Главная · Бытовая техника · Днк чипы. Супрамолекулярная нанопечать. Использование в медицине и генетике

Днк чипы. Супрамолекулярная нанопечать. Использование в медицине и генетике

Производственные технологии и дизайн в наибольшей степени определяют достоинства и недостатки биологических микрочипов, области их применения, ценовые характеристики и общую доступность.

Существуют два принципиально разных подхода к производству ДНК–чипов: синтез ДНК заданной последовательности непосредственно на матрице и иммобилизация на подложке заранее синтезированных олигонуклеотидов химическим путем. Технология синтеза олигонуклеотидов на подложке фотолитографическим путем запатентована и применяется компанией Affymetrix, мировым лидером в области производства ДНК – чипов, контролирующим до 70% их мирового рынка. В основе технологии лежит применение фотолабильной защитной группы для мономерных звеньев ДНК, которая удаляется с концевого остатка синтезируемого на подложке олигонуклеотида при облучении УФ – светом. Достоинством такой технологии является возможность получения чипов с очень высокой плотностью нанесения – до 100 000 точек на 1 см2. Очевидный недостаток метода – сложность и дороговизна процесса.

Технологии химической иммобилизации фрагментов ДНК на твердых подложках начали разрабатываться около 30 лет назад и в настоящий момент продолжают совершенствоваться. Общий принцип иммобилизации биологических молекул – формирование на поверхности подложки и на конце пришиваемого олигонуклеотида пары химических групп, обеспечивающей образование между ними ковалентной связи. Существует огромное количество таких способов, большинство из которых основано на взаимодействии нуклеофильной группы (например, аминогруппы), находящейся на поверхности подложки или привязанной к молекуле олигонуклеотида, с электрофильным агентом, в роли которого могут выступать тем или иным путем активированные карбоновые кислоты, моноэфиры фосфорной кислоты и т.д.

Оценка экспрессии генов с помощью ДНК микрочипов (на примере Affymetrix GeneChip )

Наиболее часто ДНК-микрочипы применяются для оценки экспрессии генов. Наиболее популярная платформа для решения этого класса задач - микрочипы Affymetrix GeneChip, использующие короткие последовательности олигонуклеотидов для выявления генов, содержащихся в образце РНК. Присутствие в образце каждого гена фиксируется при помощи совокупности зондов длиной в 25 нуклеотидов каждый. Для улучшения качества эксперимента на чипе размещается несколько копий зондов на каждую рассматриваемую последовательность.

Микрочипы Affymetrix обычно используют от 11 до 20 пар проб на каждый изучаемый ген. Одна компонента таких пар, называемая perfect match probe (PM), в точности комплементарна последовательности соответствующего гена - подразумевается, что именно его РНК будет присоединяться к PM-зонду. Такое присоединение называется специфической гибридизацией. Тем не менее, к зондам могут присоединяться нуклеотидные последовательности и других генов (неспецифическая гибридизация). Для оценки воздействия неспецифической гибридизации используется другие компоненты пары - зонды, называемые mismatch probe (MM). Последовательность нуклеотидов в них совпадает с последовательностью в соответствующих PM-пробах с заменой центрального (тринадцатого) нуклеотида на комплементарный. Соотношение интенсивности свечения PM- и MM-проб изначально использовалось для нейтрализации эффекта неспецифической гибридизации, однако более поздние исследования поставили под сомнение правильность подобного подхода.

Полногеномное генотипирование полиморфных локусов с помощью микрочипов высокой плотности (на примере Illumina Human610-Quad BeadChip )

К настоящему времени ведущими производителями (Illumina, Affymetrix, Sequenom и др.) разработаны платформы с микрочипами высокой плотности для генотипирования и анализа экспрессии генов (рис. 30)

Illumina Human610-Quad BeadChip включает более 600 тысяч однонуклеотидных полиморфизмов и маркеров вариации по числу копий генов (CNV). Каждый ОНП (SNP) для биочипа отобран на основании точной о нем информации для повышения эффективности определения ассоциации с заболеванием. В геноме человека более 10 миллионов ОНП и изучение каждого полиморфного локуса в геноме экономически нецелесообразно. Компанией Illumina разработан уникальный рациональный подход к выбору ОНП, который обеспечивает высокое качество данных генотипирования и охват всех необходимых локусов для анализа предрасположенности к заболеванию.

