Главная · Электробезопасность · Автоматизация технологических процессов и производств. Технологии автоматизация производства. Технические средства автоматизации конспект лекций Основные понятия и определения автоматики

Автоматизация технологических процессов и производств. Технологии автоматизация производства. Технические средства автоматизации конспект лекций Основные понятия и определения автоматики

Вопрос 1 Основные понятия и определения САиУ

Автоматизация - одно из направлений научно-технического прогресса, использующее саморегулирующие технические средства и математические методы с целью освобождения человека от участия в процессах получения, преобразования, передачи и использования энергии, материалов или информации, либо существенного уменьшения степени этого участия или трудоёмкость выполняемых операций. Автоматизация позволяет повысить производительность труда, улучшить качество продукции, оптимизировать процессы управления, отстранить человека от производств, опасных для здоровья. Автоматизация, за исключением простейших случаев, требует комплексного, системного подхода к решению задачи. В состав систем автоматизации входят датчики (сенсоров), устройства ввода, управляющие устройства (контроллеры), исполнительные устройства, устройства вывода, компьютеры. Применяемые методы вычислений иногда копируют нервные и мыслительные функции человека. Весь этот комплекс средств обычно называют системами автоматизации и управления .

В основе всех систем автоматизации и управления лежат такие понятия как объект управления, устройство связи с объектом управления, контроль и регуляция технологических параметров, измерение и преобразование сигналов.

Под объектом управления понимается технологический аппарат или их совокупность, в которых осуществляются (или с помощью которых осуществляются) типовые технологические операции смешения, разделения или их взаимное сочетание с простыми операциями. Такой технологический аппарат вместе с технологическим процессом, который в нем протекает и для которого разрабатывают систему автоматического управления и называют объектом управления или объектом автоматизации. Из совокупности входных и выходных величин управляемого объекта можно выделить управляемые величины, управляющие и возмущающие воздействия и помехи. Управляемой величиной является выходная физическая величина или параметр управляемого объекта, которая в процессе функционирования объекта должна поддерживаться на определённом заданном уровне или изменяться по заданному закону. Управляющим воздействием является материальный или энергетический входной поток, изменяя который, можно поддерживать управляемую величину на заданном уровне либо изменять её по заданному закону. Автоматическим устройством или регулятором называют техническое устройство, позволяющее без участия человека, поддерживать величину технологического параметра или менять её по заданному закону. Автоматическое управляющее устройство включает в себя комплекс технических средств, выполняющих в системе определённые функции.В состав автоматической системы регулирования входят: Чувствительный элемент или датчик , служащий для преобразования выходной величины управляемого объекта в пропорциональный электрический или пневматический сигнал, Элемент сравнения - для определения величины рассогласования между текущим и заданным значениями выходной величины. Задающий элемент служит для задания величины технологического параметра, которую необходимо поддерживать на постоянном уровне. Усилительно-преобразующий элемент служит для выработки регулирующего воздействия в зависимости от величины и знака рассогласования за счёт внешнего источника энергии. Исполнительный элемент служит для реализации регулирующего воздействия. выработанного УПЭ. Регулирующий элемент – для изменения материального или энергетического потока с целью поддержания выходной величины на заданном уровне. В практике автоматизации производственных процессов автоматические системы регулирования комплектуются типовыми общепромышленными приборами, выполняющими функции вышеперечисленных элементов. Основным элементом таких систем является вычислительная машина, получающая информацию от аналоговых и дискретных датчиков технологических параметров. Эта же информация может поступать на аналоговые или цифровые устройства представления информации(вторичные приборы). Оператор-технолог обращается к этой машине с помощью пульта для ввода информации, не получаемой от автоматических датчиков, запроса необходимой информации и советов по управлению процессом. Работа САиУ базируется на основе получения и обработки информации.





Основные виды систем автоматизации и управления:

· автоматизированная система планирования (АСП),

· автоматизированная система научных исследований (АСНИ),

· система автоматизированного проектирования (САПР),

· автоматизированный экспериментальный комплекс (АЭК),

· гибкое автоматизированное производство (ГАП) и автоматизированная система управления технологическим процессом (АСУ ТП),

· автоматизированная система управления эксплуатацией (АСУ)

· система автоматического управления(САУ).

Вопрос 2 Состав технических средств автоматизации и управления САиУ.

Технические средства автоматизации и управления - это устройства и приборы, которые могут как сами являться средствами автоматизации, так и входить в состав программно-аппаратного комплекса.

Типовые средства автоматизации и управления могут быть техническими, аппаратными, программно-техническими и общесистемными.

К техническим средствам автоматизации и управления относят:

− датчики;

− исполнительные механизмы;

− регулирующие органы (РО);

− линии связи;

− вторичные приборы (показывающие и регистрирующие);

− устройства аналогового и цифрового регулирования;

− программно-задающие блоки;

− устройства логико-командного управления;

− модули сбора и первичной обработки данных и контроля состояния технологического объектауправления (ТОУ);

− модули гальванической развязки и нормализации сигналов;

− преобразователи сигналов из одной формы в другую;

−модули представления данных, индикации, регистрации и выработки сигналов управления;

− буферные запоминающие устройства;

− программируемые таймеры;

−специализированные вычислительные устройства, устройства допроцессорной подготовки.

Технические средства автоматизации и управления можно систематизировать следующим образом:


СУ – система управления.
ЗУ – Задающее устройство (кнопки, экраны, тумблеры).

УОИ – Устройство отображения информации.
УОИ – Устройство переработки информации.

УсПУ – Преобразовательное / Усилительное устройство.
КС – Канал связи.
ОУ – Объект управления.
ИМ – Исполнительные механизмы.

РО – Рабочие органы (Манипуляторы).

Д – Датчики.
ВП – Вторичные преобразователи.

По функциональному назначению их делят на следующие 5 групп:

Входные устройства. К ним относятся - ЗУ, ВП, Д;

Выходные устройства. К ним относятся - ИМ, УсПИ, РО;

Устройства центральной части. К ним относятся - УПИ;

Средства промышленных сетей. К ним относятся - КС;

Устройства отображения информации – УОИ.

ТСАиУ выполняют следующие функции : 1. сбор и преобразование информации о состоянии процесса; 2. передачу информации по каналам связи; 3. преобразование, хранение и обработка информации; 4. формирование команд управления в соответствии с выбранными целями (критериями функционирования систем); 5. использование и представление командной информации для воздействия на процесс и связь с оператором с помощью исполнительных механизмов. Поэтому все промышленные средства автоматизации технологических процессов по признаку отношения к системе объединяют в соответствии со стандартом в следующие функциональные группы: 1. средства на входе системы (датчики); 2. средства на выходе системы (выходные преобразователи, средства отображения информации и команд управления процессом, вплоть до речевых); 3. внутрисистемные САиУ (обеспечивающие взаимосвязь между устройствами с различными сигналами и различными машинными языками) например, имеют выходы релейные или с открытым коллектором; 4. средства передачи, хранения и обработки информации.
Такое многообразие групп, типов и конфигураций САиУ приводит к много альтернативной проблеме проектирования технического обеспечения АСУ ТП в каждом конкретном случае. Одним из наиболее важных критериев выбора ТСАиУ может служить их стоимость.

Таким образом, технические средства автоматизации и управления включают в себя приборы для фиксирования, переработки и передачи информации на автоматизированном производстве. С помощью них осуществляется контроль, регулирование и управление автоматизированными линиями производства .

Средства автоматизации – это технические средства, предназначенные для оказания помощи должностным лицам органов управления в решении информационных и расчетных задач. Применение средств автоматизации повышает оперативность управления, снижает трудозатраты должностных лиц органов управления, повышает обоснованность принимаемых решений. К средствам автоматизации относятся следующие группы средств (рис. 3.4):

электронно-вычислительные машины (ЭВМ);

устройства сопряжения и обмена (УСО);

устройства сбора и ввода информации;

устройства отображения информации;

устройства документирования и регистрации информации;

автоматизированные рабочие места;

средства математического обеспечения;

средства программного обеспечения;

средства информационного обеспечения;

средства лингвистического обеспечения.


