + – распад) свойственен преимущественно искусственным радионуклидам.

    Поскольку при β-распаде из ядра вылетают две частицы, а распределение

    между ними общей энергии происходит статистически, то спектр энергии электронов (позитронов) является непрерывным от нуля до максимальной величины Emax называемой верхней границей бета-спектра. Для бета-радиоактивных ядер величина Emax заключена в области энергии от 15 кэВ до 15 МэВ. Длина пробега бета-частицы в воздухе до 20 м, а в биологической ткани до 1,5 см.

    Бета-распад обычно сопровождается испусканием гамма-лучей. Причина их возникновения та же, что и в случае альфа-распада: дочернее ядро возникает не только в основном (стабильном), но и в возбужденном состоянии. Переходя затем в состояние меньшей энергии, ядро испускает гамма-фотон.

    При электронном захвате происходит превращение одного из протонов ядра в нейтрон:

    1 p 1+ − 1 e 0 → 0 n 1+ 0 ν 0 .

    При таком превращении исчезает один из ближайших к ядру электронов (электрон К-слоя атома). Протон, превращаясь в нейтрон, как бы «захватывает» электрон. Отсюда произошел термин «электронный захват». Особенностью

    этого вида β-распада является вылет из ядра одной частицы – нейтрино. Схема электронного захвата имеет вид

    Am Z X+ − 1 e0 → Am Z − 1 Y+ 0 ν 0 . (1.16)

    Электронный захват в отличие от β± -распадов всегда сопровождается ха-

    рактеристическим рентгеновским излучением. Последнее возникает при переходе более удаленного от ядра электрона на появляющееся вакантное место в

    К-слое. Длина волн рентгеновских лучей в диапазоне от 10 − 7 до 10 − 11 м. Таким образом, при бета-распаде сохраняется массовое число ядра, а его

    заряд изменяется на единицу. Периоды полураспада бета-радиоактивных ядер

    лежат в широком интервале времен от 10 − 2 с до 2 1015 лет.

    К настоящему времени известно около 900 бета-радиоактивных изотопов. Из них только около 20 являются естественными, остальные получены искусственным путем. Подавляющее большинство этих изотопов испытывают

    β− -распад, т.е. с испусканием электронов.

    Все виды радиоактивного распада сопровождаются гамма-излучением. Гамма-лучи – коротковолновое электромагнитное излучение, которое не относится к самостоятельному виду радиоактивности. Экспериментально установлено, что гамма-лучи испускаются дочерним ядром при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное. Энергия гамма-лучей равна разности энергий начального и конечного энергетических уровней ядра. Длина волны гамма-лучей не превышает 0,2 нанометра.

    Процесс гамма-излучения не является самостоятельным типом радиоактивности, так как он происходит без изменения Z и Am ядра.

    Контрольные вопросы:

    1. Что понимают под массовым и зарядовым числами в периодической системе Менделеева?

    2. Понятие «изотопы» и «изобары». В чем различие этих терминов?

    3. Ядерные силы ядра и важнейшие их особенности.

    4. Почему масса ядра меньше суммы масс составляющих его нуклидов?

    5. Какие вещества называются радиоактивными?

    6. Что характеризует и показывает постоянная радиоактивного распада?

    7. Дайте определение периода полураспада вещества.

    8. Перечислите единицы измерения объемной, поверхностной и удельной активности.

    9. Основные виды излучений радиоактивных ядер и их параметры.

    Слайд11

    Альфа-распад –испускание атомным ядром, находящимся в основном (невозбужденном) состоянии α-частиц (ядер гелия ).

    Основными характеристики период полураспада T 1/2 , кинетическая энергия T α и пробег в веществе R α α-частицы в веществе.

