Главная · Электробезопасность · Построить качественно графики указанных на схеме токов. Что такое векторные диаграммы и для чего они нужны

Построить качественно графики указанных на схеме токов. Что такое векторные диаграммы и для чего они нужны

Применение векторных диаграмм при расчете и исследовании электронных цепей переменного тока позволяет наглядно представлять рассматриваемые процессы и упрощать производимые электротехнические расчеты.

Векторные диаграммы являются совокупой векторов, изображающих действующие синусоидальные ЭДС и токи либо их амплитудные значения.

Гармонически изменяющееся напряжение определяется выражением u = U m sin (ωt + ψ и ).

Расположим под углом ψ и относительно положительной оси абсцисс х вектор U m , длина которого в произвольно избранном масштабе равна амплитуде изображаемой гармонической величины (рис. 1). Положительные углы будем откладывать в направлении против вращения часовой стрелки, а отрицательные - по часовой стрелке. Представим, что вектор U m , начиная с момента времени t = 0, крутится вокруг начала координат против часовой стрелки с неизменной частотой вращения ω , равной угловой частоте изображаемого напряжения. В момент времени t вектор Um оборотится на угол ωt и будет размещен под углом ωt + ψ и по отношению к оси абсцисс. Проекция этого вектора на ось ординат в избранном масштабе равна моментальному значению изображаемого напряжения: u = U m sin (ωt + ψ и ).

Рис. 1. Изображение синусоидального напряжения вращающегося вектора

Как следует, величину, изменяющуюся гармонически во времени, можно изображать вращающимся вектором . При исходной фазе, равной нулю, когда u = 0 , вектор U m для t = 0 должен быть размещен на оси абсцисс.

График зависимости хоть какой переменной (в том числе и гармонической) величины от времени именуется временной диаграммой . Для гармонических величин по оси абсцисс удобнее откладывать не само время t, а пропорциональную ему величину ω t . Временные диаграммы стопроцентно определяют гармоническую функцию, потому что дают представление о исходной фазе, амплитуде и о периоде.

Обычно при расчете цепи нас заинтересовывают только действующие ЭДС, напряжения и токи либо амплитуды этих величин, также их сдвиг по фазе относительно друг дружку. Потому обычно рассматриваются недвижные векторы для некого момента времени, который выбирается так, чтоб диаграмма была приятной. Такая диаграмма именуется векторной диаграммой . При всем этом углы сдвига по фазе откладываются в направлении вращения векторов (против часовой стрелки), если они положительные, и в оборотном направлении, если они отрицательные.

Если, к примеру, исходный фазовый угол напряжения ψ и больше исходного фазового угла ψi то сдвиг по фазе φ = ψ и — ψ i и этот угол откладывается в положительном направлении от вектора тока.

При расчете цепи переменного тока нередко приходится ложить ЭДС, токи либо напряжения одной и той же частоты.

Представим, что требуется сложить две ЭДС: e 1 = E 1 m sin (ωt + ψ 1e )и e 2 = E 2m sin (ωt + ψ 2e ).

Такое сложение можно выполнить аналитически и графически. Последний метод более нагляден и прост. Две складываемые ЭДС е 1 и е 2 в определенном масштабе представлены векторами E 1 m E 2m (рис. 2). При вращении этих векторов с одной и той же частотой вращения, равной угловой частоте, обоюдное размещение крутящихся векторов остается постоянным.

Рис. 2. Графическое сложение 2-ух синусоидальных ЭДС схожей частоты

Сумма проекций крутящихся векторов E 1 m и E 2m на ось ординат равна проекции на ту же ось вектора E m, являющегося их геометрической суммой. Как следует, при сложения 2-ух синусоидальных ЭДС одной и той же частоты выходит синусоидальная ЭДС той же частоты, амплитуда которой изображается вектором E m , равным геометрической сумме векторов E 1 m и E 2m: E m = E 1 m + E 2m .

Векторы переменных ЭДС и токов являются графическими изображениями ЭДС и токов в отличие от векторов физических величин, имеющих определенное физическое значение: вектора силы, напряженности поля и других.