Электронно-вычислительные машины классифицируются:

а) по назначению – общего назначения (универсальные), проблемно-ориентированные, специализированные;

б) по размерам и функциональным возможностям - суперЭВМ, большие ЭВМ, малые ЭВМ, микроЭВМ.

СуперЭВМ обеспечивают решение сложных военно-технических задач и

задач по обработке больших объемов данных в реальном масштабе времени.

Большие и малые ЭВМ обеспечивают управление сложными объектами и системами. МикроЭВМ ориентированы для решения информационных и расчетных задач в интересах конкретных должностных лиц. В настоящее время широкое развитие получил класс микроЭВМ, основу которого составляют персональные ЭВМ (ПЭВМ).

В свою очередь персональные ЭВМ разделяются на стационарные и переносные. К стационарным ПЭВМ относят: настольные, портативные, блокноты, карманные. Все составные части настольных ПЭВМ выполнены в виде отдельных блоков. Портативные ПЭВМ типа ″Lоp Top″ выполняются в виде небольших чемоданчиков массой 5 – 10 килограммов. ПЭВМ-блокнот типа ″Note book″ или ″Sub Note book″ имеет размер с небольшую книгу и по характеристикам соответствует настольным ПЭВМ. Карманные ПЭВМ типа ″Palm Top″ имеют размеры записной книжки и позволяют записывать и редактировать небольшие объемы информации. К переносным ПЭВМ относятся электронные

секретари и электронные записные книжки.

Устройства сопряжения и обмена предназначены для согласования параметров сигналов внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом эти устройства выполняют как физическое согласование (форма, амплитуда, длительность сигнала), так и кодовое. К устройствам сопряжения и обмена относятся: адаптеры (сетевые адаптеры), модемы, мультиплексоры. Адаптеры и модемы обеспечивают согласование ЭВМ с каналами связи, а мультиплексоры обеспечивают согласование и коммутацию одной ЭВМ и нескольких каналов связи.

Устройства сбора и ввода информации . Сбор информации с целью ее последующей обработки на ЭВМосуществляется должностными лицами органов управления и специальными датчиками информации в системах управления оружием. Для ввода информации в ЭВМ применяются следующие устройства: клавиатура, манипуляторы, сканеры, графические планшеты, средства речевого ввода.

Клавиатура – это матрица клавиш, объединенных в единое целое, и электронный блок для преобразования нажатия клавиши в двоичный код.

Манипуляторы (координатно-указательные устройства, устройства управления курсором) совместно с клавиатурой повышают удобство работы пользователя. Повышение удобства работы связано, прежде всего, с возможностью быстро перемещать курсор по экрану дисплея. В настоящее время в ПЭВМ используются следующие разновидности манипуляторов: джойстик (рычаг, установленный на корпусе), световое перо (применяется для формирования изображений на экране), манипулятор типа «мышь», сканер – для ввода в ПЭВМ изображений, графические планшеты – для формирования и ввода в ПЭВМ изображений, средства речевого ввода.

Устройства отображения информации отображают информацию без ее долговременной фиксации. К ним относятся: дисплеи, графические табло, видеомониторы. Дисплеи и видеомониторы служат для отображения информации, вводимой с клавиатуры или других устройств ввода, а также для выдачи пользователю сообщений и результатов выполнения программ. Графические табло осуществляют визуальный вывод текстовой информации в виде бегущей строки.

Устройства документирования и регистрации информации предназначены для вывода информации на бумагу или другой носитель с целью обеспечения длительного времени хранения. К классу этих устройств относятся: печатающие устройства, внешние запоминающие устройства (ВЗУ).

Печатающие устройства или принтеры предназначены для вывода алфавитно-цифровой (текстовой) и графической информации на бумагу или подобный ей носитель. Наиболее широко применяются матричные, струйные и лазерные принтеры.

Современная ПЭВМ содержит, как минимум, два запоминающих устройства: накопитель на гибких магнитных дисках (НГМД) и накопитель на жестких магнитных дисках (НЖМД). Однако в случаях обработки больших объемов информации вышеуказанные накопители не могут обеспечить их запись и хранение. Для записи и хранения больших объемов информации используются дополнительные запоминающие устройства: накопители на магнитных дисках и лентах, накопители на оптических дисках (НОД), накопители на DVD-дисках. Накопители типа НОД обеспечивают высокую плотность записи, повышенную надежность и долговечность хранения информации.

Автоматизированные рабочие места (АРМ) – это рабочие места должностных лиц органов управления, оборудованные средствами связи и автоматизации. Основным средством автоматизации в составе АРМ является ПЭВМ.

Средства математического обеспечения – это совокупность методов, моделей и алгоритмов, необходимых для решения информационных и расчетных задач.

Средства программного обеспечения – это совокупность программ, данных и программных документов, необходимых для обеспечения функционирования самой ЭВМ и решения информационных и расчетных задач.

Средства информационного обеспечения – это совокупность информации, необходимая для решения информационных и расчетных задач. В состав информационного обеспечения входят собственно массивы информации, система классификации и кодирования информации, система унификации документов.

Средства лингвистического обеспечения – совокупность средств и способов представления информации, допускающих ее обработку на ЭВМ. Основу лингвистического обеспечения составляют языки программирования.

Технические средства автоматизации

приборы, устройства и технические системы, предназначенные для автоматизации производства (См. Автоматизация производства). Т. с. а. обеспечивают автоматическое получение, передачу, преобразование, сравнение и использование информации в целях контроля и управления производственными процессами. В СССР системный подход к построению и использованию Т. с. а. (их группировка и унификация по функциональному, информационному и конструктивно-технологическому признакам) позволил объединить все Т. с. а. в рамках Государственной системы промышленных приборов и средств автоматизации - ГСП .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Технические средства автоматизации" в других словарях:

    ТЕХНИЧЕСКИЕ СРЕДСТВА (АВТОМАТИЗАЦИИ) - 13. ТЕХНИЧЕСКИЕ СРЕДСТВА (АВТОМАТИЗАЦИИ) средства автоматизации, в составе которых не используются программные средства. Источник: РБ 004 98: Требования к сертификации управляющих систем, важных для безопасности атомных станций …

    технические средства автоматизации - приборы, устройства и технической системы для автоматизирован производства, обеспечиваюдщие автоматическое получение, передачу, преобразование, сравнение и вание информации в целях контроля и управления производственными… … Энциклопедический словарь по металлургии

    Технические средства автоматизации СКУ, техническое обеспечение СКУ - 7 Технические средства автоматизации СКУ, техническое обеспечение СКУ Совокупность всех компонентов СКУ, за исключением людей (ГОСТ 34.003 90). Совокупность всех технических средств, используемых при функционировании СКУ (ГОСТ 34.003 90) Источник … Словарь-справочник терминов нормативно-технической документации

    ПРОГРАММНО-ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - 7. ПРОГРАММНО ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ совокупность программных и технических средств автоматизации, предназначенных для создания управляющих программно технических систем. Источник: РБ 004 98: Требования к сертификации управляющих… … Словарь-справочник терминов нормативно-технической документации

    Технические средства - 3.2 Технические средства систем автоматизации, комплекс технических средств (КТС) совокупность устройств (изделий), обеспечивающих получение, ввод, подготовку, преобразование, обработку, хранение, регистрацию, вывод, отображение, использование и… … Словарь-справочник терминов нормативно-технической документации

    Средства технические систем автоматизации - 4.8 Источник: РМ 4 239 91: Системы автоматизации. Словарь справочник по терминам. Пособие к СНиП 3.05.07 85 … Словарь-справочник терминов нормативно-технической документации

    Технические средства АСУ ТП - Средства АСУ ТП, включающие изделия государственной системы промышленных приборов и средств автоматизации (ГСП), агрегатные средства измерения (АС ИИС), средства вычислительной техники (СВТ) Источник: РД 34.35.414 91: Правила организации… … Словарь-справочник терминов нормативно-технической документации