    Основные свойства альфа- распада

    1.Альфа- распад наблюдается только у тяжелых ядер. Известно около 300 α-радиоактивных ядер

    2.Период полураспада α-активных ядер лежит в громадном интервале от

    10 17 лет ()

    и определяется законом Гейгера-Неттола

    . (1.32)

    например, для Z=84 постоянные A = 128,8 и B = - 50,15, T α – кинетическая энергия α-частицы в Мэв

    3.Энергии α-частиц радиоактивных ядер заключены в пределах

    (Мэв )

    T α min = 1,83 Мэв (), T α max = 11,65 Мэв (изомер

    4.Наблюдается тонкая структура α-спектров радиоактивных ядер. Эти спектры дискретные . На рис.1.5. приведена схема распада ядра плутония. Спектр α -частиц состоит из ряда моноэнергетических линий, соответствующих переходам на различные уровни дочернего ядра.

    6.Пробег α –частицы в воздухе при нормальных условиях

    R α (см) = 0,31 T α 3/2 Мэв при (4< T α <7 Мэв ) (1.33)

    7.Общая схема реакции α-распада

    где -материнское ядро, - дочернее ядро

    Энергия связи α-частицы в ядре должна быть меньше нуля, чтобы α-распад состоялся.

    Е св α = <0 (1.34)

    Энергия выделившейся при α-распаде E α состоит из кинетической энергии α –частицы T α и кинетической энергии дочернего ядра T я

    E α =| Е св α | = T α +T я (1.35)

    Кинетическая энергия α –частицы больше 98% всей энергии α-распада

    Виды и свойства бета- распада

    Бета-распад слайд 12

    Бета-распадом ядра называется процесс самопроизвольного превращения нестабильного ядра в ядро-изобар в результате испускания электрона (позитрона) или захвата электрона. Известно около 900 бета-радиоактивных ядер .

    электронном β - -распаде один из нейтронов ядра превращается в протон с испусканием электрона и электронного антинейтрино.

    распад свободного нейтрона , Т 1/2 =10,7 мин ;

    распад трития , Т 1/2 = 12 лет .

    При позитронном β + -распаде один из протонов ядра превращается в нейтрон с испусканием положительно заряженного электрона (позитрона) и электронного нейтрино

    В случае электронного е-захвата ядро захватывает электрон с электронной оболочки (чаще К-оболочки) собственного атома.

    Энергия β - -распада лежит в интервале

    ()0,02 Мэв < Е β < 13,4 Мэв ().

    Спектр испускаемых β-частиц непрерывен от нуля до максимального значения. Формулы для вычисления максимальной энергии бета-распадов :

    , (1.42)

    , (1.43)

    . (1.44)

    где - масса материнского ядра, - масса дочернего ядра. m e –масса электрона.

    Период полураспада Т 1/2 связан с вероятностью бета- распада соотношением

    Вероятность бета-распада сильно зависит от энергии бета-распада ( ~ E β 5 при E β >> m e c 2) поэтому период полураспада Т 1/2 меняется в широких пределах

    10 -2 сек < Т 1/2 < 2 10 15 лет

    Бета-распад возникает в результате слабого взаимодействия- одного их фундаментальных взаимодействий.

    Радиоактивные семейства(ряды)Слайд13

    Законы смещения ядер при α-распаде (А→А – 4 ; Z→Z - 2) при β-распаде (А→А ; Z→Z +1).Поскольку массовое число А при α-распаде меняется на 4 , а при β-распаде А не меняется, то члены различных радиоактивных семейств не «перепутываются» между собой. Они образуют отдельные радиоактивные ряды (цепочки ядер), которые кончаются своими стабильными изотопами.

    Массовые числа членов каждого радиоактивного семейства характеризуются формулой

    a=0 для семейства тория, a =1 для семества нептуния, a =2 для семейства урана, a =3 для семейства актиноурана. n - целое число. см.табл. 1.2

    Табл.1.2

    Семейство Начальный изотоп Конечный стабильный изотоп Ряд Период полураспада начального изотопа Т 1/2
    тория свинец 4n+0 14 10 9 лет
    урана свинец 4n+2 4,5 10 9 лет
    актиноурана свинец 4n+3 0,7 10 9 лет
    нептуния висмут 4n+1 2,2 10 6 лет

    Из сравнения периодов полураспада родоначальников семейств с геологическим временем жизни Земли(4,5 млрд. лет) видно, что в веществе Земли торий-232 сохранился почти весь, уран-238 распался примерно наполовину, уран-235 большей частью, нептуний-237 практически весь.