Обозначенный метод можно применить для сложения и вычитания хоть какого числа ЭДС и токов одной частоты. Вычитание 2-ух синусоидальных величин можно представить в виде сложения: e 1 — e 2 = e 1 + (- e 2), т. е. уменьшаемая величина складывается с вычитаемой, взятой с оборотным знаком. Обычно векторные диаграммы строятся не для амплитудных значений переменных ЭДС и токов, а для действующих величин, пропорциональных амплитудным значениям, потому что все расчеты цепей обычно производятся для действующих ЭДС и токов.

Школа для электрика

При последовательном соединении элементов цепи через каждый из них протекает один и тот же ток I. Поэтому при построении векторных диаграмм для таких цепей вектор тока принимается за базовый (исходный). Векторные диаграммы строят циркулем методом засечек по известным из опыта напряжениям: U a – на зажимах резистора, U к – на зажимах катушки, U с – на зажимах конденсатора и U – на зажимах всей цепи. Все величины на диаграммах изображаются в масштабе.

В качестве примера рассмотрим построение векторной диаграммы для цепи с последовательным соединением резистора (реостата) и катушки. Напряжение на резисторе U a , совпадающее по фазе с током I, откладывают в масштабе по линии тока. Из конца вектора радиусом, равным напряжению на катушке U к, делают первую засечку. Вторая засечка делается радиусом, равным общему напряжению цепи U из начала вектора . В точке пересечения засечек будут находиться концы векторов и (рис. 3.14.а). Активную и индуктивную составляющую напряжений на катушке и определяют, опуская перпендикуляр на ось вектора тока İ из конца вектора .

Векторная диаграмма для цепи с последовательным соединением катушки и конденсатора, строится аналогично и приведена на рис. 3.14.б.


а б

Рис. 3.14. Построение векторных диаграмм методом засечек.




Рис. 3.15. Схема соединений электрической цепи с последовательным

включением катушки и батареи конденсаторов.

Порядок выполнения работы.

1. Собрать электрическую цепь по схеме рис. 3.15.

2. Произвести исследование явления резонанса напряжений по следующей методике.

Изменяя величину емкости включением тумблеров, установить емкость С 0 , при которой ток в цепи I и активная мощность P имеют максимальные значения (явление близкое к резонансу напряжений). Произвести измерения напряжения U в цепи, напряжения на катушке U к, напряжения на конденсаторе U с, тока I в цепи и мощности P. Изменяя затем емкость ступенями на 1 – 2 мкф, произвести измерения для 3 – 4 точек при емкостях, меньших С 0 , и для 3 – 4 точек при емкостях, больших С 0 .

3. Результаты измерений для каждой установленной величины емкости занести в табл.3.1.

Таблица 3.1

4. По данным опытов вычислить величины, указанные в табл. 3.1 (полное сопротивление цепи Z, активное сопротивление r, реактивное сопротивление x , коэффициент мощности цепи cosφ, емкостное сопротивление x C , емкость C, полное сопротивление катушки z к, индуктивное сопротивление катушки z L , индуктивность катушки L, коэффициент мощности cosφ к).

Формулы для вычислений

; ; ; ;

; ; ;

;

5. По данным табл. 3.1 построить кривые I=f 1 (C), cosφ=f 2 (С); z=f 3 (С).

6. Построить векторные диаграммы тока и напряжений для трех отсчетов: при x L >x C , при максимальном значении тока в цепи (x L ≈x C), при x L

Контрольные вопросы:

1. Что называется индуктивным и емкостным сопротивлением и от чего они зависят?

2. Как вычисляется полное сопротивление неразветвленной цепи переменного тока?

3. Как вычисляется действующее значение тока в цепи с последовательным соединением резистивного, индуктивного и емкостного элементов?

4. Что такое коэффициент мощности цепи переменного тока и почему нужно стремиться к его повышению при потреблении электрической энергии?

5. При каком условии возникает резонанс напряжений в цепи переменного синусоидального тока? Чем характеризуется это явление?

6. Объясните, какую опасность может представлять резонанс напряжений в электрических цепях?

7. Каким должно быть соотношение индуктивного и емкостного сопротивлений, чтобы ток в цепи опережал напряжение? Поясните это при помощи векторной диаграммы.

8. Начертите схему замещения цепи, для которой изображена векторная диаграмма.


Что нужно дополнительно включить в эту цепь, чтобы получить в ней резонанс напряжений?