    ТЕХНИЧЕСКИЕ СРЕДСТВА СИСТЕМ АВТОМАТИЗАЦИИ - 4.8. ТЕХНИЧЕСКИЕ СРЕДСТВА СИСТЕМ АВТОМАТИЗАЦИИ Технические средства СА Комплект средств, обеспечивающий функционирование СА различного вида и уровня приборы, функциональные блоки, регуляторы, исполнительные устройства, агрегатные комплексы,… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 13033-84: ГСП. Приборы и средства автоматизации электрические аналоговые. Общие технические условия - Терминология ГОСТ 13033 84: ГСП. Приборы и средства автоматизации электрические аналоговые. Общие технические условия оригинал документа: 2.10. Требования к питанию 2.10.1. Питание изделий должно осуществляться от одного из следующих источников:… … Словарь-справочник терминов нормативно-технической документации

    Технические - 19. Технические указания по технологии производства строительных и монтажных работ при электрификации железных дорог (устройства электроснабжения). М.: Оргтрансстрой, 1966. Источник: ВСН 13 77: Инструкция по монтажу контактных сетей промышленного … Словарь-справочник терминов нормативно-технической документации

Книги

  • Технические средства автоматизации и управления Учебник , Колосов О., Есюткин А., Прокофьев Н. (ред.). Учебник в разной степени (не претендуя на охват "необъятного")подкрепляет и дополняет материалы, излагаемые в соответствии с рабочими программами комплекса дисциплин профессионального цикла…
  • Технические средства автоматизации. Учебник для академического бакалавриата , Рачков М.Ю.. В учебнике рассмотрены классификация технических средств автоматизации, методы выбора технических средств по типу производства, а также системы управления оборудованием. Приводится описание…

Список литературы 1. Кремлевский П. П. – Расходомеры и счетчики количества веществ (2 е книги) – С П. : Политехника, 2002 г. 2. Ранев Г. Г, Тарасенко А. П. , Методы и средства измерений. – М. : Издательский центр «Аккадемия» , 2004 г. – 336 с. 3. Исакович Р. Я. , Кучин Б. Л. , Контроль и автоматизация добычи нефти и газа. – М. : Недра, 1976. – 343 с. 4. Мовсумзаде А. Э. , Сощенко А. Е. , Развитие систем автоматизации и телемеханизации в нефтегазовой промышленности. – М. : Недра, 2004 – 331 с. 5. Коршак А. А. , Шаммазов А. М. , Основы нефтегазового дела, учебник для вузов. – Уфа: ООО «Дизайн. Полиграф. Сервис» , 2005 – 528 с. : ил.

Список литературы 6. Логачев В. Г. , Разработка средств автоматического контроля размеров движущихся изделий с неустойчивыми и сложными геометрическими формами. – Тюмень: Вектор Бук, 2001. – 311 с. 7. В. Г. Домрачев, В. Р. Матвеевский, Ю. С. Смирнов. Схемотехника цифровых преобразователей перемещений. Справочное пособие, М: Энергоавтомиздат, 1987. 8. Самхарадзе Т. Г. – Каталог. Приборы и средства автоматизации. Том 6 – Приборы вторичные – М. : ООО «Научтехлитиздат» , 2005 г. 9. Самхарадзе Т. Г. – Каталог. Приборы и средства автоматизации. Том 7 – Приборы регулирующие. Сигнализаторы температуры, давления, уровня. Датчики реле. Исполнительные механизмы – М. : ООО «Научтехлитиздат» , 2005 г. 10. Самхарадзе Т. Г. – Каталог. Приборы и средства автоматизации. Том 8 – Программно логические контроллеры (ПЛК) и программно технические комплексы (ПТК) – М. : ООО «Научтехлитиздат» , 2005 г.

Первичные преобразователи Первичным преобразователем (ПП) перемещения называется устройство, воспринимающее контролируемое входное перемещение (линейное или угловое) и преобразующее его в выходной сигнал (как правило, электрический), удобный для дальнейшей обработки, преобразования и, если это необходимо, передачи по каналу связи на большие расстояния. Являясь важнейшей составной частью цифровых преобразователей, первичные преобразователи перемещений во многом предопределяют параметры ЦПП в целом, поскольку именно первый этап преобразования перемещение – электрический параметр в основном определяет такие характеристики ЦПП, как точность, быстродействие, линейность управления и т. д. Основные требования, которые предъявляются при разработке конструировании к ПП перемещений: высокая точность измерения (или контроля) перемещений, быстродействие, надежность, помехоустойчивость информативного параметра, малые нелинейные искажения, высокая технологичность, небольшая стоимость, малые теплоотдача, габариты, масса и т. д. , что достаточно важно в условиях производства.

Классификация первичных преобразователей ¢ ¢ ¢ ¢ ПП могут классифицироваться по различным признакам, основными из которых являются: характер измеряемых перемещений, физический принцип действия чувствительного элемента, структура построения, вид выходного сигнала. По характеру измеряемых перемещений различают ПП линейных и угловых перемещений. По физическому принципу действия чувствительного элемента ПП можно разделить на: фотоэлектрические (оптоэлектронные), использующие эффект периодического изменения освещенности; электростатические: l емкостные (основанные на эффекте периодического изменения емкости); l пьезоэлектрические (основанные на эффекте возникновения электрического заряда на поверхности некоторых материалов в момент деформации); электромагнитные (использующие, например, эффект периодического изменения индуктивности или взаимоиндуктивности); электроакустические (основанные, например, на эффекте изменения энергии поверхностной акустической волны);

Классификация первичных преобразователей ¢ электромеханические: l электроконтактные (основанные на эффекте резкого изменения сопротивления парных электроконтактов при их замыкании и размыкании); l реостатные (использующие эффект линейного изменения сопротивления); l механотронные (основанные на механическом управлении электронным током электровакуумных приборов путем непосредственного механического перемещения их электродов). l По структуре построения в зависимости от способа соединения элементов ПП различают три основные структурные схемы: с последовательным преобразованием, дифференциальные и компенсационные. l По характеру изменения во времени выходного сигнала различают ПП непрерывного и дискретного действия. l В зависимости от вида параметра выходного сигнала, находящегося в линейной зависимости от измеряемого перемещения, ПП непрерывного действия подразделяются на амплитудные, частотные и фазовые. Соответственно ПП дискретного действия могут быть амплитудно импульсными, частотно импульсными, кодоимпульсными и др.

Классификация измерений ¢ ¢ ¢ Прямое измерение – измерение, при котором искомое значение величины получают непосредственно. Например, измерение температуры воздуха термометром, давления – манометром. Косвенное измерение – измерение, при котором значение физической величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой. Например, нахождение плотности тела по его массе и геометрическим размерам. Совместные измерения – одновременные измерения двух или нескольких неоднородных величин для установления зависимости между ними. Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата (чем меньше погрешность измерения, тем больше его точность). Погрешность результата измерения – отклонение результата измерения от истинного значения измеряемой величины.

Средства измерений Средство измерений – это техническое средство (или комплекс технических средств), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее или хранящее одну или несколько единиц физических величин, размеры которых принимаются неизменными в течение известного промежутка времени. ¢ Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне. Как правило, измерительный прибор имеет устройства для преобразования измеряемой величины в сигнал измерительной информации и его индикации в форме, наиболее доступной для восприятия. Различают следующие типы приборов: показывающие, регистрирующие, суммирующие, прямого действия, сравнения. ¢ Класс точности – обобщенная характеристика СИ, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами СИ, влияющими на его точность. ¢ Погрешность средства измерений – разность между показаниями СИ и истинным (действительным) значением измеряемой величины. ¢

Запорная арматура ¢ ¢ ¢ Трубопроводная арматура предназначена для управления потоками нефти, транспортируемыми по трубопроводам. По принципу действия арматура делится на три класса: запорная, регулирующая и предохранительная. Запорная арматура (задвижки) служит для полного перекрытия сечения трубопровода, регулирующая (регуляторы давления) - для изменения давления или расхода перекачиваемой жидкости, предохранительная (обратные и предохранительные клапаны) - для защиты трубопроводов и оборудования при превышении допустимого давления, а так же предотвращения обратных токов жидкости. Задвижками называются запорные устройства, в которых проходное сечение перекрывается поступательным перемещением затвора в направ лении, перпендикулярном направлению движения нефти.