    Периоды полураспада известных α-радиоактивных ядер варьируются в широких пределах. Так, изотоп вольфрама 182 W имеет период полураспада T 1/2 > 8.3·10 18 лет, а изотоп протактиния 219 Pa имеет T 1/2 = 5.3·10 -8 c.

    Рис. 2.1. Зависимость периода полураспада радиоактивного элемента от кинетической энергии α-частицы естественно радиоактивного элемента. Штриховая линия – закон Гейгера-Нэттола.

    Для четно-четных изотопов зависимость периода полураспада от энергии α-распада Q α описывается эмпирическим законом Гейгера-Неттола

    где Z − заряд конечного ядра, период полураспада T 1/2 выражен в секундах, а энергия α-частицы E α − в МэВ. На рис. 2.1 показаны экспериментальные значения периодов полураспада для α-радиоактивных четно-четных изотопов (Z изменяется от 74 до 106) и их описание с помощью соотношения (2.3).
    Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция зависимости
    lg T 1/2 от Q α сохраняется, но периоды полураспада в 2–100 раз больше, чем для четно-четных ядер с теми же Z и Q α .
    Для того чтобы происходил α-распад, необходимо, чтобы масса исходного ядра M(A,Z) была больше суммы масс конечного ядра M(A-4, Z-2) и α-частицы M α:

    где Q α = c 2 − энергия α-распада.
    Так как M α << M(A-4, Z-2), основная часть энергии α-распада уносится αчастицей и лишь ≈ 2% − конечным ядром (A-4, Z-2).
    Энергетические спектры α-частиц многих радиоактивных элементов состоят из нескольких линий (тонкая структура α-спектров). Причина появления тонкой структуры α-спектра − распад начального ядра (A,Z) на возбужденное состояние ядра (A-4, Z-2). Измеряя спектры α-частиц можно получить информацию о природе возбужденных состояний
    ядра (A-4, Z-2).
    Для определения области значений А и Z ядер, для которых энергетически возможен α-распад, используют экспериментальные данные об энергиях связи ядер. Зависимость энергии α-распада Q α от массового числа А показана на рис. 2.2.
    Из рис. 2.2 видно, что α-распад становится энергетически возможным, начиная с А ≈ 140. В областях A = 140–150 и A ≈ 210 величина Q α имеет отчетливые максимумы, которые обусловлены оболочечной структурой ядра. Максимум при A = 140–150 связан с заполнением нейтронной оболочки с магическим числом N =А – Z = 82, а максимум при A ≈ 210 связан с заполнением протонной оболочки при Z = 82. Именно за счет оболочечной структуры атомного ядра первая (редкоземельная) область α-активных ядер начинается с N = 82, а тяжелые α-радиоактивные ядра становятся особенно многочисленными, начиная с Z = 82.


    Рис. 2.2. Зависимость энергии α-распада от массового числа А.

    Широкий диапазон периодов полураспада, а также большие значения этих периодов для многих α-радиоактивных ядер объясняются тем, что α‑частица не может «мгновенно» покинуть ядро, несмотря на то, что это энергетически выгодно. Для того чтобы покинуть ядро, α‑частица должна преодолеть потенциальный барьер − область на границе ядра, образующуюся за счёт потенциальной энергии электростатического отталкивания a-частицы и конечного ядра и сил притяжения между нуклонами. С точки зрения классической физики α‑частица не может преодолеть потенциальный барьер, так как не имеет необходимой для этого кинетической энергии. Однако квантовая механика допускает такую возможность − αчастица имеет определённую вероятность пройти сквозь потенциальный барьер и покинуть ядро. Это квантовомеханическое явление называют «туннельным эффектом» или «туннелированием». Чем больше высота и ширина барьера, тем меньше вероятность туннелирования, а период полураспада соответственно больше. Большой диапазон периодов полураспада
    α-излучателей объясняется различным сочетанием кинетических энергий α-частиц и высот потенциальных барьеров. Если бы барьера не существовало, то α‑частица покинула бы ядро за характерное ядерное
    время ≈ 10 -21 – 10 -23 с.
    Простейшая модель α-распада была предложена в 1928 году Г. Гамовым и независимо от него Г. Герни и Э. Кондоном. В этой модели предполагалось, что α‑частица постоянно существует в ядре. Пока α-частица находится в ядре на нее действуют ядерные силы притяжения. Радиус их действия сравним с радиусом ядра R. Глубина ядерного потенциала – V 0 . За пределами ядерной поверхности при r > R потенциал является кулоновским потенциалом отталкивания