9. В цепи переменного тока частотой f=50 Гц с последовательно включенными катушкой и конденсатором имеет место резонанс. Определить напряжение на катушке и конденсаторе, если U=20В, r=10Ом, c=1мкФ. Вычислить индуктивность катушки.


Работа 4. Параллельное соединение индуктивности и емкости.

Резонанс токов.

Цель работы : рассмотреть явления, происходящие в цепи переменного тока, содержащей параллельно соединенные катушку и конденсатор (рис. 4.1), ознакомиться с резонансом токов.

Рис. 4.1. Схема электрической цепи с параллельным

соединением элементов.

Пояснения к работе

Рассмотрим параллельное соединение катушки, обладающей индуктивным x L =ωL и активным r сопротивлениями, с конденсатором, обладающим емкостным сопротивлением (рис. 4.2). При включении такой цепи под напряжением U в катушке возникает ток I к.


Рис. 4.2. Принципиальная схема параллельного

соединения r, x L , x c

, (4.1)

где - полное сопротивление катушки.

Вектор тока будет отставать от вектора напряжения на угол φ к:

; . (4.2)

В конденсаторе возникает ток I c:

. (4.3)

Вектор тока İ c будет опережать на 90˚ вектор , φ с = 90˚. Вектор общего тока на основании первого закона Кирхгофа:

İ = İ к + İ с. (4.4)

Векторная диаграмма токов согласно (4.4) показана на рис.4.З

Вектор тока İ к проводим под углом φ к к вектору напряжения . Из конца вектора тока İ к проводим вектор тока İ с под углом φ с =90˚ к вектору напряжения (в сторону опережения). Сумма вектора İ к и İ с даст вектор общего тока, отстающий на угол φ от вектора напряжения.

Для аналитического определения общего тока I и угла φ разложим ток катушки I к на активную составляющую I a , совпадающую с напряжением U, и индуктивностью I L , отстающую на 90˚ от напряжения U.

Разделив стороны треугольника (рис.4.3) на напряжение U, получим треугольник проводимостей (рис.4.4), из которого находим:

(4.11)

Изменяя величину емкости С, от которой зависит значение b c , согласно (4.7), можно изменять соотношение между b c и индуктивными проводимостями (b L), а, следовательно, и токами:

I c =Ub c =Uωс; I L =Ub L



Рис.4.3. Векторная диаграмма напряжения и токов для цепи с параллельным

соединением катушки и емкости при I L >I С

При величине b C

Uωс

Преобладает индуктивная проводимость b L и, следовательно, ток I L , поэтому вектор общего тока İ отстает от вектора напряжения (рис.4.3).

При величине b C >b L , т.е. C> имеем:

Uωс

Преобладает емкостная проводимость b C и, следовательно, ток I С, поэтому вектор общего тока İ опережает вектор напряжения (рис.4.5).



Рис.4.4.

соединением катушки и емкости при I C < I L



Рис.4.5. Векторная диаграмма для цепи с параллельным

соединением катушки и емкости при I C > I L

При величине емкости: , (4.12)

емкостная проводимость равна индуктивной:

b C = ωc = b L , (4.13)

а, следовательно, будут равны между собою емкостный и индуктивный токи (рис.4.6):

b C U= b L U ; I C = I L . (4.14)

Мы получим резонанс токов, т.е. полную взаимную компенсацию индуктивного и емкостного токов:

I C – I L = 0. (4.15)

В результате общий ток I при резонансе состоит только из активной составляющей, согласно выражению (4.8) и рис.4.6.

I= I a = Ug, (4.16)

поэтому угол φ= 0, а cos φ= 1.

Полная проводимость цепи, а следовательно, и ток I принимает минимальное значение, так как согласно (4.10) У=g, поскольку b C – b L = 0, а полное сопротивление цепи , следовательно максимальное значение.

Реактивная мощность цепи равна нулю:

U(I C - I L) = 0 ; Q L – Q C = 0.


Рис.4.6. Векторная диаграмма при резонансе токов (I C = I L)

Явление резонанса токов, т.е. взаимной компенсации реактивных токов (I C –I L =0), а, следовательно, и реактивных мощностей (Q L –Q C =0) объясняют следующим. Когда индуктивная ветвь (катушка) потребляет энергию для создания магнитного поля, в этот момент в параллельной ветви конденсатор разряжается и отдает энергию. Происходит взаимная компенсация энергий.