Рис.30. Чиповые технологии для высокопроизводительного генотипирования

В состав биочипов Illumina включен набор ОНП, называемых маркерными или таговыми (tag SNP), которые могут быть использованы в качестве прокси-маркеров (маркеров-представителей) для всех распространенных ОНП (с частотой редкого аллеля ≥ 5%) в геноме. Выбор маркерных ОНП основывается на величине неравновесия по сцеплению (r 2) между близкорасположенными полиморфными локусами. Высокий уровень r 2 между двумя ОНП, указывающий на высокую корреляцию, делает эти ОНП хорошими прокси-маркерами. При максимальном r 2 , равном 1, два ОНП находятся в полном неравновесии по сцеплению и могут служить как абсолютные прокси-маркеры, т.е. нужно генотипировать один ОНП, чтобы узнать генотип другого (The Power of Intelligent SNP Selection (www.illumina.com)). Использование маркерных ОНП дает возможность получить максимальное количество информации, высокий уровень покрытия генома и охват генов, а также уменьшить размер исследуемой выборки без снижения эффективности определения генетической ассоциации. Геномное покрытие определяется как количество ОНП, которые находятся в неравновесии по сцеплению с референсным набором локусов. В качестве референсного набора специалисты компании Illumina используют все ОНП, прогенотипированные в проекте HapMap. По данным компании Illumina, биочип Human610-Quad BeadChip обеспечивает покрытие 89% генома в европейских популяциях (CEU, HapMap), 86% генома - в азиатских (CHB+JPT, HapMap) и 58% генома – в африканских (YRI, HapMap) (при r 2 > 0.8). Среднее расстояние между маркерами на этом биочипе составляет 4,7 т.п.н., медиана – 2,7 т.п.н.

Технология Illumina’s BeadArray основана на использовании 3-микронных кремниевых микросфер (шариков – beads), которые сами собираются в микролунки или на пучках оптических волокон или на плоских кремниевых пластинах. Каждая микросфера покрыта тысячами копий специфических олигонуклеотидов, содержащих локус-специфические и адресные последовательности, по последним из которых определяется, какой шарик в какую микроячейку встроился.

На первом этапе генотипирования проводится полногеномная амплификация образцов ДНК, после которой ДНК фрагментируется (рис.31). На следующем этапе немеченые фрагменты образцов ДНК гибридизуются с соответствующими 50-нуклеотидными зондами, фиксированными на микросферах чипа. После этого для точной идентификации аллеля к тестируемому нуклеотиду с помощью фермента ДНК-полимеразы присоединяется меченый комплементарный нуклеотид. Двухэтапная детекция аллелей каждого маркера – гибридизация с 50-нуклеотидными зондами и последующая ферментативная детекция нуклеотида обеспечивают высокую селективность и специфичность идентификации аллелей (Infinium® HD DNA Analysis BeadChips (www.illumina.com)).

Рис. 31. Схема протокола генотипирования с помощью биочипов Illumina Human610 quad BeadChip (Infinium® HD DNA Analysis BeadChips (www.illumina.com).

Таким образом, в представленном учебном пособии рассмотрены основные молекулярно-генетические методы изучения наследственных болезней человека. В одной книге невозможно описать все существующие на сегодняшний день методы исследования или представить молекулярно-диагностические протоколы для каждой конкретной формы наследственной патологии. Настоящее учебное пособие дает общие представления о методологии и стратегии проведения молекулярно-генетической диагностики, раскрывает методы, наиболее часто используемые в практике современного исследователя. Предлагаемые протоколы проведения исследований, подробное описание различных методик с иллюстрациами, помогут студентам медико-биологического профиля подготовки, специализирующихся по генетике, успешно освоить молекулярно-генетические методы анализа генома человека.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Бочков Н.П. Клиническая генетика. М. 2011. – 592 с.

2. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. - Москва: Мир, 2002. - 589 с.

3. Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. Санкт-Петербург. «Специальная Литература». 1997. – 287 с.

4. Дейвис К. Анализ генома. Методы. М. 1990. – 246 с.

5. Епринцев А.Т., Попов В.Н., Федорин Д.Н. Идентификация и исследование экспрессии генов. // Учебно-методическое пособие для ВУЗов. – Воронеж. – 2008. – 63 с.

6. Жимулев И.Ф. Общая и молекулярная генетика. Н. 2003. – 479 с.

7. Инге-Вечтомов С.Г. Генетика с основами селекции. М. - 2010. – 718 с.

