Главная · Монтаж · Что такое насыпная плотность материала. Величина насыпной плотности строительного песка. Что такое насыпная плотность

Что такое насыпная плотность материала. Величина насыпной плотности строительного песка. Что такое насыпная плотность

Под средней плотностью материалов пони­мают отношение массы образца в сухом состоянии к его объему. Для материалов, представляющих собой куски различной крупности (сыпучие материалы), применяют понятие насыпной плотности, представляющей собой отношение массы материала в насыпном состоя­нии к его объему.

Все основные свойства теплоизоляционных материа­лов связаны с их пористостью, но самую непосредствен­ную связь с пористостью имеет средняя (насыпная) плотность. Знание этой характеристики позволяет су­дить о теплозащитных свойствах теплоизоляционного материала. По величине средней плотности теплоизоля­ционные материалы делят на марки: 15, 25, 35, 50, 75, 100, 125, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.

Маркой считают наибольшее значение средней плот­ности в пределах одного из вышеприведенных интерва­лов. Например, материал со средней плотностью 310 кг/м3 относят к марке 350, со средней плотностью 27 кг/мч - к марке 35 и т. п.

Все теплоизоляционные материалы можно разделить на три группы: жесткие (штучные теплоизоляционные материалы, выпускаемые в виде изделий определенной заданной формы), гибкие (в виде крупноразмерных ма­тов, матрацев и т. п.) и рыхлые (минеральная и стек­лянная вата, вспученные перлит и вермикулит, стекло - пор).

Методы определения средней (насыпной) плотности различных видов теплоизоляционных материалов в зна­чительной мере отличаются друг от друга.

Определение средней плотности жестких теплоизоля­ционных материалов осуществляют измерением линей­ных размеров и взвешиванием самих изделий или изме­рением и взвешиванием образцов, выпиливаемых, вы­сверливаемых или вырезаемых из различных частей изделий. При этом обычно образцы предварительно вы­сушивают при температуре 105-110° С. Средняя плот­ность (кг/м3)

Где M - масса образца или изделия, кг; V -объем образца или изделия, м3.

При определении средней плотности изделия в есте­ственно влажном состоянии применяют формулу

Где Wa - абсолютная влажность материала, по массе, %.

Размеры образцов и изделий находят с помощью металлического измерительного инструмента (линейки, штангенциркуля). Длину и ширину изделий измеряют не менее чем в трех местах - у краев и в середине, А толщину в пяти-шести местах. Например, толщину фибролитовых плит измеряют в шести точках; на рас­Стоянии 100 мм от каждого края и в двух местах по
Продольной осевой линии плиты. Измерение толщины может производиться штангенциркулем или специаль­ным прибором - толщиномером (рис. 7). Толщиномер применяют^ для измерения толщины торфяных, жестких минераловатных и теплоизоляционных древесноволок­нистых плит. Точность измерения толщины плит при использовании штангенциркуля и толщиномера состав­ляет 0,1 мм, а при использовании линейки-1 мм.

Среднюю плотность партии материала вычисляют как среднюю арифметическую величину не менее, чем трех определений. При этом взвешивание образцов hpo - изводят с точностью до 0,1 г, а изделий - до 1 г.

Определение средней плотности гибких теплоизоля­ционных материалов ведут следующим образом. Из раз­ных мест каждого из трех полотнищ войлока, отобран­ных для испытаний, вырезают по три образца размером 100 X 100 мм. Взвешенный с точностью до 0,01 г обра­зец укладывают на основание специального прибора (рис. 8) . Пластинку 7 массой 0,5 кг подводят вплот­ную к пластинке 6 и закрепляют винтом 5. Затем пла­стинки 7 я 6 опускают вниз, не доводя нижнюю поверх­ность пластинки 7 на 1-2 см до поверхности образца, и закрепляют их винтом 4. Ослабив винт 5, опускают пластинку 7 на поверхность образца, оставляют ее в этом положении 5 мин, после чего с помощью стрелки I производят отсчет по шкале 2 и определяют толщину образцов войлока под давлением 0,0005 МПа. Подвиж­ная пластина 3 используется и при других испытаниях минераловатных изделий.

Средняя плотность войлока (кг/м3)

Рср_ 7(1 +0,01 W)"

Средняя плотность партии войлока будет характери­зоваться средней арифметической величиной девяти определений (девять образцов из трех изделий).