Общая энергия, потребляемая из сети, расходуется только на активном сопротивлении катушки (на нагревание провода катушки).

Зависимость полного сопротивления Z цепи от величины емкости будет иметь следующий вид:

, (4.18)

где и от C не зависят.


Кривые Z= f 1 (C) и I= f 2 (C), построенные по выражениям (4.18) и (4.10), показаны на рис.4.7. Там же дана кривая cosφ= f 3 (C), построенная по уравнению (4.11). Из (4.12) видно, что величины емкости и индуктивности, при которых наступает резонанс, зависят от частоты переменного тока. При заданных постоянных C и L явление резонанса может быть получено изменением частоты.


Рис.4.7. График зависимости тока в цепи I, cosφ

и полного сопротивления z от емкости.

а) Понятие о векторах

На рис. 1-4 приведена кривая изменения переменного тока во времени. Ток сначала растет от нуля (при = 0°) до максимального положительного значения + I M (при = 90°), затем убывает, переходит через нуль (при = 180°), достигает максимального отрицательного значения - I M (при = 270°) и, наконец, возвращается к нулю (при = 360°). После этого весь цикл изменения тока повторяется.

Кривая изменения переменного тока во времени, построенная на рис. 1-4, называется синусоидой. Время Т, в течение которого происходит полный цикл изменения тока, соответствующий изменению угла до 360°, называется периодом переменного тока. Число периодов за 1 с называется частотой переменного тока. В промышленных установках и в быту в СССР и в других странах Европы используется главным образом переменный ток частотой 50 Гц. Этот ток 50 раз в секунду принимает положительное и отри цательное направление.

Изменение переменного тока во времени можно записать в следующем виде:

где i - мгновенное значение тока, т. е. значение тока в каждый момент времени; I м - максимальное значение тока; - угловая частота переменного тока, f= 50 Гц, = 314; - начальный угол, соответствующий моменту времени, с которого начинается отсчет времени (при t = 0).

Для частного случая, показанного на рис. 1-4,

Анализируя действие устройств релейной защиты и автоматики, необходимо сопоставлять токи и напряжения, складывать или вычитать их, определять углы между ними и производить другие операции. Пользоваться при этом кривыми, подобными приведенной на рис. 1-4, неудобно, поскольку построение синусоид тока и напряжения занимает много времени и не дает простого и наглядного результата. Поэтому для упрощения принято изображать токи и напряжения в виде отрезков прямых линий, имеющих определенную длину и направление, - так называемых векторов (ОА на рис. 1-4). Один конец вектора закреплен в точке О - начало координат, а второй вращается против часовой стрелки.

Мгновенное значение тока или напряжения в каждый момент времени определяется проекцией на вертикальную ось вектора, длина которого равна максимальному значению электрической величины тока или напряжения. Эта проекция будет становиться то положительной, то отрицательной, принимая максимальные значения при вертикальном расположении вектора.

За время Т, равное периоду переменного тока, вектор совершит полный оборот по окружности (360°), занимая последовательно положения и т. д. При частоте переменного тока 50 Гц вектор будет совершать 50 об/с.

Таким образом, вектор тока или напряжения - это отрезок прямой, равный по величине максимальному значению тока или напряжения, вращающийся относительно точки О против движения часовой стрелки со скоростью, определяемой частотой переменного тока. Зная положение вектора в каждый момент времени, можно определить мгновенное значение тока или напряжения в данный момент. Так, для положения вектора тока ОА, показанного на рис. 1-5, его мгновенное значение определяется проекцией на вертикальную ось, т. е.

На основании рис. 1-5 можно также сказать, что ток в данный момент времени имеет положительную величину. Однако это еще не дает полного представления о протекании процесса в цепи переменного тока, так как неизвестно, что значит положительный или отрицательный ток, положительное или отрицательное напряжение.

Для того чтобы векторные диаграммы токов и напряжений давали полную картину, их нужно увязать с фактическим протеканием процесса в цепи переменного тока, т. е. необходимо предварительно принять условные положительные направления токов и напряжений в рассматриваемой схеме.