8. Кузьмина Н.А. Основы биотехнологии, 2005 // http://www.biotechnolog.ru/

9. Кулмамабетова Г. Пробоподготовка. Методы выделения ДНК/РНК // Современные проблемы биологии, ЕНУ, Астана, 2012, Лекция 9.

10. Меньшикова В.В. Клинико-лабораторные аналитические технологии и оборудование. М. 2007. – 240 с.

11. Молекулярная биотехнология. Принципы и применение / под ред. Н.К. Янковского. – М. : Мир, 2002. – 588 с

12. Молекулярная клиническая диагностика. Методы / под ред. С.Херрингтона, Дж.Макги. – М.: Мир, 1999. – 558с.

13. Мутовин Г.Р. Клиническая генетика. Геномика и протеомика неследственной патологии: учебное пособие. М. 2010. – 832 с.

14. Мухачева Т.А., Ковалев С.Ю. Прикладная биоинформатика. Спецкурс. УрФУ, г. Екатеринбург. 2012.

15. Патрушев Л.И. Экспрессия генов. М. Наука. 2000. – 830 c.

16. Поляничко А. М. Электрофорез в ПААГ. Методическое пособие. Санкт-Петербург. 2007.

17. Притчард Д.Д. – Наглядная медицинская генетика. – пер. с англ. под ред. Н.П. Бочкова. – М.: ГЭОТАР-Медиа. – 2009. – 200с.

18. Пузырев В.П., Степанов В.А. Патологическая анатомия генома человека. Н. – 1997. – 224 с.

19. ПЦР в реальном времени / под ред. Д.В. Ребрикова. - М.: Бином., 2009. – 223с.

20. Северин Е.С. Биохимия: Учебник. М. 2004. – 784 с.

21. Сукачев М. Современные методы полногеномного секвенирования (расшифровки) ДНК в диагностике и лечении заболеваний // http://innoros.ru/publications/articles/13/

22. Телков М. PCR реального времени: методические основы, оптимизация, применение. Bio-Red Laboratories.

23. Теоретические основы полимеразной цепной реакции. НПО «ДНК-Технология» - Москва, 1998 // www.dna-technology.ru

24. Шатц В.Д., Сахартова О.В. Высоко-эффективная жидкостная хроматография. Основы теории. Методолгия. Применение в лекарственной химии.

25. Mathew C.C. The isolation of high molecular weight eucariotic DNA// methods in molecular biology / ED. Walker J.M. – N.Y.: Haman press. – 1984. – P. 31–34.

26. Nolan T, Hands RE, Bustin SA (2006). «Quantification of mRNA using real-time RT-PCR.». Nat. Protoc. 1: 1559–1582. DOI:10.1038/nprot.2006.236. PMID 17406449.

27. VanGuilder HD, Vrana KE, Freeman WM (2008). «Twenty-five years of quantitative PCR for gene expression analysis». Biotechniques 44: 619–626. DOI:10.2144/000112776. PMID 18474036.

ПРИЛОЖЕНИЕ

Приложение 1.

Приготовление рективов для выделения ДНК


Похожая информация.


ДНК-микрочип (англ. DNA microarray) - это сложная технология, используемая в молекулярной биологии и медицине. ДНК-микрочип представляет собой небольшую поверхность, на которую с большой плотностью в определённом порядке нанесены фрагменты одноцепочечной синтетической ДНК с известной последовательностью. Эти фрагменты выступают в роли зондов, с которыми гибридизуются (образуют двуцепочечные молекулы) комплементарные им цепи ДНК из исследуемого образца, обычно меченные флуоресцентным красителем. Чем больше в образце молекул ДНК с определенной последовательностью, тем большее их количество свяжется с комплементарным зондом, и тем сильнее будет оптический сигнал в точке микрочипа, куда был «посажен» соответствующий зонд. После гибридизации поверхность микрочипа сканируется, и в результате каждой последовательности ДНК ставится в соответствие тот или иной уровень сигнала, пропорциональный числу молекул ДНК с данной последовательностью, присутствующих в смеси.

В обычном ДНК микрочипе (н-р, производства Affymetrix) зонды прикрепляются к твердой поверхности - стеклянному или силиконовому чипу. Другие платформы, например, выпускаемые Illumina, используют микроскопические шарики вместо больших твердых поверхностей. Технология ДНК-микрочипов находит самые разнообразные применения в современной биологии и медицине для анализа сложных смесей ДНК - например, совокупности всех транскриптов (матричных РНК) в клетке. ДНК микрочипы используют для анализа изменения экспрессии генов , выявления однонуклеотидных полиморфизмов , генотипирования или повторного секвенирования мутантных геномов . Микрочипы отличаются по конструкции, особенностям работы, точности, эффективности и стоимости.