Запорная арматура Регуляторами давления называются устройства, служащие для автоматического поддержания давления на требуемом уровне. В соответствии с тем, где поддерживается давление до или после регулятора, различают регуляторы типа «до себя» и «после себя» . ¢ Предохранительными клапанами называются устройства, предотвращающие повышение давления в трубопроводе сверх установленной величины. На нефтепроводах применяют мало и полноподъемные предохранительные клапаны закрытого типа, работающие по принципу сброса части жидкости из места возникновения повышенного давления в специальный сборный коллектор. ¢ Обратным клапаном называется устройство для предотвращения обратного движения среды в трубопроводе. При перекачке нефти применяют клапаны обратные поворотные с затвором, вращающимся относительно горизонтальной оси. Арматура магистральных нефтепроводов рассчитана на рабочее давление 6, 4 МПа. ¢

Автоматизация производства процесс в развитии машинного производства, при котором функции управления и контроля, ранее выполнявшиеся человеком, передаются приборам и автоматическим устройствам. Автоматизация производства основа развития современной промышленности, генеральное направление технического прогресса. Основная ее цель заключается в повышении эффективности труда, улучшении качества выпускаемой продукции, в создании условий для оптимального использования всех ресурсов производства. Различают А. п. : частичную, комплексную и полную.

Методы автоматизации производства ¢ Во первых, разрабатывают методы эффективного изучения закономерностей объектов управления, их динамики, устойчивости, зависимости поведения от воздействия внешних факторов. Эти задачи решаются исследователями, конструкторами и технологами специалистами конкретных областей науки и производства. Сложные процессы и объекты изучают методами физического и математического моделирования, исследования операций с использованием аналоговых и цифровых вычислительных машин.

Методы автоматизации производства ¢ Во вторых, определяют экономически целесообразные методы управления, тщательно обосновывают цель и оценочную функцию управления, выбор наиболее эффективной зависимости между измеряемыми и управляющими параметрами процесса. На этой основе устанавливают правила принятия решений по управлению и выбирают стратегию поведения руководителей производства с учётом результатов экономических исследований, направленных на выявление рациональных закономерностей системы управления. Конкретные цели управления зависят от технико экономических, социальных и других условий. Они состоят в достижении максимальной производительности процесса, стабилизации высокого качества выпускаемой продукции, наибольшего коэффициента использования топлива, сырья и оборудования, максимального объёма реализованной продукции и снижении затрат на единицу изделия и др.

Методы автоматизации производства ¢ В третьих, ставится задача создания инженерных методов наиболее простого, надёжного и эффективного воплощения структуры и конструкции средств автоматизации, осуществляющих заданные функции измерения, обработки полученных результатов и управления. При разработке рациональных структур управления и технических средств их осуществления применяют теорию алгоритмов, автоматов, математическую логику и теорию релейных устройств. С помощью вычислительной техники автоматизируют многие процессы расчёта, проектирования и проверки устройств управления. Выбор оптимальных решений по сбору, передаче и обработке данных основывается на методах теории информации. При необходимости многоцелевого использования больших потоков информации применяются централизованные (интегральные) методы её обработки.

Средства автоматизации Технические средства автоматизации приборы, устройства и технические системы, предназначенные для автоматизации производства. Т. с. а. обеспечивают автоматическое получение, передачу, преобразование, сравнение и использование информации в целях контроля и управления производственными процессами. Датчик первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину (давление, температуру, частоту, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы.

Методы и приборы измерения температуры Под температурой понимают степень нагретости вещества. Физические свойства нефти (плотность, вязкость, количество газа и парафина, растворенных в нефти, и фазовые состояния нефти) в значительной степени зависят от ее температуры. Технология процесса добычи нефти, промыслового сбора и первичной подготовки ее на промыслах, транспорт нефти и нефтепродуктов в значительной степени зависят от температурных факторов, при которых протекают эти процессы. Так как температура является активной величиной, то измерять ее можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению (термо. ЭДС, электрическое сопротивление, плотность и т. д.). Температуру необходимо измерять в трубопроводах с теплоносителем, в водоносных, нефтеносных и компрессорных станциях для контроля состояния подшипников. Измерения температуры в резервуарах с нефтью и нефтепродуктами являются необходимым элементом количественного учета.

Датчик температуры Метран - 274 Датчик состоит из электронного преобразователя с выходным сигналом 4 20 м. А и термозондов с различными длинами погружаемой части. Измеряемый параметр температура линейно преобразуется в пропорциональное изменение омического сопротивления терморезистора, размещенного в термозонде. Электронный преобразователь преобразует напряжение, возникающее на термочувствительном элементе, в токовый выходной сигнал. Термочувствительным элементом датчика является терморезистор с номинальной статической характеристикой преобразования 100 М, размещенный в герметической оболочке термозонда.

Датчик температуры ТС 5008 Датчик предназначен для непрерывного преобразования температуры жидкостей и газов в унифицированный токовый выходной сигнал в условиях неагрессивных сред в системах автоматического контроля, регулирования и управления технологическими процессами. Электронный преобразователь преобразует напряжение, возникающее на термочувствительном элементе, в токовый выходной сигнал.

Датчики температуры ТСМУ 0104, ТСПУ 0104 Термопреобразователи с унифицированным выходным сигналом ТСМУ 0104, ТСПУ 0104 предназначены для измерения и непрерывного преобразования температуры, твердых, жидких, газообразных и сыпучих веществ. ТСМУ 0104, ТСПУ 0104 предназначены для замены термопреобразователей с унифицированным выходным сигналом серии ТСМУ 205, ТСПУ 205. Отличаются возможностью смены термозонда и выбора нижнего и верхнего пределов диапазона измеряемой температуры с помощью переключателей (свитчи). В соответствии с ГОСТ 14254 степень защиты от проникновения твердых тел, пыли и воды: IP 54, IP 65, IP 67 в зависимости от исполнения клемной головки и типа присоединения.

Основные технические характеристики датчиков температуры ТС 5008, Метран-274, ТСМУ 0104 (ТСПУ 0104) Наименование прибора Параметры ТС 5008 Метран 274 ТСМУ 0104, ТСПУ 0104 ± 0, 5 ± 0, 25 ± 0, 1 50 до +350 50 до +180 50 до 550 Используемый выходной сигнал, м. А 4 20 Напряжение питания, В 17 42 15 42 Защита взрывозащ. Срок службы, лет 5 5 6 1, 5 1, 8 1, 08 Предел допустимой погрешности, % Диапазон измеряемых температур, ºС Цена, тыс. руб

Классификация приборов для измерения давления и разряжения Все приборы для измерения давления и разрежения можно разделить на следующие группы: 1. По роду измеряемой величины: барометры - для измерения атмосферного давления; манометры - для измерения избыточного давления; вакуумметры - для измерения разрежения; мановакуумметры - для измерения давления и разрежения; дифференциальные манометры - для измерения разности (пере пада) давления.

Классификация приборов для измерения давления и разряжения 2. По принципу действия: жидкостные - измеряемое давление уравновешивается стол бом жидкости; поршневые - измеряемое давление, действуя по одну сто рону поршня, уравновешивается давлением, создаваемым силой, приложенной с противоположной стороны. В качестве уравновеши вающей силы используют непосредственную нагрузку (грузы); пружинные - измеряемое давление деформирует различного рода пружины. Деформация, увеличенная при помощи переда точного механизма и преобразованная в перемещение указателя, является мерой измеряемого давления; электрические, основанные на изменении электрических свойств некоторых материалов при воздействии на них давления; радиоактивные - измеряемое давление вызывает соответст вующее изменение ионизации, производимой излучениями и ре комбинацией ионов. Жидкостные приборы применяются преимущественно в лабо раторных условиях, поршневые манометры - для градуировки приборов. На промышленных объектах применяются преимущественно пружинные и электрические манометры различных типов.