Средняя (насыпная) плотность рыхлых теплоизоля­ционных материалов волокнистого строения зависит от многих факторов. Например, на среднюю плотность ми­неральной ваты оказывает влияние толщина волокон, количество «корольков» (стекловидных невытянувших - ся в волокна включений шаровидной или грушевидной формы размером более 0,25 мм), степень уплотнения ваты. Для получения сравнимых результатов среднюю плотность волокнистых материалов определяют под постоянным давлением. Например, среднюю плотность минеральной ваты определяют в специальном приборе (рис. 9) под давлением 0,002 МПа. С этой целью берут пять навесок ваты по 0,5 кг каждая. Взвешивание про­изводят с точностью до 1 г. Вата для каждой навески отбирается как средняя проба (из пяти упаковочных мест отбирают по 0,5 кг ваты).

Навеску ваты слоями укладывают в металлический цилиндр 1. Сверху на вату с помощью подъемного устройства 4 опускают металлический диск 2 массой 7 кг, что соответствует давлению на вату 0,002 МПа. Под нагрузкой вату выдерживают 5 мин и затем опре­деляют высоту слоя ваты с помощью шкалы, нанесен­ной на стержне 3. Вычисляют объем ваты и, зная ее

Материал в сосуд засыпают с высоты 5 см с помощью воронки или лотка до образования конуса. Избыток ма­териала снимают металлической линейкой без уплотне­ния. Сосуд, масса которого известна, с материалом взве­шивают с точностью до 1 г и по известной формуле опре­деляют насыпную плотность материала.

Среднюю плотность кусков (зерен) рыхлого тепло­изоляционного материала (например, перлитового щеб­ня, керамзитового гравия и т. п.) определяют с помощью песочных объемомеров или погружением в мерные ци­линдры, заполненные водой.

При использовании песочного объемомера (рис. 10) зерно испытуемого материала помещают внутрь прибо­ра. Объем зерна будет равен разности между уровнями песка в приборе с образцом и без него.

Более точно объем куска (зерна) материала можно измерить при погружении его в воду, т. е. по объему вытесненной им воды. С этой целью высушенный ДО постоянной массы и предварительно взвешенный с точ­ностью до 0,1 г образец парафинируют (покрывают тон­ким слоем расплавленного парафина), а затем погру­жают в воду, находящуюся в мерном цилиндре. Как правило, средняя плотность кусков пористых материа­лов ниже плотности воды, поэтому полное погружение образца достигается с помощью металлического диска, объем которого известен. Объем образца вычисляют по количеству вытесненной им воды. При этом учитывают объем металлического диска и парафина. Объем пара­фина

Где т - масса парафина, нанесенного на образец, г; 0,93 - плотность парафина, г/см3.

Зная объе. м образца и его массу, подсчитывают сред­нюю плотность данного куска. Для определения сред­ней плотности «в куске» партии материала производят несколько десятков определений и вычисляют среднюю арифметическую величину.

Определение средней плотности текучих формовоч­ных масс (растворных смесей, пеномасс, шликеров) осуществляют для контроля технологических процессов при тех или иных теплоизоляционных ма­териалов. Это, например, требуется при изготовлении изделий из ячеистых , из пенокерамических или Известково-кремнеземистых масс, и т. п.

Среднюю плотность смесей, находящихся в жидко - текучем состоянии, определяют в цилиндрическом со­суде емкостью 1 л. Сосуд наполняют испытуемой смесью, избыток смеси срезают шпателем или метал­лической линейкой и взвешивают сосуд с массой с точ­ностью до 1 г. Вычитая из общей массы массу" сосуда, узнают массу смеси. Плотность смеси вычисляют как среднее арифметическое по результатам двух измере­ний.

Если испытывают смесь с малой подвижностью (до 6 см), то ее уплотняют на вибростоле в течение 30 с Или на встряхивающем столике, производя 120 ударов (встряхиваний). В этом случае на сосуд сверху наде­вают специальную насадку, позволяющую заполнять мерный сосуд с некоторым избытком. После уплотнения насадка снимается, а избыток смеси удаляется метал» лической линейкой.