Пример использования ДНК-микрочипа

Ниже приводится пример эксперимента с использованием ДНК-микрочипа.

  1. Выделяются или выращиваются биологические образцы, которые необходимо сравнить. Они могут соответствовать одним и тем же индивидуумам до и после какого-либо лечения (случай парных сравнений), либо различным группам индивидуумов, например, больным и здоровым, и т. д.
  2. Из образца выделяется очищенная нуклеиновая кислота, являющаяся объектом исследования: это может быть РНК в исследовании профиля экспрессии генов , ДНК при изучении сравнительной геномной гибридизации и т.д. Данный пример соответствует первому случаю.
  3. Проверяется качество и количество полученной нуклеиновой кислоты. Если требования соблюдены, эксперимент может быть продолжен.
  4. На основе имеющихся образцов РНК в процессе обратной транскрипции синтезируются последовательности комплементарных ДНК (кДНК, англ. cDNA).
  5. В процессе амплификации (синтеза дополнительных копий ДНК) количество последовательностей кДНК в образцах многократно увеличивается.
  6. К концам последовательностей кДНК присоединяются флуоресцентные или радиоактивные метки.
  7. Полученные образцы в смеси с необходимыми химическими веществами через микроскопическое отверстие наносятся на ДНК-микрочипы и начинается процесс гибридизации, в ходе которого одна из цепей кДНК присоединяется к комплементарной ей цепи, имеющейся на микрочипе.
  8. После окончания процесса гибридизации чипы промываются для удаления остатков материала.
  9. Полученные микрочипы сканируются при помощи лазера. На выходе получается одно- или двухцветные изображения (в зависимости от количества использованных красителей).
  10. На каждое изображение накладывается сетка, так, что каждой её ячейке соответствует участок чипа с пробами одного типа. Интенсивности свечения проб в ячейке сетки ставится в соответствие некоторое число, которое, в самом первом приближении, может служить мерой количества присутствовавших последовательностей РНК в соответствующем образце.

Дальнейшая обработка результатов требует многоэтапного привлечения сложного статистического аппарата.

Предобработка данных эксперимента

Корреляция между интенсивностями двух проб одного ДНК-микрочипа, представляющих один и тот же ген, обычно превышает 95%. Часто этот факт интерпретируют как подтверждение хорошей воспроизводимости экспериментов с чипами. Однако, если один и тот же биологические материал разделить на две части и сделать с ними разные микрочипы, корреляция между полученными интенсивностями, скорее всего, будет составлять от 60 до 80%. Корреляция на чипах с образцами, взятыми у мышей из одного помёта, может опускаться до 30%. Если эксперименты проводятся в разных лабораториях, корреляция между их результатами может быть ещё ниже .

Такая низкая воспроизводимость интенсивностей связана с совокупным воздействием большого количества источников вариации. Их можно разделить на три большие группы. Биологическая вариация включает неотъемлемые особенности организмов. Техническая вариация появляется на этапе выделения образцов, их окрашивания и гибридизации. Погрешность измерения связана со сканированием готовых массивов, на результаты которого может повлиять, например, пыль внутри сканера.

Нейтрализация эффектов технической вариации и ошибки измерения производится на этапе предобработки ДНК-микрочипов.

Фоновая поправка

Необходимость фоновой поправки связана с наличием таких мешающих факторов, как шум оптической системы распознавания (данные интенсивности, полученные при сканировании, не равны "настоящим" интенсивностям проб) и неспецифическая гибридизация (присоединение нуклеотидных последовательностей к зондам чужих проб).

Нормализация

Нормализация данных позволяет сделать несколько рассматриваемых в эксперименте чипов пригодными к сравнению между собой. Основная цель анализа на этом этапе - исключить влияние систематических небиологических различий между микрочипами. Источников таких различий множество: вариации эффективности обратной транскрипции, маркировки красителями, гибридизации, физические различия между чипами, небольшие различия в концентрации реагентов, вариация лабораторных условий.

Показано, что выбор метода нормализации оказывает существенное влияние на результат анализа .