Без выполнения этого условия, если не заданы положительные направления токов и напряжений, любая векторная диаграмма не имеет никакого смысла.

Рассмотрим простую однофазную цепь переменного тока, приведенную на рис. 1-6, а. От однофазного генератора энергия передается в активное сопротивление нагрузки R. Зададимся положительными направлениями токов и напряжений в рассматриваемой цепи.

За условное положительное направление напряжения и э д. с. примем направление, когда потенциал вывода генератора или нагрузки, связанного с линией, выше потенциала вывода, соединенного с землей. В соответствии с правилами, принятыми в электротехнике, положительное направление для э. д. с. обозначено стрелкой, направленной в сторону более высокого потенциала (от земли к линейному выводу), а для напряжения - стрелкой, направленной в сторону более низкого потенциала (от линейного вывода к земле).

Построим векторы э. д. с. и тока, характеризующие работу рассматриваемой цепи (рис. 1-6, б). Вектор э. д. с. произвольно обозначим вертикальной линией со стрелкой, направленной вверх. Для построения вектора тока запишем для цепи уравнение согласно второму закону Кирхгофа:

Поскольку знаки векторов тока и э. д. с. в выражении (1-7) совпадают, вектор тока будет совпадать с вектором э. д. с. и на рис. 1-6, б.

Здесь и в дальнейшем при построении векторов будем откладывать их по величине равными эффективному значению тока и напряжения, что удобно для выполнения различных математических операций с векторами. Как известно, эффективные значения тока и напряжения в раз меньше соответствующих максимальных (амплитудных) значений.

При заданных положительных направлениях тока и напряжения однозначно определяется и знак мощности. Положительной в рассматриваемом случае будет считаться мощность, направленная от шин генератора в линию:

так как векторы тока и э. д. с. на рис. 1-6, б совпадают.

Аналогичные соображения могут быть высказаны и для трехфазной цепи переменного тока, показанной па рис. 1-7,а.

В этом случае во всех фазах приняты одинаковые положительные направления, чему соответствует симметричная диаграмма токов и напряжений, приведенная на рис. 1-7, б. Отметим, что симметричной называется такая трехфазная система векторов, когда все три вектора равны но величине и сдвинуты относительно друг друга на угол 120°.

Вообще говоря, совсем не обязательно принимать одинаковые положительные направления во всех фазах. Однако принимать разные положительные направления в разных фазах неудобно, так как пришлось бы изображать несимметричную систему векторов при работе электрической цепи в нормальном симметричном режиме, когда все три фазы находятся в одинаковых условиях.

б) Операции с векторами

Когда мы рассматриваем только одну кривую тока или напряжения, начальное значение угла, с которого начинается отсчет или, иначе говоря, положение вектора на диаграмме, соответствующее начальному моменту времени, может быть принято произвольным. Если же одновременно рассматриваются два или несколько токов и напряжений, то, задавшись начальным положением на диаграмме одного из векторов, мы тем самым уже определяем положение всех других векторов.

Все три вектора фазных напряжений показанные на рис. 1-7, б, вращаются против часовой стрелки с одинаковой скоростью, определяемой частотой переменного тока. При этом они пересекают вертикальную ось, совпадающую с направлением вектора на рис. 1-7,б, поочередно с определенной последовательностью, а именно которая называется чередованием фаз напряжения (или тока).

Для того чтобы определить взаимное расположение двух векторов, обычно говорят, что один из них опережает или отстает от другого. При этом опережающим считается вектор, который при вращении против часовой стрелки раньше пересечет вертикальную ось. Так, например, можно сказать, что вектор напряжения на рис. 1-7, б опережает на угол 120°, или, с другой стороны, вектор отстает от вектора на угол 120°. Как видно из рис. 1-7, выражение «вектор отстает на угол 120°» равноценно выражению «вектор опережает на угол 240°».

При анализе разных электрических схем возникает необходимость складывать или вычитать векторы тока и напряжения. Сложение векторов производится геометрическим суммированием по правилу параллелограмма, как показано на рис. 1-8, а, на котором построена сумма токов

Так как вычитание - действие обратное сложению, очевидно, что для определения разности токов (например, достаточно к току прибавить вектор, обратный

Вместе с тем на рис. 1-8, а показано, что вектор разности токов можно построить проще, соединив линией концы векторов При этом стрелка вектора разности токов направлена в сторону первого вектора, т. е.