    V(r) = 2Ze 2 /r.


    Рис. 2.3. Энергии α‑частиц E α в зависимости от числа нейтронов N
    в исходном ядре. Линии соединяют изотопы одного и того же химического элемента.

    Упрощенная схема совместного действия ядерного потенциала притяжения и кулоновского потенциала отталкивания показана на рисунке 2.4. Для того, чтобы выйти за пределы ядра α-частица с энергией E α должна пройти сквозь потенциальный барьер, заключенный в области от R до R c . Вероятность α-распада в основном определяется вероятностью D прохождения α-частицы через потенциальный барьер

    В рамках этой модели удалось объяснить сильную зависимость вероятности αраспада от энергии α-частицы.


    Рис. 2.4. Потенциальная энергия α-частицы. Потенциальный барьер.

    Для того чтобы рассчитать постоянную распада λ, надо коэффициент прохождения α-частицы через потенциальный барьер умножить, во-первых, на вероятность w α того, что α‑частица образовалась в ядре, и, во-вторых, на вероятность того, что она окажется на границе ядра. Если α‑частица в ядре радиуса R имеет скорость v, то она будет подходить к границе в среднем ≈ v/2R раз в секунду. В результате для постоянной распада λ получается соотношение

    (2.6)

    Скорость α‑частицы в ядре можно оценить, исходя из её кинетической энергии E α + V 0 внутри ядерной потенциальной ямы, что даёт v ≈ (0.1-0.2)с. Уже из этого следует, что при наличии в ядре α‑частицы вероятность её пройти сквозь барьер D <10 -14 (для самых короткоживущих относительно α‑распада тяжелых ядер).
    Грубость оценки предэкспоненциального множителя не очень существенна, потому что постоянная распада зависит от него несравненно слабее, чем от показателя экспоненты.
    Из формулы (2.6) следует, что период полураспада сильно зависит от радиуса ядра R, поскольку радиус R входит не только в предэкспоненциальный множитель, но и в показатель экспоненты, как предел интегрирования. Поэтому из данных по α-распаду можно определять радиусы атомных ядер. Полученные таким путем радиусы оказываются на 20–30% больше найденных в опытах по рассеянию электронов. Это различие связано с тем, что в опытах с быстрыми электронами измеряется радиус распределения электрического заряда в ядре, а в α-распаде измеряется расстояние между ядром и α‑частицей, на котором перестают действовать ядерные силы.
    Наличие постоянной Планка в показателе экспоненты (2.6) объясняет сильную зависимость периода полураспада от энергии. Даже небольшое изменение энергии приводит к значительному изменению показателя экспоненты и тем самым к очень резкому изменению периода полураспада. Поэтому энергии вылетающих α‑частиц сильно ограничены. Для тяжелых ядер α‑частицы с энергиями выше 9 МэВ вылетают практически мгновенно, а с энергиями ниже 4 МэВ живут в ядре так долго, что α-распад даже не удается зарегистрировать. Для редкоземельных α-радиоактивных ядер обе энергии снижаются за счет уменьшения радиуса ядра и высоты потенциального барьера.
    На рис. 2.5 показана зависимость энергии α-распада изотопов Hf (Z = 72) от массового числа A в области массовых чисел A = 156–185. В таблице 2.1 приведены энергии α-распада, периоды полураспада и основные каналы распада изотопов 156–185 Hf. Видно как по мере увеличения массового числа A уменьшается энергия α-распада, что приводит к уменьшению вероятности α-распада и увеличению вероятности β-распада (таблица 2.1). Изотоп 174 Hf, являясь стабильным изотопом (в естественной смеси изотопов он составляет 0.16%), тем не менее распадается с периодом полураспада T 1/2 = 2·10 15 лет с испусканием α‑частицы.