Суммаризация

Обобщение значений уровня экспрессии по всем пробам, соответствующим одинаковым последовательностям

Контроль качества

Обработка выбросов

Основной этап статистической обработки

Ссылки

  • DNA microarray
  • DNA microarray experiment - статья из английской Википедии
  • DNA Microarray Virtual Lab - пошаговый интерактивный пример эксперимента с двукрасочным ДНК-микрочипом
  • Ten Pitfalls of Microarray Analysis - распространённые ошибки анализа ДНК-микрочипов

Специфической последовательности. Олигонуклеотид может являться коротким участком гена или другого компонента ДНК, и используется для гибридизации с кДНК или мРНК. Гибридизация зонда и мишени регистрируется и количественно определяется при помощи флюоресценции или хемолюминесценции, что позволяет определять относительное количество нуклеиновой кислоты с заданной последовательностью в образце.

В обычном ДНК микрочипе зонды ковалентно прикрепляются к твердой поверхности - стеклянному или кремниевому чипу. Другие платформы, например, выпускаемые Illumina , используют микроскопические шарики вместо больших твердых поверхностей. ДНК микрочипы отличаются от других микрочипов только тем, что их применяют для измерения ДНК или как часть более сложной системы детекции и анализа ДНК.

ДНК микрочипы используют для анализа изменения экспрессии генов , выявления однонуклеотидных полиморфизмов , генотипирования или повторного секвенирования мутантных геномов . Микрочипы отличаются по конструкции, особенностям работы, точности, эффективности и стоимости.

История

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "ДНК-микрочип" в других словарях:

    Термин ДНК микрочип Термин на английском DNA microarray Синонимы ДНК чип, DNA chip, Gene сhip, DNA chip Аббревиатуры Связанные термины биосенсор, геном, ДНК, ДНК зонд, лаборатория на чипе, РНК, олигонуклеотид Определение Миниатюрная пластина с… …

    Термин ДНК зонд Термин на английском DNA probe Синонимы Аббревиатуры Связанные термины биологические нанообъекты, биомедицинские микроэлектромеханические системы, биосенсор, геном, ДНК, ДНК микрочип, лаборатория на чипе, олигонуклеотид… … Энциклопедический словарь нанотехнологий

    Термин ДНК Термин на английском DNA Синонимы дезоксирибонуклеиновая кислота Аббревиатуры ДНК Связанные термины доставка генов, актуатор, бактериофаг, белки, биологические нанообъекты, биомиметика, биомиметические наноматериалы, генная инженерия,… … Энциклопедический словарь нанотехнологий

    ДНК-чип

    ДНК-биочип - DNA Chip ДНК чип (также: ДНК биочип, ДНК микрочип, ДНК наночип) Специальный чип, используемый для выявления генетических мутаций или сдвигов, диагностики заболеваний. Биочип для американской армии, разработанный специалистами из… … Толковый англо-русский словарь по нанотехнологии. - М.

    Микрочип генный м микроматрица - Микрочип, генный м., микроматрица * мікрачып, генны м., мікраматрыца * microarray or gene chip or microchip набор из тысяч уникальных известных однонитевых фрагментов ДНК, иммобилизированных на твердую основу. Эти фрагменты представляют все… … Генетика. Энциклопедический словарь

    Сэр Эдвин Мэллор Саузерн (р. 7 июня 1938) английский молекулярный биолог, член лондонского королевского общества по развитию знаний о природе (также известного как лондонское королевское общество), лауреат премии Ласкера (2005). Премия была … Википедия

    ДНК микрочип, содержащий комплементарные ДНК. Комплементарная ДНК (кДНК, англ. сDNA) это ДНК, синтезированная из зрелой мРНК в реакции, катализируемой обратной транскриптазой. кДНК ча … Википедия

    Количественный анализ нуклеиновых кислот определение концентрации ДНК или РНК в смеси или чистом препарате. Реакции с участием нуклеиновых кислот часто требуют точных сведений о количестве и чистоте препарата. Для определения концентрации… … Википедия

    Термин амплификация Термин на английском amplification Синонимы Аббревиатуры Связанные термины Определение (лат. amplificatio усиление, увеличение), в молекулярной биологии увеличение числа копий ДНК. Описание В клетке амплификация происходит в… … Энциклопедический словарь нанотехнологий

Экспрессия генов - это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт - РНК или белок. Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации.

ДНК–чипы представляют собой уникальный аналитический инструмент, позволяющий определять наличие в анализируемом образце (как правило, биологического происхождения) заданных последовательностей ДНК (т.н. гибридизационный анализ). Проведение анализа с помощью ДНК–чипов обходится в несколько раз дешевле, чем при использовании альтернативных технологий (электрофорез, ПЦР в реальном времени) и допускает, при наличии детектора несложной конструкции, работу вне лаборатории.