Совершенно аналогично строится векторная диаграмма междуфазных напряжений, например (рис. 1-8, б).

Очевидно, что положение вектора на плоскости определяется его проекциями на две любые оси. Так, например, для того чтобы определить положение вектора ОА (рис. 1-9), достаточно знать его проекции на взаимно перпендикулярные оси

Отложим на осях координат проекции вектора и и восстановим из точек перпендикуляры к осям. Точка пересечения этих перпендикуляров и есть точка А - один конец вектора, вторым концом которого является точка О - начало координат.

в) Назначение векторных диаграмм

Работникам, занимающимся проектированием и эксплуатацией релейной защиты, весьма часто приходится использовать в своей работе так называемые векторные диаграммы - векторы токов и напряжений, построенные на плоскости в определенном сочетании, соответствующем электрическим процессам, происходящим в рассматриваемой схеме.

Векторные диаграммы токов и напряжений строятся при расчете коротких замыканий, при анализе токораспре-деления в нормальном режиме.


Анализ векторных диаграмм токов и напряжений является одним из основных, а в ряде случаев единственным способом проверки правильности соединения цепей тока и напряжения и включения реле в схемах дифференциальных и направленных защит.

По сути дела, построение векторной диаграммы целесообразно во всех случаях, когда к рассматриваемому реле подаются две или больше электрических величин: разность токов в максимальной токовой или дифференциальной защите, ток и напряжение в реле направления мощности или в направленном реле сопротивления. Векторная диаграмма позволяет сделать заключение о том, как рассматриваемая защита будет работать при коротком замыкании, т. е. оценить правильность ее включения. Взаимное расположение векторов токов и напряжений на диаграмме определяется характеристикой рассматриваемой цепи, а также условно принятыми положительными направлениями токов и напряжений.

Для примера рассмотрим две векторные диаграммы.

На рис. 1-10, а показана однофазная цепь переменного тока, состоящая из генератора и последовательно соединенных емкостного активного и индуктивного сопротивлений (примем, что индуктивное сопротивление больше емкостного x L > x C). Положительные направления токов и напряжений, так же как и в случаях, рассмотренных выше, обозначены на рис. 1-10, а стрелками. Построение векторной диаграммы начнем с вектора э. д. с, который расположим на рис. 1-10, б вертикально. Величина тока, проходящего в рассматриваемой цепи, определится из следующего выражения:

Поскольку в рассматриваемой цепи имеются активные и реактивные сопротивления, причем x L > x C , вектор тока отстает от вектора напряжения на угол :

На рис. 1-10, б построен вектор отстающий от вектора на угол 90°. Напряжение в точке n определяется разностью векторов . Напряжение в точке m определится аналогично:


г) Векторные диаграммы при наличии трансформации

При наличии в электрической цепи трансформаторов необходимо ввести дополнительные условия, для того чтобы сопоставлять векторные диаграммы токов и напряжений на разных сторонах трансформатора. Положительные направления токов при этом следует задавать с учетом полярности обмоток трансформатора.

В зависимости от направления намотки обмоток трансформатора взаимное направление токов в них меняется. Для того чтобы определять направление токов в обмотках силового трансформатора и сопоставлять их между собой, обмоткам трансформатора дают условные обозначения «начало» и «конец».

Нарисуем схему, приведенную на рис. 1-6, только между источником э. д. с. и нагрузкой включим трансформатор (рис. 1-12, а). Обозначим начала обмоток силового трансформатора буквами А и а, концы - X и х. При этом следует иметь в виду, что «начало» одной из обмоток принимается произвольно, а второй - определяется на основании условных положительных направлений токов, заданных для обеих обмоток трансформатора.На рис. 1-12, а указаны положительные направления токов в обмотках силовых трансформаторов. В первичной обмотке положительным считается направление тока от «начала» к «концу», а во вторичной - от «конца» к «началу».

В результате при таких положительных направлениях направление тока в сопротивлении нагрузки остается таким же, что и до включения трансформатора (см. рис. 1-6 и 1-12).