Определение средней плотности мастичных материа­лов. Отобранную пробу материала затворяют водой до нормальной (рабочей) консистенции, которую опреде­ляют с помощью стандартного конуса. Нормальная кон­систенция раствора соответствует глубине погружения конуса на 100+10 мм. Затем в специальные формы, предварительно очищенные и смазанные, размером 200 X 50 X 25 мм укладывают испытуемую смесь, уплот­няя ее в углах формы кончиком ножа и заглаживая поверхность ножом или шпателем заподлицо с бортами формы.

Заполненные формы помещают в сушильный шкаф, где образцы высушивают до постоянной массы, затем Их вынимают из форм и отшлифовывают.

Полученные образцы измеряют с точностью до 0,1 мм, взвешивают с точностью до 0,1 г и вычисляют среднюю плотность, кг/м3,

Для сыпучих материалов (цемент, песок, щебень, гравий и др.) определяют насыпную плотность. В объеме таких материалов имеются не только поры в самом материале, но и пустоты между зернами или кусками материала. Это определение выполняют с помощью прибора (рис 1.5), который представляет собой стандартную воронку в виде усеченного конуса. Внизу конус переходит в трубку диаметром 20 мм с задвижкой. Под трубкой устанавливают заранее взвешенный мерный цилиндр объемом 1 литр (1000 см 3). Расстояние между верхним обрезом цилиндра и задвижкой должно быть не более 50 мм.

В воронку насыпают сухой исследуемый материал , затем открывают задвижку и заполняют цилиндр с избытком, закрывают задвижку и металлической или деревянной линейкой срезают от середины в обе стороны излишек материала вровень с краями цилиндра. При этом линейку держат наклонно, плотно прижимая к краям цилиндра. Необходимо, чтобы цилиндр был неподвижным, так как при толчках сыпучий материал может уплотниться, что увеличит его среднюю плотность. Затем цилиндр взвешивают с точностью до 1 г. Испытание повторяют пять раз и среднюю плотность материала в рыхлонасыпанном состоянии r н , кг/м 3 , вычисляют как среднее арифметическое пяти определений по формуле:

ρ н = (m 1 - m 2)/V, (1.9)

где: m 1 - масса цилиндра с материалом, кг; m 2 - масса цилиндра без материала, кг; V - объем цилиндра, м 3 .

Рис. 1.5. Стандартная воронка

1 - корпус; 2 - трубка; 3 - задвижка; 4 - мерный цилиндр

При транспортировании и хранении сыпучие материалы уплотняются, при этом значение их насыпной плотности оказывается на 15-30% выше, чем в рыхлонасыпном состоянии. Определяют насыпную плотность материала в уплотненном состоянии по приведенной выше методике, однако после заполнения цилиндра его уплотняют путем вибрации в течение 30-60 с на виброплощадке или путем легкого постукивания цилиндра с материалом о стол 30 раз. В процессе уплотнения материал досыпают, поддерживая некоторый избыток его в цилиндре. Затем избыток срезают и определяют массу материала в цилиндре, после чего вычисляют насыпную плотность в уплотненном состоянии.

Для влажного материала насыпная плотность вычисляется по формуле

ρ w н = ρ н (W + 1), (1.10)

где: W - влажность материала, отн.ед.

Вопрос: Всегда ли верна эта формула?

Да, если увлажнение не приводит к изменению объема материала (это учитывается при выводе формулы (1.10)). Но для тонкодисперсного материала (к нему не относится песок, т.к. его мелкая фракция должна быть не менее 0,14 мм) при увлажнении вначале это условие будет выполняться, а затем объем будет увеличиваться вследствие раздвижки зерен адсорбированной водой. При этом будет происходить уменьшение ρ w н с ростом W (т.к. плотность воды меньше песка).

Вывод формулы (1.10).

1. Влажность материала: W = (m вл. – m)/m , где: m вл. – масса влажного материала, г; m – масса сухого материала, г.

Отсюда находим m вл. = m (1 + W) .

По определению ρ w н = m вл. /V , где V – объем влажного сыпучего материала (здесь негласно принимается, что объемы сухого и влажного сыпучего материала равны!).

После подстановки имеем: ρ w н = m вл. /V = m(1 + W)/V = ρ н (1 + W).