Впервые ДНК–чипы были использованы в исследованиях в конце 80-х годов прошлого века. В основе этого теперь уже широко распространенного метода, позволяющего одновременно анализировать экспрессию множества генов, лежит принцип узнавания мРНК-овых или кДНК-овых мишеней посредством их гибридизации с иммобилизованными на микрочипе одноцепочечными фрагментами ДНК. Современный ДНК-микрочип состоит из тысяч дезоксиолигонуклеотидов (зондов, или проб), сгруппированных в виде микроскопических точек и закреплённых на твёрдой подложке. Каждая точка содержит несколько пикомолей ДНК с определённой нуклеотидной последовательностью. Олигонуклеотиды ДНК-микрочипа могут быть короткими участками генов или других функциональных элементов ДНК и используются для гибридизации с кДНК или мРНК (кРНК). Гибридизация зонда и мишени регистрируется и количественно характеризуется при помощи флюоресценции или хемилюминесценции, что позволяет определять относительное количество нуклеиновой кислоты с заданной последовательностью в образце.

В обычном ДНК-микрочипе зонды ковалентно прикрепляются к твёрдой поверхности - стеклянному или кремниевому чипу. Другие платформы, например, выпускаемые Illumina, используют микроскопические шарики вместо больших твёрдых поверхностей.

ДНК-микрочипы используют для анализа изменения экспрессии генов, выявления однонуклеотидных полиморфизмов, генотипирования или повторного секвенирования мутантных геномов. Микрочипы отличаются по конструкции, особенностям работы, точности, эффективности и стоимости.

ДНК-микрочипы:

КДНК-микрочипы

    oлигонуклеотидные

(двукрасочные с флуоресц. детекцией)

    олигонуклеотидные

(Affymetrix, однокрас. с флуоресц. детекцией)

    мембранные к-ДНК-микрочипы

(с радиоакт. детекцией)

Гелевые к-ДНК-чипы

Белковые микрочипы

Немного истории

    1980-е: белковые чипы

    ~1991: химия синтеза ДНК на подложке (высокой плотности) – олигонуклеотидные чипы Affymetrix (Fodor, Stryer, Lockhart)

    ~1995: роботы для микрораскапывания – кДНК чипы Stanford University (Pat Brown and Dari Shalon)

    1990-е: гелевые чипы ИМБ

    Однако, еще в 1982 Augenlicht и Kobrin предложили DNA array (Cancer Research ), а в 1984 они сделали чип, включающий 4000 элементов для исследования раковых клеток.

    (Статья была отклонена Science и Nature )

Что можно изучать с использованием ДНК-микрочипов?

Экспрессию генов в различных тканях

Экспрессию генов в норме и при патологии (в нормальных и раковых клетках)

Изменение экспрессии генов с течением времени как результат внешнего воздействия (взаимодействие клетки с патогеном, лекарством)

Профили экспрессии (паттерны) различаются у нормальных и раковых клеток или при различных типах рака. Излечимые и неизлечимые виды лейкозов дают разные паттерны. По виду паттернов можно с большой вероятностью предсказать течение болезни на самой ранней стадии.

Экспрессионные микрочипы

Одно из активно разрабатываемых направлений с применением технологии микрочипов – это исследование транскрипционных профилей при сложных заболеваниях. Хотя все клетки нашего организма обладают одной и той же переданной по наследству геномной ДНК, каждая клетка экспрессирует различные гены в виде мРНК в соответствии с типом клетки, биологическими процессами, нормальным или патологическим состоянием и т.д. Это разнообразие в профилях генной экспрессии является предметом интенсивного изучения ввиду его биологического и клинического значения. Способность технологии микрочипов анализировать экспрессию сотен и тысяч генов оказалась наиболее востребована при расшифровке такого сложного заболевания, как рак. Технология микрочипов позволяет одновременно отслеживать экспрессию десятков тысяч генов, создавая молекулярный портрет клетки. К наиболее значительным последствиям изучения профилей генной экспрессии можно отнести диагноз, стратификацию и определение прогноза при многих видах рака. Хотя гистопатологическая оценка, дополненная цитогенетическим исследованием и анализом нескольких молекулярных маркеров, все еще является золотым стандартом в постановке диагноза и определении прогноза, работы последних лет показывают, что во многих случаях она может быть заменена определением профиля экспрессии генов. Диагноз и прогноз при раковых заболеваниях требуют совместной экспертизы нескольких специалистов-практиков, таких как онкологи, патологи и цитогенетики, кроме того, окончательные выводы могут варьировать в зависимости от методических подходов и квалификации экспертов. Микрочипы могли бы полностью заменить усилия многих специалистов, кроме того, повысить точность в постановке диагноза и определении прогноза, а также обеспечить единую стандартизированную платформу для анализа.