где - магнитные потоки в магнитопроводс трансформатора, а - создающие эти потоки намагничивающие силы (н. с).

Из последнего уравнения

Согласно равенству (1-11) векторы имеют одинаковые знаки и, следовательно, будут совпадать по направлению (рис. 1-12, б).

Принятые положительные направления токов в обмотках трансформатора удобны тем, что векторы первичного и

Вторичного токов на векторной диаграмме совпадают по направлению (рис. 1-12, б). Для напряжений также удобно принять такие положительные направления, чтобы векторы вторичного и первичного напряжений совпадали, как показано на рис. 1-12.

В рассматриваемом случае имеет место соединение трансформатора по схеме 1/1-12. Соответственно для трехфазного трансформатора схема соединений и векторная диаграмма токов и напряжений показаны на рис. 1-14.

На рис. 1-15, б построены векторные диаграммы напряжений, соответствующие схеме соединения трансформатора

На стороне высшего напряжения, где обмотки соединены в звезду, междуфазные напряжения в раз превышают фазные напряжения. На стороне же низшего напряжения, где обмотки соединены в треугольник, междуфазные и фазные напряжения равны. Междуфазные напряжения стороны низшего напряжения отстают на 30° от аналогичных междуфазных напряжений стороны высшего напряжения, что и соответствует схеме соединений

Для рассматриваемой схемы соединений обмоток трансформатора можно построить и векторные диаграммы токов, проходящих с обеих его сторон. При этом следует иметь в виду, что на основании принятых нами условий определяются только положительные направления токов в обмотках трансформатора. Положительные же направления токов в линейных проводах, соединяющих выводы обмоток низшего напряжения трансформатора с шинами, могут быть приняты произвольно независимо от положительных направлений токов, проходящих в треугольнике.

Так, например, если принять положительные направления токов в фазах на стороне низшего напряжения от выводов, соединенных в треугольник, к шинам (рис. 1-15, а), можно записать следующие равенства:

Соответствующая векторная диаграмма токов показана на рис. 1-15, в.


Аналогично можно построить векторную диаграмму токов и для случая, когда положительные направления токов приняты от шин к выводам треугольника (рис. 1-16, а). Этому случаю соответствуют следующие равенства:

и векторные диаграммы, приведенные на рис. 1-16, б. Сравнивая диаграммы токов, приведенные на рис. 1-15, в и 1-16, б, можно сделать вывод, что векторы фазных токов, проходящих в проводах, соединяющих выводы обмоток низ-

Шего напряжения трансформатора и шины, находятся в про-тивофазе. Конечно, как те, так и другие диаграммы верны.

Таким образом, при наличии в схеме обмоток, соединенных в треугольник, необходимо задаваться положительными направлениями токов как в самих обмотках, так и в линейных проводах, соединяющих треугольник с шинами.

В рассматриваемом случае при определении группы соединений силового трансформатора удобно за положительные принимать направления от выводов низшего напряжения к шинам, так как при этом векторные диаграммы токов совпадают с принятым обозначением групп соединения силовых трансформаторов (сравните рис. 1-15, б и в). Аналогично могут быть построены векторные диаграммы токов и для других групп соединения силовых трансформаторов. Сформулированные выше правила построения векторных диаграмм токов и напряжений в схемах с трансформаторами действительны и для измерительных трансформаторов тока и напряжения.

Рассмотрен для случая с исправным нулевым проводом. Векторные диаграммы напряжений и токов даны на рисунках 15 и 16; на рисунке 17 дана совмещенная диаграмма токов и напряжений

1. Строятся оси комплексной плоскости: действительных величин (+1) - горизонтально, мнимых величин (j) - вертикально.

2. Исходя из значений модулей токов и напряжений и размеров полей листов, отведеных для построения диаграмм, выбираются масштабы тока mI и напряжения mU. При использовании формата А4 (размеры 210х297 мм) при наибольших модулях (см. табл. 8) тока 54 А и напряжения 433 В приняты масштабы: mI = 5 А/см, mU = 50 В/см.

3. С учетом принятых масштабов mI и mU определяется длина каждого вектора, если диаграмма строится с использованием показательной формы его записи; при использовании алгебраической формы находятся длины проекций векторов на оси действительных и мнимых величин, т.е. длины действительной и мнимой частей комплекса.