Датчик давления Сапфир– 22–ДИ–Ex Измерительные преобразователи Сапфир– 22–ДИ–Ex предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами и обеспечивают непрерывное преобразование значения измеряемого параметра – избыточного давления в унифицированный токовый выходной сигнал. Преобразователи предназначены для работы со вторичной регистрирующей и показывающей аппаратуры, регуляторами и другими устройствами автоматики, системами управления, работающими от стандартного выходного сигнала 4 20 м. А постоянного тока. Принцип работы преобразователя Сапфир– 22–ДИ–Ex основан на применении тензорезисторов. Преобразователи Сапфир– 22–ДИ–Ex обладают высокой точностью, стабильностью работы, малой инерционностью. Датчики изготавливают в виде многопредельных приборов с возможностью регулировки диапазона измерения.

Датчик давления Метран– 43 ДИ–Ех Датчики этого типа предназначены для работы в системе автоматического контроля, регулирования и управления технологическими процессами и обеспечивают непрерывное преобразование значения измеряемого параметра – давления избыточного в стандартный токовый выходной сигнал дистанционной передачи. Работа измерительных преобразователей Метран– 43 ДИ–Ех основано на тензорезисторном эффекте. Преобразователи данной модели обладают высокой точностью, стабильностью работы, малой инерционностью. Датчики изготавливают в виде многопредельных приборов с возможностью регулировки диапазона измерения: каждый преобразователь может быть перенастроен на любой верхний диапазон измерений. От измеряемой среды чувствительный элемент защищён гофрированными металлическими мембранами, изготовленными из антикоррозийных материалов. Основными достоинствами является повышенная точность, однако, применение данного датчика в условиях автоматизируемого технологического процесса осложнено большими габаритами и узким диапазоном рабочих температур.

Датчик измерения перепада давления САПФИР - 22 -Ех-М-ДД Преобразователи разности давлений могут использоваться для преобразования значений уровня жидкости, расхода жидкости или газа, преобразование гидростатического давления для преобразования значений уровня жидкости в унифицированный токовый сигнал. Каждый преобразователь имеет регулировку диапазона измерений и может быть настроен на любой верхний предел измерения, указанный для данной модели. Предел допускаемой основной погрешности до 0. 5%. Преобразователи «САПФИР 22 Ех М ДД» выполняются с видом взрывозащиты «искробезопасная электрическая цепь» с уровнем взрывозащиты «особовзрывобезопасный» . Могут работать во взрывоопасных зонах помещений и наружных установок. Принцип работы преобразователей основан на свойствах материалов менять свои электрические параметры (емкость, сопротивление) при изменении их геометрии. В качестве чувствительного элемента в преобразователях используется слой тензосопротивлений напыленных методом вакуумной диффузии на пластину из сапфира (так называемая структура КНС «кремний на сапфире») соединенных с металлической пластиной. При изменении давления, оказываемого на пластину, происходит изменение сопротивления тензорезисторов, включенных в одно из плеч уравнительного моста, в результате чего появляется разбаланс мостовой схемы. Таким образом, изменение давления или перепада давления преобразуется в выходной токовый сигнал 4 20 м. А. Предельно допускаемое рабочее избыточное давление до 40 МПа.

Основные технические характеристики датчиков давления Сапфир– 22–ДИ–Ex, Метран– 43 ДИ–Ех, Сапфир - 22 -Ех-М-ДД Наименование прибора Параметры Сапфир 22 ДИ Ех Метран 43 ДИ Ех Сапфир 22 Ех М ДД ± 0, 5 ± 0, 25 ± 0, 5 от 0 до 2, 5 50 до +80 50 до +70 50 до 550 Используемый выходной сигнал, м. А 4 20 Напряжение питания, В 15 42 взрывозащ. Срок службы, лет 10 8 12 Цена, тыс. руб. 13 8 17 Предел допустимой погрешности, % Предел измерений, МПа Диапазон измеряемых температур, ºС Защита

Принцип действия ультразвуковых уровнемеров Ультразвуковые бесконтактные уровнемеры осуществляют зондирование рабочей зоны волнами ультразвука, т. е. волнами давления с частотой свыше 20 КГц. Они используют свойство ультразвуковых волн отражаться при прохождении границы двух сред с различными физическими свойствами. Поэтому, чувствительный элемент ультразвукового уровнемера состоит из излучателя и приемника колебаний, которые, как правило, конструктивно совмещены и представляют собой кварцевую пластину. При подаче на пластину переменного напряжения возникают деформации пластины, передающие колебания воздушной среде. Подача напряжения производиться импульсами и по завершении передачи, пластина превращается в приемник отраженных ультразвуковых колебаний, вызывающих колебания пластины и, как следствие, появление выходного напряжения (обратный пьезоэффект). Расстояние до границы раздела двух сред вычисляется по формуле: Н= V * t /2 , где V – скорость ультразвуковых волн в данной среде, t – время между началом излучения и приходом отраженного сигнала, определяемое электронным блоком уровнемера.

Принцип действия ультразвуковых уровнемеров Как правило, наиболее распространен вариант установки ультразвукового датчика в верхней части емкости. При этом сигнал проходит через воздушную среду, отражаясь от границы с твердой (жидкой) средой. Уровнемер в этом случае называется акустическим. Существует, также, вариант установки датчика в дно емкости. Сигнал в этом случае отражается от границы с менее плотной средой. Скорость распространения ультразвука зависит от температуры около 0, 18% на 1ºС. Для устранения этого влияния в уз уровнемерах применяется термокомпенсация с помощью встроенного термодатчика. Диапазон работы УЗ уровнемеров – до 25 м. при неизмеряемом уровне – около 1 м. Температура рабочей среды: 30. . +80(120) ºС, давление – до 4 МПа. Ультразвуковые уровнемеры позволяют достигать погрешности измерения уровня в 1%. Они могут использоваться для агрессивных сред и для сред с самыми различными физическими свойствами, за исключением сильнопарящих, сильнопенящихся жидкостей и мелкодисперсных и пористых гранулированных сыпучих продуктов. Вместе с тем, они существенно дешевле радарных микроволновых уровнемеров. УЗ уровнемеры часто используются для измерения расхода в профилированных каналах. Примерами распространенных ультразвуковых уровнемеров являются: ЭХО-5, ЭХО-АС 01, Prosonic M.

Микроволновые радарные уровнемеры – наиболее сложные и высокотехнологичные средства измерения уровня. Для зондирования рабочей зоны и определения расстояния до объекта контроля здесь используется электромагнитное излучение СВЧ диапазона. В настоящее время широко используются два типа микроволновых уровнемеров: импульсные и FMCW (frequency modulated continuous wave). В уровнемерах FMCW происходит постоянное непрерывное излучение линейно частотно модулированного сигнала и, одновременно, прием отраженного сигнала с помощью одной и той же антенны. В результате на выходе получается смесь сигналов, которая анализируется с применением специального математического и программного обеспечения для выделения и максимально точного определения частоты полезного эхо сигнала. Для каждого момента времени разность частот прямого и обратного сигналов прямопропорциональна расстоянию до контролируемого объекта. Импульсные микроволновые уровнемеры излучают сигнал в импульсном режиме, при этом прием отраженного сигнала происходит в промежутках между импульсами исходного излучения. Прибор вычисляет время прохождения прямого и обратного сигналов и определяет значение расстояния до контролируемой поверхности.

Микроволновые радарные уровнемеры Радарные уровнемеры наиболее универсальные средства измерения уровня. Не имея непосредственного контакта с контролируемой средой, они могут применяться для агрессивных, вязких, неоднородных жидких и сыпучих материалов. От ультразвуковых бесконтактных уровнемеров их выгодно отличает гораздо меньшая чувствительность к температуре и давлению в рабочей емкости, к их изменениям, а также большая устойчивость к таким явлениям как запыленность, испарения с контролируемой поверхности, пенообразование. Радарные уровнемеры обеспечивают высокую точность (до +/ 1 мм.), что позволяет использовать их в системах коммерческого учета. Вместе с тем существенным лимитирующим фактором применения радарных уровнемеров остается высокая стоимость данных приборов.