Для анализа экспрессии генов используют микрочипы двух типов: на основе комплементарной ДНК (кДНК) и на основе олигонуклеотидных зондов. Микрочипы на основе кДНК представляют собой фрагменты ДНК, закрепленные на поверхности стандартных микроскопических стекол или на другой твердой подложке. В олигонуклеотидных микрочипах на такой же подложке иммобилизованы олигонуклеотиды длиной 25–60 нуклеотидных оснований (н.о.). Процедура подготовки образца при проведении анализа на микрочипах представлена на рис. 2. Из клеток выделяют тотальную РНК (иногда выделяют также фракцию мРНК), далее проводят реакцию обратной транскрипции, используя комбинированный праймер, содержащий последовательность, комплементарную полиА-концевому фрагменту мРНК, и участок промотора Т7 РНК-полимеразы. Включение в состав синтезирующейся цепи кДНК последовательности промотора Т7 РНК-полимеразы позволяет в дальнейшем провести реакцию амплификации in vitro: фермент Т7 РНК-полимераза нарабатывает в пробирке множество копий РНК с каждой молекулы кДНК. Так происходит линейная амплификация исходной мРНК. Как правило, одновременно проводят мечение образующихся молекул РНК за счет использования в реакции нуклеотидов, содержащих флюоресцентную метку. В экспериментах с олигонуклеотидными микрочипами часто используют для мечения образца комплементарной РНК (кРНК) флюоресцентную метку одного типа, а уровни экспрессии генов определяют, сравнивая получаемые флюоресцентные сигналы с сигналами внутренних контрольных точек микрочипа. При работе с микрочипами на основе кДНК, как правило, в эксперименте используют 2 образца: контрольный образец метят одним флюоресцентным красителем, исследуемый образец – другим, далее их смешивают и гибридизуют с одним микрочипом. По соотношению двух разных флюоресцентных меток в каждой ячейке микрочипа судят о повышении или понижении уровня экспрессии данного гена. Независимо от технологической платформы в каждом эксперименте формируются данные, содержащие оценку уровня экспрессии десятков и сотен тысяч генов. Для обработки такого количества данных используется довольно сложный математический аппарат, в первую очередь, кластерный анализ. Анализ данных, полученных с помощью микрочипов, может производиться в сопоставлении с клиническими данными (анализ, ориентированный на проверку гипотезы, supervised analysis) или безотносительно к любой клинической характеристике пациента (независимый анализ, unsupervised analysis).

Классические методы позволяют проводить анализ экспрессии нескольких генов одновременно, либо требуют применения специализированных микрочиповых технологий, например, таких как Affymetrix . Affymetrix использует комбинацию фотолитографии и химического синтеза олигонуклеотидов для производства GeneChip® микрочипов.

YELLOW - если ген экспрессируется и в больной (Cy5) и в нормальной (Cy3) тканях, то в данном пятне будет гибридизоваться ДНК, меченная и красной и зеленой красками, и в результате получится желтый цвет

RED - если ген экспрессируется только в больной (Cy5) ткани, то в данном пятне будет гибридизоваться только ДНК, меченная красной краской

GREEN - если ген экспрессируется только в здоровой (Cy3) ткани, то в данном пятне будет гибридизоваться только ДНК, меченная зеленой краской

BLACK – если ген не экспрессируется ни в больной, ни в здоровой ткани

Таким образом,

    ДНК-микрочипы позволяют одновременно анализировать информацию об экспрессии многих тысяч генов.

    Основными типами использующихся в настоящее время ДНК-микрочипов являются кДНК-микрочипы и олигонуклеотидные чипы фирмы Affymetrix.

    кДНК-микрочипы основаны на гибридизации смешанных экспериментального и контрольного образцов, меченых различными флуоресцентными красками, к чипу, на поверхность которого нанесены двунитевые к-ДНК, соответствующие ~10000-20000 генам.