Но также производит и биологически активные добавки (БАД) к пище в таблетированной и капсулированной форме. В связи с этим кажется необходимым рассказать о некоторых похожих терминах и технологические свойствах этих продуктов.

Технологические свойства порошкообразных (таблетированных и капсулированных ) лекарственных веществ и биологически активных добавок к пище зависят от их физико-химических свойств. При производстве биологически активных добавок в форме таблеток и в форме твёрдых желатиновых капсул необходимо учитывать различные технологические характеристики, так как активные компоненты и многие экстракты лекарственных растений поступают в виде порошков или порошковых смесей.

Насыпная плотность

Базовой характеристикой всех сыпучих материалов является плотность. Существуют понятия истинной и насыпной плотности, которые измеряются в г/см 3 или кг/м 3 .

Истинная плотность – это отношение массы тела к объему этого же тела в сжатом состоянии, в котором не учитываются зазоры и поры между частицами. Истинная плотность – постоянная физическая величина, которая не может быть изменена.

В своем естественном состоянии (неуплотненном) сыпучие материалы характеризуются насыпной плотностью. Под насыпной плотностью различных сыпучих материалов понимают количество порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.

Насыпная плотность заданного порошка или любой сыпучей смеси (D нас. пл.) определяется отношением массы свободно засыпанного порошка (Mасса cып.) к объему этого порошка (Vcосуда) по формуле:

D нас.пл.= Mасса cып/Vcосуда

Насыпная плотность учитывает не только объем частиц материала, но и пространство между ними, поэтому насыпная плотность гораздо меньше, чем истинная. Например, истинная плотность каменной соли составляет 2,3 т/м 3 , а насыпная – 1,02 т/м 3 .

Зная насыпную плотность применяемых сыпучих материалов можно при проектировании емкостей или дозаторов, а так же капсул и таблеток рассчитать их объем и, соответственно, высоту засыпки. Понятно, что если нам частично известны некоторые параметры, а именно высота засыпки, а так же коэффициент засыпки, то можно рассчитать высоту предполагаемого объема, то есть высоту форматных частей, что очень важно при решении технологических задач. Конечно, если известна насыпная плотность порошка, тогда технологи могут легко рассчитать массу для одной дозы, порции или упаковки и тем самым определить величину дозировки для капсулятора или таблетпресса, а также для любого другого фасовочного оборудования.

Значение насыпной плотности определяется в соответствии со стандартом (ГОСТ 19440-94 «Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта») с помощью прибора волюмометра, принцип действия которого основан на точном определении массы порошка, заполняющего мерную емкость. Волюмометр состоит из воронки с ситом и корпуса с несколькими наклонными стеклами, по которым порошок, пересыпаясь, падает в тигелек с измеренным объемом и весом.

Объемная или Насыпная плотность зависит от размера, формы, влажности и плотности частиц гранул или порошка. По значению этого показателя можно прогнозировать и рассчитывать объем матричных каналов. Процедуру измерения насыпной плотности порошковой смеси или монопорошка проводят на специальном приборе (рис. 1).

Производят навеску массой 5,0 г порошка. Точность навески до 0,001 г. Далее засыпают навеску в мерный цилиндр. Устанавливают на приборе амплитуду колебаний (35-40 мм) при помощи регулировочного винта. Устанавливают отметку по шкале и фиксируют положение при помощи контргайки. Далее, с помощью трансформатора устанавливают частоту колебаний. Частота устанавливается в интервале от 100 до 120 кол/мин, по счетчику. После включения прибора тумблером оператор следит за отметкой, по которой установлен уровень порошка в цилиндре. Как правило, при работе прибора в течение 10 минут, уровень порошка или смеси становится постоянным, и прибор необходимо отключить.

Насыпную плотность рассчитывают по формуле:

где: ρ н – насыпная плотность, кг/м 3 ;

m – масса сыпучего материала, кг;

V – объем порошка в цилиндре после уплотнения, м 3 .

В зависимости от насыпной плотности порошки классифицируют следующим образом:

ρ н > 2000 кг/м 3 – весьма тяжелые;

2000 > ρ н > 1100 кг/м 3 – тяжелые;

1100 > ρ н > 600 кг/м 3 – средние;

ρ н < 600 кг/м 3 – легкие.