Принцип действия буйковых уровнемеров Метод определения уровня по выталкивающей силе действующей на погруженный в рабочую жидкость буек используют буйковые уровнемеры. На тонущий буек действует в соответствии с законом Архимеда выталкивающая сила, пропорциональная степени погружения и, соответственно, уровню жидкости. Действие этой силы воспринимает тензопреобразователь (уровнемеры типа Сапфир ДУ), либо индуктивный преобразователь (УБ ЭМ), либо заслонка, перекрывающая сопло (пневматические уровнемеры типа ПИУП). Буйковые уровнемеры предназначены для измерения уровня в диапазоне – до 10 м. при температурах – 50. . +120ºС (в диапазоне +60. . 120ºС при наличии теплоотводящего патрубка, при температурах 120. . 400°С приборы работают как индикаторы уровня) и давлении до 20 МПа, обеспечивая точность 0, 25. . 1, 5%. Плотность контролируемой жидкости: 0, 4… 2 г/см 3. Буйковые уровнемеры часто применяются для измерения уровня раздела фаз двух жидкостей. Возможно, также, их использование для определения плотности рабочей среды при неизменном уровне.

Технические характеристики ПИУП Условное обозначение модификаций преобразоват еля Предельно допускаемое рабочее избыточное давление, МПа Верхний Диапазон предел плотности измерения, м измеряемой жидкости, г/см³ Диапазон температур измеряемой среды, °С ПИУП 11 10; 16 0, 25 16, 0 50 +100 0, 5 1, 2 или 1, 0 2, 0

Преобразователь уровня буйковый пневматический ПИУП Назначение: прибор предназначен для контроля уровня жидкости или уровня раздела двух несмешивающихся жидкостей в системах автоматического контроля технологических процессов с повышенными требованиями к пожаробезопасности. Приборы используются в химической, нефте и газодобывающих отраслях промышленности совместно с регистраторами и исполнительными механизмами, работающими от стандартного пневматического сигнала 20 100 КПа. В состав прибора входят: буек с тросовой подвеской, комплект ЗИП, флакон с демпферной жидкостью. Для модели ПИУП 13 и ПИУП 15 - комплект монтажных частей с теплоотводящим патрубком.

Гидростатические уровнемеры Гидростатические уровнемеры измеряют давление столба жидкости и преобразуют его в значение уровня, поскольку гидростатическое давление зависит от величины уровня и плотности жидкости и не зависит от формы и объема резервуара. Они представляют собой дифференциальные датчики давления. На один из входов, подсоединяемый к емкости подается давление среды. Другой вход соединяется с атмосферой в случае открытой емкости без избыточного давления или соединяется с областью избыточного давления в случае закрытой емкости под давлением. Конструктивно гидростатические датчики бывают двух типов: мембранные и колокольные (погружные). В первом случае тензорезистивный или емкостной датчик непосредственно соединен с мембраной и весь прибор находится внизу емкости, как правило, сбоку на фланце, при этом расположение ЧЭ (мембраны) соответствует минимальному уровню. (Сапфир-ДГ, Метран 100 ДГ, 3051 L). В случае колокольного датчика чувствительный элемент погружен в рабочую среду и передает давление жидкости на тензорезистивный сенсор через столб воздуха запаянный в подводящей трубке.

Гидростатические уровнемеры Гидростатические уровнемеры применяются для однородных жидкостей в емкостях без существенного движения рабочей среды. Они позволяют производить измерения в диапазоне до 250 КПа, что соответствует (для воды) 25 и метрам, с точностью до 0, 1% при избыточном давлении до 10 МПа и температуре рабочей среды: – 40. . +120°С. Гидростатические уровнемеры могут использоваться для вязких жидкостей и паст. Важным достоинством гидростатических уровнемеров является высокая точность при относительной дешевизне и простоте конструкции.

Интеллектуальные приборы Термин "интеллектуальные" для первичных устройств был введен для тех первичных устройств, внутри которых содержится микропроцессор. Обычно это добавляет новые функциональные возможности, которых не было в аналогичных устройствах без микропроцессора. Например, интеллектуальный датчик может давать более точные показания благодаря применению числовых вычислений для компенсации нелинейности чувствительного элемента или температурной зависимости. Интеллектуальный датчик имеет возможность работать с большой разновидностью разных типов чувствительных элементов, а также составлять одно или несколько измерений в одно новое измерение (например, объемный расход и температуру в весовой расход). И наконец, интеллектуальный датчик позволяет производить настройку на другой диапазон измерений или полуавтоматическую калибровку, а также осуществлять функции внутренней самодиагностики, что упрощает техническое обслуживание.

Контроллеры В настоящее время на рынке средств автоматизации представлено огромное количество различных программируемых логических контроллеров. Они производятся многими известными фирмами, занимающимися разработками средств автоматизации. В настоящие время PLC выпускается более 50 производителями: Siemens, Allen Bradley, Octagon Systems, GE, Koyo, ABB, Advantech и т. д.

Контроллеры Контроллер (англ. controller регулятор, управляющее устройство) - электрический прибор, с помощью которого в телемеханике и системах управления измеряют токи, напряжения, температуру и другие физические параметры объекта, передают и принимают данные по каналам связи, передают на объект управляющие воздействия, используют в качестве локального автоматического регулятора. В настоящее время контроллеры - достаточно малогабаритные устройства, поэтому часто встречается название микроконтроллеры. Как правило, контроллеры оснащены микропроцессорной начинкой, позволяющей программировать контроллер на решение заданного круга задач, отсюда другие названия: программируемые контроллеры и программируемые логические контроллеры, которые обычно сокращают до ПЛК в русских описаниях и PLC в английских. Современный контроллер может обладать достаточно мощным процессором, класса Pentium, обычно с небольшим энергопотреблением. Контроллеры могут быть специализированными, рассчитанными на эффективное решение определённой задачи (например, контроллер релейной защиты) или универсальными, которые могут решать разноплановые задачи в соответствии с установленным набором блоков и вариантом программного обеспечения - например, задачу съёма показаний с приборов учета.

Контроллеры Контроллер SIMATIC S 7 400 компании SIEMENS Контроллер SIMATIC S 7 300 компании SIEMENS Контроллер Micro. PC компании Octagon Systems

Исполнительные механизмы Исполнительный механизм сервопривод, устройство, предназначенное для перемещения регулирующего органа (регулирующий орган может быть выполнен в виде вентиля, клапана, задвижки, крана, шибера, заслонки и др.) в системах автоматического регулирования или дистанционного управления, а также в качестве вспомогательного привода элементов следящих систем, рулевых устройств транспортных машин и т, п.

Классификация исполнительных механизмов И. м. обычно состоит из двигателя, передачи и элементов управления, а также элементов обратной связи, сигнализации, блокировки, выключения. И. м. для регулирования потока жидкостей и газов представляет собой клапан, задвижку или затвор, перемещаемые гидравлическим, пневматическим или электрическим приводом. В пневматических исполнительных механизмах перестановочное усилие создается за счет действия сжатого воздуха на мембрану, поршень или сильфон. В соответствии с этим конструктивно И. м. подразделяют на мембранные поршневые сильфонные

Классификация исполнительных механизмов В гидравлических исполнительных механизмах перестановочное усилие создается за счет действия давления жидкости на мембрану, поршень или лопасть. В соответствии с этим конструктивно И. м. подразделяют на мембранные поршневые лопастные

Классификация исполнительных механизмов Отдельный подкласс гидравлических И. м. составляют гидравлические И. м. с гидромуфтами. Мембранные и поршневые пневматические и гидравлические И. м. подразделяются на пружинные беспружинные В пружинных И. м. перестановочные усилия в одном направлении создаются давлением в рабочей полости И. м. , а в обратном направлении сплои упругости сжатой пружины. В беспружинных И. м. рабочее давление на поршень или мембрану действует с обеих сторон поршня или мембраны. Электрические И. м. характеризуются: а) разнообразием типов электродвигателей; б) простотой питания в промышленных условиях; в) легкостью получения больших скоростей.