    Микрочипы Affimetrix основаны на гибридизации меченой биотином кРНК экспериментального образца с набором Perfect Match и Mismatch олигонуклеотидов, синтезированных на подложке чипа, с последующей прокраской стрептавидином-фикоэритрином. GeneChip Human Genome U133 Plus 2.0 позволяет одновременно анализировать 47000 транскриптов, среди которых 38500 охарактеризованных генов. Микрочип включает 1.300.000 олигонуклеотидов различных типов.

    Анализ полученных данных требует многоэтапной математической обработки с использованием специальных статистических методов.

В практическом отношении применение микрочипов уже сегодня позволяет решать следующие задачи:

    точная постановка диагноза, выявление новых подтипов заболевания, уточнение классификации;

    прогнозирование течения болезни и клинического исхода, выявление генов и сигнальных путей, вовлеченных в патогенез онкогематологических заболеваний, поиск новых мишеней для направленной дифференцированной терапии;

    разработка и создание более простых и дешевых диагностических тестов, в том числе и на основе технологии микрочипов (микрочипы, содержащие пробы на десятки или сотни генов вместо десятков и сотен тысяч);

включение микрочипов в проспективные клинические исследования, подтверждение результатов анализа на микрочипах для внесения в клинические протоколы лечения, дизайн клинических протоколов с учетом новых данных о природе заболеваний, полученных с помощью технологии микрочипов.

ДНК-микрочипы

ДНК-чипы представляют собой уникальный аналитический инструмент, позволяющий определять наличие в анализируемом образце (как правило, биологического происхождения) заданных последовательностей ДНК (т.н. гибридизационный анализ). Проведение анализа с помощью ДНК-чипов обходится в несколько раз дешевле, чем при использовании альтернативных технологий (электрофорез, ПЦР в реальном времени) и допускает, при наличии детектора несложной конструкции, работу вне лаборатории.

Впервые ДНК-чипы были использованы в исследованиях в конце 80-х годов прошлого века . В основе этого теперь уже широко распространенного метода, позволяющего одновременно анализировать экспрессию множества генов, лежит принцип узнавания мРНК-овых или кДНК-овых мишеней посредством их гибридизации с иммобилизованными на микрочипе одноцепочечными фрагментами ДНК.

ДНК-чип представляет собой твердую подложку, на которой иммобилизованы (как правило, ковалентно) однонитевые фрагменты ДНК разной длины: короткие - 15-25 нуклеотидов, длинные - 25-60 нуклеотидов и кДНК фрагменты - от 100 до 3000 нуклеотидов. В качестве материала подложки используют стекло, кремний, различные полимеры, гидрогели (например, на основе полиакриламида) и даже золото . Наиболее распространенные подложки - из стекла.

Белковые и пептидные чипы

Для анализа продуктов трансляции генов используют чипы, построенных на основе полипептидов. Большинство лекарственных мишеней являются белками, следовательно, белковые и пептидные чипы могут быть полезны для поиска новых лекарств. Белковые микрочипы могут оказаться чрезвычайно полезными в медицине в качестве миниатюрных аналитических систем для определения иммунного статуса организма, выявления аллергической сенсибилизации и идентификации специфических аллергенов. Микрочипы, представляющие собрание основных антигенов главных патогенных организмов (бактерии, грибы и вирусы), позволяют анализировать образцы крови на присутствие одновременно сотен, тысяч антител и быстро идентифицировать инфекции.Большое значение в развитии белковых микрочипов имеют способы регистрации сигналов. К ним относятся: самый первый из известных методов - РИА (радиоиммунологический анализ), применяющий радиоактивную метку, иммуноанализ с использованием флуоресцентных меток - ФИА и иммуноферментный анализ (ИФА), в котором меткой является молекула фермента, ковалентно связанная с молекулой антитела. В качестве меток в ИФА выбираются высокоактивные стабильные ферменты (щелочная фосфатаза, пероксидаза и др.). Преимуществом ИФА является возможность многократного усиления сигнала. В последние годы разработаны чувствительные системы субстратов, дающих нерастворимые флуоресцирующие продукты, например, ELF-97 . Очевидно, что процесс изготовления белкового микрочипа должен включать процедуру закрепления, иммобилизации на микрочипе. Выбор метода определяется многими параметрами - природой исходного субстрата, последующей областью применения микрочипа и т.д. Белковые микрочипы активно применяются, прежде всего, для анализа всех известных (и доступных) биологических жидкостей, включая сыворотку/плазму крови, мочу, цереброспинальную жидкость, слюну, слезную жидкость, амниотическую жидкость, и др.