Одним из приборов, на котором проводят измерение насыпной плотности (а также другие характеристики порошковой смеси или монопорошка), является прибор ВТ-1000.

Анализатор ВТ-1000 (Рис. 2) используется для определения свойств различных сыпучих материалов, связанных с текучестью. Порошок или порошковые смеси, по определению, являются двухфазными системами. Свойства поверхности частиц порошковой смеси или монопорошка, так же как и их плотность, все эти параметры определяет его поведение в потоке и их сыпучесть. Правильное определение параметров сыпучести очень важно для расчетов процессов обработки порошка, его упаковки, транспортировки и хранения.

С помощью ВТ-1000 (Рис.3) возможно определить не только насыпную плотность, но и дисперсность, угол падения, угол естественного откоса, угол на плоской пластине и плотность утряски. Из данных характеристик легко рассчитать угол разности, прессуемость, объем пустого пространства, сжимаемость, униформность. По характеристикам зафиксированным на приборе, можно рассчитать индекс Карра, что позволяет определить значения сыпучести и аэрируемости

(поведения порошка в аэродинамической струе).

Порошок засыпается в мерный цилиндр. Отношение занятого им объема к массе порошка является объемной или насыпной плотностью. Рис.3

Песок – это сыпучий материал. Измерить его истиную плотность затруднительно – между песчинками удалить промежутки практически невозможно. По этой причине для песка более применимо понятие насыпная плотность песка. Это среднее значение веса материала на единицу объёма.

Понятие и значения

За определением насыпной плотности песка скрывается значение массы материала в сухом виде на единицу объема, измеряемого в кубометрах или кубических сантиметрах.

Существует множество видов песка по происхождению, фракции. Мелкие песчинки плотнее укладываются в объем, чем крупные, следовательно их масса значительно больше. И наоборот.

Так, песок, добытый из реки, обычно гладкий и отшлифованный, обладает плотной структурой. Его вес на куб в среднем составляет 1500-1600 кг/м 3 согласно ГОСТ 8736-93. Песчинки из карьера часто пористые с острыми углами и гранями, такие весят гораздо меньше – около 1300 кг/м 3 .

Факторы определения плотности

Насыпной вес песка зависит от нескольких факторов:

  • Фракция и форма песчинок определяет плотность сыпучего материала в большей степени. Чем крупнее фрагменты, тем большее расстояние между ними остается и наоборот. Округлые и квадратные песчинки занимают большее пространство, чем плоские.
  • Порода происхождения. Чем плотнее минерал, из которого образовался песок, тем больше масса.
  • Остатки грунта и органических примесей также оказывают влияние на насыпную массу песка. Технология приготовления строительных растворов предполагает использование очищенного мелкого наполнителя, поэтому данный параметр может быть скорректирован промыванием или просеиванием насыпи.
  • Влажность после мытья или добычи песка. Вода проникает в поры песчинок и увеличивает их вес. Насыпная плотность сухого песка до 30% меньше, чем мокрого. По мере высыхания масса снижается, а объем увеличивается.
  • Песок, уплотненный при укладке, имеет гораздо более высокую плотность на единицу объема, чем насыпанный в обычном состоянии.

Значение массы на кубометр можно наглядно отследить в таблице насыпной плотности природного песка:

Расчет изменения объёма и массы

Песок доставляется на строительную площадку в разном виде: сухой или влажный, речной или карьерный. Использовать его могут не сразу: материал применяется по мере необходимости. Если насыпь хранится под открытым небом, песчинки постоянно меняют влажность в зависимости от погодных условий. Эти факторы приходится учитывать технологам перед приготовлением рабочих растворов и засыпке котлованов.

Поскольку насыпная плотность песка мелкого и крупного постоянно меняется, для определения фактической массы объёма без взвешивания используют коэффициенты уплотнения. Некоторые из них отражены в таблице:

На коэффициент умножают среднюю плотность материала, получается искомый результат. В таблице приведены наиболее востребованные значения k у.

Насыпной коэффициент уплотнения песка не гарантирует точного результата – погрешность может составлять 5 и более процентов. Единственным достоверным способом определить массу единицы объема материала остается взвешивание, что не всегда возможно и удобно. Специалисты могут использовать любой из доступных методов определения плотности на месте.