Классификация исполнительных механизмов Электрические И. м. по принципу действия подразделяются на электродвигательные электромагнитные а по характеру движения выходного органа делятся на прямоходные (поступательное движение) поворотное (вращательное движение) поворотные в свою очередь делятся на однооборотные многооборотные

HART-протокол Обмен данными между системой управления и интеллектуальными первичными датчиками легко осуществляется с помощью стандартного коммуникационного протокола HART® (Highway Addressable Remote Transducer Адресуемый Дистанционный Магистральный Преобразователь). HART протокол использует принцип частотной модуляции для обмена данными на скорости 1200 Бод. Для передачи логической "1" HART использует один полный период частоты 1200 Гц, а для передачи логического "0" два неполных периода 2200 Гц. HART составляющая накладывается на токовую петлю 4 20 м. А. Поскольку среднее значение синусоиды за период равно "0", то HART сигнал никак не влияет на аналоговый сигнал 4 20 м. А. HART протокол построен по принципу "главный подчиненный", то есть полевое устройство отвечает по запросу системы. Протокол допускает наличие двух управляющих устройств (управляющая система и коммуникатор).

Архитектура HART Протокол HART может применяться в двух режимах подключения. Один представляет собой соединение «точка» , и применяется в системах с одним ведомым устройством и максимум двумя ведущими. Ведущим устройством может быть устройство связи с объектом или программируемый логический контроллер. В качестве вторичного – HART терминал или любое другое устройство с HART модемом. Передача информации может осуществляться в обоих направлениях, причем передача аналоговой информации по этому же каналу не прерывается. Второй тип подключения – «шина» предполагает соединение друг с другом до 15 ведомых устройств с теми же двумя ведущими устройствами. В этом случае предполагается обмен только данными в цифровой форме. Причем, в цепи контроллеров предусмотрен дополнительный источник тока, обеспечивающий по 4 м. А на каждого потребителя.

Команды HART-протокола Команды протокола подразделяются на три основные группы: Универсальные – основные команды, поддерживаемые ведомыми устройствами. Используются для считывания стандартных, общих для всех устройств параметров, таких как тип устройства, диапазон измерений, текущее значение и пр. Стандартные – использующиеся практических во всех HART устройствах команды. Настраивают работу устройств. Например, запись/считывание стандартных и приборных параметров. Специфические – команды настройки специфических, индивидуальных параметров какого либо устройства, например, калибровка ультразвукового датчика или считывание базовых данных прибора.

Команды HART-протокола 1. Универсальные ¢ Прочитать производителя и тип устройства ¢ Прочитать главную переменную (ГП), единицы измерения ¢ Прочитать текущее значение и процент от диапазона ¢ Прочитать до четырех предопределенных переменных ¢ Прочитать/записать 8 символьный идентификатор и 16 символьное описание ¢ Прочитать/записать 32 символьное сообщение ¢ Прочитать диапазон значений устройства, ед. измерения и время выборки ¢ Прочитать серийный номер датчика и ограничения ¢ Прочитать/записать последний шифр комплекта устройств ¢ Записать адрес запроса

Команды HART-протокола 2. Стандартные ¢ ¢ ¢ ¢ Прочитать выборку из максимум четырех динамических переменных Записать константу времени выборки Записать диапазон значений устройства Калибровать (установка нуля, диапазона) Установить постоянное значение выходного тока Выполнить самотестирование Выполнить перезапуск Установить ГП в нуль Записать единицы измерения ГП Установить нулевое значение ЦАП и коэф. усиления Записать функцию преобразования (кв. корень и др) Записать серийный номер датчика Прочитать/записать установки динамических переменных

Сетевая технология Ethernet Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъёмов), достаточный для построения вычислительной сети. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Стандарт Ethernet был принят в 1980 году. Число сетей, построенных на основе этой технологии, к настоящему моменту оценивается в 5 миллионов, а количество компьютеров, работающих в таких сетях, в 50 миллионов. Основной принцип, положенный в основу Ethernet, случайный метод доступа к разделяемой среде передачи данных.

Команды HART-протокола 3. Специфические команды устройств ¢ ¢ ¢ Прочитать/записать уровень обрезки малых значений Пуск, останов или общий сброс Прочитать/записать фактор точности калибровки Прочитать/записать информации о материалах и строительстве Калибровать сенсор Включить ПИД регулятор Установить заданное значение ПИД регулятора Характеристика вентиля Заданное значение вентиля Границы перемещения Единицы измерения пользователя Информация локального дисплея

Преимущества Ethernet ¢ ¢ ¢ Главным преимуществом сетей Ethernet, благодаря которому они стали такими популярными, является их экономичность. Кроме того, в сетях Ethernet реализованы достаточно простые алгоритмы доступа к среде, адресации и передачи данных. Простота логики работы сети ведёт к упрощению и, соответственно, удешевлению сетевых адаптеров и их драйверов. По той же причине адаптеры сети Ethernet обладают высокой надёжностью. И наконец, ещё одним замечательным свойством сетей Ethernet является их хорошая расширяемость, то есть лёгкость подключения новых узлов.

Менеджмент, консалтинг и предпринимательство

Лекция 2. Общие сведения о технических средствах автоматизации. Необходимость изучения общих вопросов касающихся технических средств автоматизации и государственной системы промышленных приборов и средств автоматизации ГСП диктуется тем что технические средств

Лекция 2.

Общие сведения о технических средствах автоматизации.

Необходимость изучения общих вопросов, касающихся технических средств автоматизации и государственной системы промышленных приборов и средств автоматизации (ГСП), диктуется тем, что технические средства автоматизации являются неотъемлемой частью ГСП. Технические средства автоматизации представляют собой основу при реализации информационно-управляющих систем в промышленной и непромышленной сферах производства. Принципы организации ГСП в значительной мере определяют содержание этапа проектирования технического обеспечения автоматизированных систем управления технологическими процессами (АСУ ТП). В свою очередь, основу ГСП составляют проблемно-ориентированные агрегатные комплексы технических средств.

Типовые средства автоматизации могут быть техническими, аппаратными, программно-техническими и общесистемными .

К техническим средствам автоматизации (ТСА) относят:

  • датчики;
  • исполнительные механизмы;
  • регулирующие органы (РО);
  • линии связи;
  • вторичные приборы (показывающие и регистрирующие);
  • устройства аналогового и цифрового регулирования;
  • программно-задающие блоки;
  • устройства логико-командного управления;
  • модули сбора и первичной обработки данных и контроля состояния технологического объекта управления (ТОУ);
  • модули гальванической развязки и нормализации сигналов;
  • преобразователи сигналов из одной формы в другую;
  • модули представления данных, индикации, регистрации и выработки сигналов управления;
  • буферные запоминающие устройства;
  • программируемые таймеры;
  • специализированные вычислительные устройства, устройства допроцессорной подготовки.

К программно-техническим средствам автоматизации относят:

  • аналого-цифровые и цифро-аналоговые преобразователи;
  • управляющие средства;
  • блоки многоконтурного аналогового и аналого-цифрового регулирования;
  • устройства многосвязного программного логического управления;
  • программируемые микроконтроллеры;
  • локально-вычислительные сети.

К общесистемным средствам автоматизации относят:

  • устройства сопряжения и адаптеры связи;
  • блоки общей памяти;
  • магистрали (шины);
  • устройства общесистемной диагностики;
  • процессоры прямого доступа для накопления информации;
  • пульты оператора.

Технические средства автоматизации в системах управления

Любая система управления должна выполнять следующие функции :

  • сбор информации о текущем состоянии технологического объекта управления (ТОУ);
  • определение критериев качества работы ТОУ;
  • нахождение оптимального режима функционирования ТОУ и оптимальных управляющих воздействий, обеспечивающих экстремум критериев качества;
  • реализация найденного оптимального режима на ТОУ.