Например, для фазы А:

Длина вектора тока / ф.А / = 34,8 А/ 5 А/см = 6,96 см; длина его действительной части

I ф.А = 30 А/ 5 А/см = 6 см,

длина его мнимой части

I ф.А = -17,8 А/5 А/см = - 3,56 см;

Длина вектора напряжения / А нагр./ = 348 В/ 50 В/см = 6,96 см; длина его действительной части

U А нагр. = 340,5 В/ 50 В/см = 6,8 см;

длина его мнимой части

U Анагр. = 37,75 В/ 50 В/см = 0,76 см.

Результаты определения длин векторов, их действительных и мнимых частей отражены в таблице 9.

Таблица 9 - Длины векторов тока и напряжения, их действительных и мнимых частей для случая неповрежденного нулевого провода.

Величина Масштаб, 1/см Длина вектора, см Длина действительной части, см Длина мнимой части, см
Напряжения фаз сети U А 50 В/см 7,6 7,6
7,6 - 3,8 - 6,56
7,6 - 3,8 6,56
Напряжения фаз нагрузки U Анагр. 50 В/см 6,96 6,8 0,76
UВ нагр. 7,4 - 4,59 - 5,8
UС нагр. 8,66 -4,59 7,32
U0 1,08 0,79 - 0,76

Продолжение таблицы 9

Токи фаз нагрузки I ф.А 5 А/см 6,96 6.0 - 3,56
I ф.В 7,4 1,87 - 7,14
I ф.С 3,13 0,1 3,12
I 0 10,8 7,9 - 7,6

4. Построение векторной диаграммы напряжений.

4.1 На комплексной плоскости строятся векторы фазных напряжений питающей сети А, В, С; соединив их концы, получают векторы линейных напряжений АВ, ВС, СА. Затем строятся векторы фазных напряжений нагрузки А нагр., В нагр., С нагр. Для их построения можно использовать обе формы записи комплексов токов и напряжений.

Точка 0, в которой окажутся их начала, есть нейтраль нагрузки. В этой точке находится конец вектора напряжения смещения нейтрали 0, его начало расположено в точке 0. Этот вектор можно также построить, используя данные таблицы 9.

5. Построение векторной диаграммы токов.

5.1 Построение векторов фазных токов нагрузки ф.А, ф.В, ф.С подобно построению векторов фазных напряжений.

5.2 Сложением векторов фазных токов находится вектор тока в нулевом проводе 0; его длина и длины его проекций на оси должны совпасть с указанными в таблице 8.

Векторные диаграммы токов и напряжений для случая обрыва нулевого провода строятся аналогично.

Следует выполнить анализ результатов расчета и построения векторных диаграмм и сделать выводы о влиянии несимметрии нагрузки на величину ее фазных напряжений и на напряжение нейтрали; особое внимание необходимо обратить на последствия обрыва нулевого провода сети при несимметричной нагрузке.

Примечание . Допускается совмещение диаграмм токов и напряжений при условии их выполнения разными цветами.


Рисунок 15. Векторная диаграмма напряжений

Рисунок 16. Векторная диаграмма токов.

Рисунок 17. Совмещенная векторная диаграмма напряжений и токов.

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Точные;

Качественные.



Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.

i = Im sin (ω t + φ).



Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков - векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Широкое применение векторные диаграммы нашли в электротехнике, теории колебаний, акустике, оптике и т.д.

Различают 2-х вида векторных диаграмм:

Точные;

Качественные.

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Качественные диаграммы изображаются с учетом взаимных соотношений между электрическими величинами, без указания численных характеристик. Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY - оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе. Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой ω. В виду чего при вращении их взаимное расположение не изменяется. Поэтому при изображении векторных диаграмм один вектор можно направить произвольным образом (например, по оси ОХ). А остальные - изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.

Допустим у нас есть , величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол - соответствующий фазе φ. Проекция вектора на вертикальную ось и определяет значение мгновенного тока в начальный момент времени.

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений - масштабом, поскольку: I = Im /√2.

Основным преимуществом векторных диаграмм называют возможность простого и быстрого сложения и вычитания 2-х параметров при расчете электроцепей.



Нашли ошибку?
Выделите ее и нажмите:
CTRL+ENTER