    Рис. 2.5. Зависимость энергии α-распада Q α изотопов Hf (Z = 72)
    от массового числа A.

    Таблица 2.1

    Зависимость энергии α-распада Q α , периода полураспада T 1/2 ,
    различных мод распада изотопов H f (Z = 72) от массового числа A

    Z N A Q α T 1/2 Моды распада (%)
    72 84 156 6.0350 23 мс α (100)
    72 85 157 5.8850 110 мс α (86), е (14)
    72 86 158 5.4050 2.85 с α (44.3), е (55.7)
    72 87 159 5.2250 5.6 с α (35), е (65)
    72 88 160 4.9020 13.6 с α (0.7), е (99.3)
    72 89 161 4.6980 18.2 с α (<0.13), е (>99.87)
    72 90 162 4.4160 39.4 с α (<8·10 -3), е (99.99)
    72 91 163 4.1280 40.0 с α (<1·10 -4), е (100)
    72 92 164 3.9240 111 с е (100)
    72 93 165 3.7790 76 с е (100)
    72 94 166 3.5460 6.77 мин е (100)
    72 95 167 3.4090 2.05 мин е (100)
    72 96 168 3.2380 25.95 мин е (100)
    72 97 169 3.1450 3.24 мин е (100)
    72 98 170 2.9130 16.01 ч е (100)
    72 99 171 2.7390 12.1 ч е (100)
    72 100 172 2.7470 1.87 ч е (100)
    72 101 173 2.5350 23.4 ч е (100)
    72 102 174 2.4960 2·10 15 л е (100)
    72 103 175 2.4041 70 дн е (100)
    72 104 176 2.2580 стаб.
    72 105 177 2.2423 стаб.
    72 106 178 2.0797 стаб.
    72 107 179 1.8040 стаб.
    72 108 180 1.2806 стаб.
    72 109 181 1.1530 42.39 дн β - (100)
    72 110 182 1.2140 8.9·10 6 л β - (100)
    72 111 183 0.6850 1.07 ч β - (100)
    72 112 184 0.4750 4.12 ч β - (100)
    72 113 185 0.0150 3.5 мин β - (100)

    Изотопы Hf c A = 176–180 являются стабильными изотопами. Эти изотопы также имеют положительную энергию α‑распада. Однако энергия α-распада ~1.3–2.2 МэВ слишком мала и α‑распад этих изотопов не обнаружен, несмотря на отличную от нуля вероятность α-распада. При дальнейшем увеличении массового числа A > 180 доминирующим каналом распада становится β - -распад.
    При радиоактивных распадах конечное ядро может оказаться не только в основном, но и в одном из возбужденных состояний. Однако сильная зависимость вероятности α-распада от энергии α‑частицы приводит к тому, что распады на возбужденные уровни конечного ядра обычно идут с очень низкой интенсивностью, потому что при возбуждении конечного ядра уменьшается энергия α‑частицы. Поэтому экспериментально удается наблюдать только распады на вращательные уровни, имеющие относительно низкие энергии возбуждения. Распады на возбужденные уровни конечного ядра приводят к возникновению тонкой структуры энергетического спектра вылетающих α‑частиц.
    Основным фактором, определяющим свойства α-распада, является прохождение α‑частиц через потенциальный барьер. Другие факторы проявляются сравнительно слабо, но в отдельных случаях дают возможность получить дополнительную информацию о структуре ядра и механизме α‑распада ядра. Одним из таких факторов является появление квантовомеханического центробежного барьера. Если α‑частица вылетает из ядра (A,Z), имеющего спин J i , и при этом образуется конечное ядро
    (A-4, Z-2) в состоянии со спином J f , то α‑частица должна унести полный момент J, определяемый соотношением

    Так как α-частица имеет нулевой спин, её полный момент J совпадает с уносимым α-частицей орбитальным моментом количества движения l

    В результате возникает квантовомеханический центробежный барьер.