Насыпную плотность определяют для сыпучих строительных материалов: цемента, песка, щебня, гравия и др. Насыпная плотность таких материалов может быть определена в рыхлонасыпном, уплотненном и естественном состоянии.

Насыпной плотностью сыпучих материалов называют массу единицы объема материала в насыпном состоянии, т.е. с порами и пустотами, данный параметр можно определять в соответствии с методиками, приведенными в ГОСТ 8735-88 и ГОСТ 8269.0-97.

Насыпную плотность определяют с помощью прибора (рис. 4.1), который состоит из стандартной воронки в виде усеченного конуса и мерного цилиндра объемом 1 л или 10 л. Для испытаний под трубкой воронки устанавливают заранее взвешенный мерный цилиндр. Расстояние между верхним обрезом цилиндра и задвижкой должно быть 50 мм. В воронку насыпают сухой материал, затем открывают задвижку, наполняют цилиндр с избытком, закрывают задвижку и металлической линейкой срезают от середины в обе стороны излишек материала вровень с краями цилиндра. При этом не допускается уплотнение материала. Затем цилиндр о материалом взвешивается с точностью до 1 г. Расчет насыпной плотности материала в рыхлонасыпном состоянии ведут по формуле:

ρ н.р . = , [кг/л], (4.1)

где m 1 - масса цилиндра с материалом, кг;

m 2 - масса цилиндра, кг;

V - объем цилиндра, л.

Испытание повторяют не менее трех раз и вычисляют конечный результат как среднее арифметическое трех измерений.

При транспортировании и хранении сыпучие материалы уплотняются, при этом значение их насыпной плотности может оказаться на 15-30% выше, чем в рыхлонасыпном состоянии. Определить насыпную плотность в уплотненном состоянии можно по приведенной выше методике, однако после заполнения цилиндра материалом его следует уплотнить вибрацией в течение 30-60 сек на виброплощадке путем легкого постукивания цилиндра о стол 30 раз. В процессе уплотнения материал досыпают, поддерживая некоторый избыток его в цилиндре. Далее избыток срезают, определяют массу материала в цилиндре и вычисляют насыпную плотность в уплотненном состоянии.

На основе полученных результатов можно определить уплотняемость материала, которую принято характеризовать коэффициентом уплотнения

К у =, (4.2)

где: ρ н.у. - насыпная плотность материала в уплотненном состоянии, кг/л;

ρ н.р. - насыпная плотность материала в рыхлонасыпном состоянии, кг/л;

Рис. 4.1. Схема прибора для определения насыпной плотности материала в рыхлонасыпном состоянии:

1 - стандартная воронка; 2 - задвижка; 3 - мерный цилиндр

5. Определение водопоглошения материала

При определении водопоглощения материалов из горных пород следует руководствоваться ГОСТ 30629-99. Водопоглощение определяют на пяти образцах кубической формы с ребром 40 - 50 мм или цилиндрах диаметром и высотой 40 - 50 мм. Каждый образец очищают щеткой от рыхлых частиц, пыли, высушивают до постоянной массы. Взвешивание образцов и обмер производят после их полного остывания на воздухе. Далее испытание проводят в следующей последовательности. Образцы горной породы укладывают в сосуд с водой комнатной температуры 15 - 20 0 С в один ряд так, чтобы уровень воды в сосуде был выше верха образцов на 20 мм. Образцы выдерживают 48 ч, после чего их вынимают из сосуда, удаляют влагу с поверхности влажной мягкой тканью и каждый образец взвешивают. Массу воды, вытекающей из пор образца на чашку весов, включают в массу насыщенного водой образца.

Водопоглощение материала по массе или по объему равно отношению массы воды, поглощенной образцом материала при насыщении, соответственно к массе или объему образца.

Водопоглощение по массе вычисляют по формуле:

=
. 100 , [%], (5.1)

где m 1

m 2 - масса образца в насыщенном водой состоянии, кг.

Водопоглощение по объему вычисляют по формуле:

=
. 100 , [%], (5.2)

где m 1 - масса образца в сухом состоянии, кг;

m 2 - масса образца в насыщенном водой состоянии, кг;

V - объем образца, см 3 .

За окончательный результат принимается среднее арифметическое пяти определений водопоглощения.

Величина водопоглощения по массе может составлять более 100%.