Эти функции могут выполняться обслуживающим персоналом или ТСА. Различают четыре типа систем управления (СУ):

1) информационные;

2) автоматического управления;

3) централизованного контроля и регулирования;

4) автоматизированные системы управления технологическими процессами.

Информационные (неавтоматизированные ) системы управления (рис. 1.1) применяются редко, только для надежно функционирующих, простых технологических объектов управления ТОУ.

Рис. 1.1. Структура информационной системы управления:

Д - датчик (первичный измерительный преобразователь);

ВП - вторичный показывающий прибор;

ОПУ- операторский пункт управления (щиты, пульты, мнемосхемы, устройства сигнализации);

УДУ – устройства дистанционного управления (кнопки, ключи, байпасные панели управления и др.);

ИМ – исполнительный механизм;

РО - регулирующий орган;

С - устройства сигнализации;

МС – мнемосхемы.

В некоторых случаях в состав информационной СУ входят регуляторы прямого действия и встроенные в технологическое оборудование регуляторы.

В системах автоматического управления (рис. 1.2) все функции выполняются автоматически при помощи соответствующих технических средств.

Функции оператора включают в себя:

  • техническую диагностику состояния САУ и восстановление отказавших элементов системы;
  • коррекцию законов регулирования;
  • изменение задания;
  • переход на ручное управление;
  • техническое обслуживание оборудования.

Рис. 1.2. Структура системы автоматического управления (САУ):

КП - кодирующий преобразователь;

ЛС - линии связи (провода, импульсные трубки);

ВУ - вычислительные устройства

Системы централизованного контроля и регулирования (СЦКР) (рис. 1.3). САУ применяются для простых ТОУ, режимы функционирования которых характеризуются небольшим числом координат, а качество работы одним легко вычисляемым критерием. Частным случаем САУ является автоматическая система регулирования (АСР).

Система управления, автоматически поддерживающая экстремальное значение ТОУ, относится к классу систем экстремального регулирования.

Рис. 1.3. Структура системы централизованного контроля и регулирования:

ОПУ - операторский пункт управления;

Д - датчик;

НП – нормирующий преобразователь;

КП - кодирующие и декодирующие преобразователи;

ЦР - центральные регуляторы;

МР – многоканальное средство регистрации (печать);

С - устройство сигнализации предаварийного режима;

МПП - многоканальные показывающие приборы (дисплеи);

МС - мнемосхема;

ИМ - исполнительный механизм;

РО - регулирующий орган;

К – контроллер

АСР, поддерживающие заданное значение выходной регулируемой координаты ТОУ, подразделяются на:

  • стабилизирующие;
  • программные;
  • следящие;
  • адаптивные.

Экстремальные регуляторы применяются крайне редко.

Технические структуры СЦКР могут быть двух типов:

1) с индивидуальными ТСА;

2) с коллективными ТСА.

В системе первого типа каждый канал конструируют из ТСА индивидуального пользования. К ним относятся датчики, нормирующие преобразователи, регуляторы, вторичные приборы, исполнительные механизмы, регулирующие органы.

Выход из строя одного канала регулирования не приводит к остановке технологического объекта.

Такое построение увеличивает стоимость системы, но повышает ее надежность.

Система второго типа состоит из ТСА индивидуального и коллективного пользования. К ТСА коллективного пользования относят: коммутатор, КП (кодирующие и декодирующие преобразователи), ЦР (центральные регуляторы), МР (многоканальное средство регистрации (печать)), МПП (многоканальные показывающие приборы (дисплеи)).

Стоимость коллективной системы несколько ниже, но надежность в сильной степени зависит от надежности коллективных ТСА.

При значительной длине линии связи применяют индивидуальные кодирующие и декодирующие преобразователи, размещенные около датчиков и исполнительных механизмов. Это повышает стоимость системы, но улучшает помехозащищенность линии связи.

Автоматизированные системы управления технологическими процессами (АСУТП) (рис. 1.4) - это машинная система, в которой ТСА осуществляют получение информации о состоянии объектов, вычисляют критерии качества, находят оптимальные настройки управления. Функции оператора сводятся к анализу полученной информации и реализации с помощью локальных АСР или дистанционного управления РО.

Различают следующие типы АСУТП:

  • централизованная АСУ ТП (все функции обработки информации и управления выполняет одна управляющая вычислительная машина УВМ) (рис.1.4);

Рис. 1.4. Структура централизованной АСУ ТП:

УСО - устройство связи с объектом;

ДУ - дистанционное управление;

СОИ - средство отображения информации

  • супервизорная АСУТП (имеет ряд локальных АСР, построенных на базе ТСА индивидуального пользования и центральной УВМ (ЦУВМ), имеющей информационную линию связи с локальными системами) (рис. 1.5);

Рис. 1.5. Структура супервизорной АСУТП: ЛР - локальные регуляторы

  • распределенная АСУТП - характеризуется разделением функций контроля обработки информации и управления между несколькими территориально распределенными объектами и вычислительными машинами (рис. 1.6).

Рис. 1.6. Иерархическая структура технических средств ГСП

PAGE 7


А также другие работы, которые могут Вас заинтересовать

7111. Организация и управления работой флота и портов 155 KB
Организация и управления работой флота и портов Конспект лекций Структура управления предприятием, принципы планирования Любое предприятие, в том числе и транспортное включает в себя три относительно самостоятельных, но взаимосвязанных общих ц...
7112. БУХГАЛТЕРСКИЙ ФИНАНСОВЫЙ УЧЕТ ПРАКТИКУМ 449.5 KB
Общие сведения об организации Сквозная задача рассматривает деятельность малого предприятия - общества с ограниченной ответственностью Мебель. На предприятии один цех основного производства, который выпускает мягкую мебель (диваны). ИНН...
7113. Бухгалтерский учет с нуля 3.6 MB
Андрей Витальевич Крюков Бухгалтерский учет с нуля Аннотация Профессия бухгалтера была и сегодня остается достаточно популярной. Все знают, что в каждой фирме обязательно работает хотя бы один бухгалтер. Вы тоже решили стать бухгалтером, но, впервые...
7114. Пособие инженеру ПТО по исполнительной документации 2.08 MB
Пособие инженеру ПТО по исполнительной документации (Пособие молодой канцелярской крысы на объекте версия 6.0) Страница, зарезервированная для выходных типографских данных. Публикуемые материалы являются достоянием гостарбайтеров, по какой п...
7115. Звіт з навчальної практики в с. Любомирка 5.36 MB
Звіт з навчальної практики в с. Любомирка 1. Системи і способи керування тракторів. Підготовка тракторів до роботи. Система керування трактором включає в себе такі підсистеми: управління двигуном: регулювання потужності, час...
7116. Основные методы оценки экономической эффективности инвестиций на транспорте 77.5 KB
Основные методы оценки экономической эффективности инвестиций на транспорте. Содержание Введение 3 Инвестиции на транспорте 4 Особенности методов оценки инвестиций 6 Заключение 11 Список использованной литературы 12 Введение. Транспорт относится к ч...
7117. Исследование тяговой способности канатоведущего шкива 568.5 KB
Исследование тяговой способности канатоведущего шкива Введение Методические указания составлены в соответствии с программой курса Подъемники для студентов специальности 170900 (ПСМ). Курс Подъемники является одним из заключительных в подготовке...
7118. Транспортный комплекс страны, понятие и общая характеристика 134.5 KB
Тема 1. Транспортный комплекс страны, понятие и общая характеристика. 1.1. Предмет экономики автомобильного транспорта. Общественное производство, т.е. единство производительных сил и производственных отношений, изучается с двух сторон. Естественные...
7119. Основные фонды на автомобильном транспорте и в дорожном хозяйстве 159 KB
Тема 2. Основные фонды на автомобильном транспорте и в дорожном хозяйстве. 2.1. Понятия об основных фондах. Основным фактором процесса производства материальных благ являются рабочая сила и средства производства. Средства производства подразделяются...