    Изменение формы потенциального барьера за счет центробежной энергии незначительно главным образом из-за того, что центробежная энергия спадает с расстоянием значительно быстрее кулоновской (как 1/r 2 , а не как 1/r). Однако, поскольку это изменение делится на постоянную Планка и попадает в показатель экспоненты, то при больших l, оно приводит к изменению времени жизни ядра.
    В таблице 2.2 приведена рассчитанная проницаемость центробежного барьера B l для α-частиц, вылетающих с орбитальным моментом l относительно проницаемости центробежного барьера B 0 для α-частиц, вылетающих с орбитальным моментом l = 0 для ядра с Z = 90, энергия α-частицы E α = 4.5 МэВ. Видно, что с увеличением орбитального момента l, уносимого α-частицей, проницаемость квантовомеханического центробежного барьера резко падает.

    Таблица 2.2

    Относительная проницаемость центробежного барьера для α-частиц,
    вылетающих с орбитальным моментом l
    (Z = 90, E α = 4.5 МэВ)

    Более существенным фактором, способным резко перераспределить вероятности различных ветвей α-распада, может оказаться необходимость значительной перестройки внутренней структуры ядра при испускании α‑частицы. Если начальное ядро сферическое, а основное состояние конечного ядра сильно деформировано, то для того чтобы эволюционировать в основное состояние конечного ядра, исходное ядро в процессе испускания α‑частицы должно перестроиться, сильно изменив свою форму. В подобном изменении формы ядра обычно участвует большое число нуклонов и такая малонуклонная система, как αчастица, покидая ядро, может оказаться не в состоянии его обеспечить. Это означает, что вероятность образования конечного ядра в основном состоянии будет незначительной. Если же среди возбужденных состояний конечного ядра окажется состояние близкое к сферическому, то начальное ядро может без существенной перестройки перейти в него в результате αраспада Вероятность заселения такого уровня может оказаться большой, значительно превышающей вероятность заселения более низколежащих состояний, включая основное.
    Из диаграмм α-распада изотопов 253 Es, 225 Ac, 225 Th, 226 Ra видны сильные зависимости вероятности α-распада на возбужденные состояния от энергии α-частицы и от орбитального момента l, уносимого α-частицей.
    α-распад также может происходить из возбужденных состояний атомных ядер. В качестве примера в таблицах 2.3, 2.4 приведены моды распада основного и изомерного состояний изотопов 151 Ho и 149 Tb.

    Таблица 2.3

    α-распады основного и изомерного состояний 151 Ho

    Таблица 2.4

    α-распады основного и изомерного состояний 149 Tb

    На рис. 2.6 приведены энергетические диаграммы распада основного и изомерного состояний изотопов 149 Tb и 151 Ho.


    Рис. 2.6 Энергетические диаграммы распада основного и изомерного состояний изотопов 149 Tb и 151 Ho.

    α-распад из изомерного состояния изотопа 151 Ho (J P = (1/2) + , E изомер = 40 кэВ) более вероятен (80%), чем е-захват на это изомерное состояние. В то же время основное состояние 151 Но распадается преимущественно в результате е-захвата (78%).
    В изотопе 149 Tb распад изомерного состояния (J P = (11/2) - , E изомер = 35.8кэВ) происходит в подавляющем случае в результате е-захвата. Наблюдаемые особенности распада основного и изомерного состояний объясняются величиной энергии α-распада и е-захвата и орбитальными моментами, уносимыми α-частицей или нейтрино.



    Нашли ошибку?
    Выделите ее и нажмите:
    CTRL+ENTER