Главная · Прочее · Экстремумы функции: признаки существования, примеры решений. Экстремумы, наибольшие и наименьшие значения функций

Экстремумы функции: признаки существования, примеры решений. Экстремумы, наибольшие и наименьшие значения функций

Говорят, что функция имеет вовнутреннейточке
областиD локальный максимум (минимум ), если существует такая окрестностьточки
, для каждой точки
которой выполняется неравенство

Если функция имеет в точке
локальный максимум или локальный минимум, то говорят, что она имеет в этой точкелокальный экстремум (или просто экстремум ).

Теорема (необходимое условие существования экстремума ). Если дифференцируемая функциядостигает экстремума в точке
, то каждая частная производная первого порядка от функциив этой точке обращается в нуль.

Точки, в которых все частные производные первого порядка обращаются в нуль, называются стационарными точками функции
. Координаты этих точек можно найти, решив систему изуравнений

.

Необходимое условие существования экстремума в случае дифференцируемой функции коротко можно сформулировать и так:

Встречаются случаи, когда в отдельных точках некоторые частные производные имеют бесконечные значения или не существуют (в то время как остальные равны нулю). Такие точки называются критическими точками функции. Эти точки тоже нужно рассматривать в качестве «подозрительных» на экстремум, как и стационарные.

В случае функции двух переменных необходимое условие экстремума, а именно равенство нулю частных производных (дифференциала) в точке экстремума, имеет геометрическую интерпретацию: касательная плоскость к поверхности
в точке экстремума должна быть параллельна плоскости
.

20. Достаточные условия существования экстремума

Выполнение в некоторой точке необходимого условия существования экстремума вовсе не гарантирует наличия там экстремума. В качестве примера можно взять дифференцируемую всюду функцию
. Обе ее частные производные и сама функция обращаются в нуль в точке
. Однако в любой окрестности этой точки есть как положительные (большие
), так и отрицательные (меньшие
) значения этой функции. Следовательно, в этой точке, по определению, экстремума не наблюдается. Поэтому необходимо знать достаточные условия, при которых точка, подозрительная на экстремум, является точкой экстремума исследуемой функции.

Рассмотрим случай функции двух переменных. Предположим, что функция
определена, непрерывна и имеет непрерывные частные производные до второго порядка включительно в окрестности некоторой точки
, которая является стационарной точкой функции
, то есть удовлетворяет условиям

,
.

Введем обозначения:

Теорема (достаточные условия существования экстремума ). Пусть функция
удовлетворяет вышеприведенным условиям, а именно: дифференцируема в некоторой окрестности стационарной точки
и дважды дифференцируема в самой точке
. Тогда, если


В случае если
то функция
в точке
достигает

локального максимума при
и

локального минимума при
.

В общем случае, для функции
достаточным условием существования в точке
локального минимума (максимума ) являетсяположительная (отрицательная ) определённость второго дифференциала.

Иными словами, справедливо следующее утверждение.

Теорема . Если в точке
для функции

для любых не равных одновременно нулю
, то в этой точке функция имеетминимум (аналогичномаксимум , если
).

Пример 18. Найти точки локального экстремума функции

Решение . Найдем частные производные функции и приравниваем их к нулю:

Решая эту систему, находим две точки возможного экстремума:

Найдем частные производные второго порядка для данной функции:

В первой стационарной точке , следовательно, и
Поэтому для этой точки требуется дополнительное исследование. Значение функции
в этой точке равно нулю:
Далее,

при

а

при

Следовательно, в любой окрестности точки
функция
принимает значения как большие
, так и меньшие
, и, значит, в точке
функция
, по определению, не имеет локального экстремума.

Во второй стационарной точке



следовательно,Поэтому, так как
то в точке
функция имеет локальный максимум.

>> Экстремумы

Экстремум функции

Определение экстремума

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о ) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Изменение функции в определенной точке и определяется как предел приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.

Приравняйте данную производную к нулю (в данном случае x2=0).

Найдите значение переменной данного . Это будут те значения, при данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2x2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1

Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных . На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет знак минус. Если x=0, то значение будет равно 2, а на данном промежутке ставится знак. Если x=1, то производная также будет равна -0,24 и ставится минус.

Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Видео по теме

Полезный совет

Для нахождения производной существуют онлайн-сервисы, которые подсчитывают нужные значения и выводят результат. На таких сайтах можно найти производную до 5 порядка.

Источники:

  • Один из сервисов вычисления производных
  • точку максимума функции

Точки максимума функции наряду с точками минимума называются точками экстремума. В этих точках функция меняет характер поведения. Экстремумы определяются на ограниченных числовых интервалах и всегда являются локальными.

Инструкция

Процесс нахождения локальных экстремумов называется функции и выполняется путем анализа первой и второй производной функции. Перед началом исследования убедитесь, что заданный интервал значений аргумента принадлежит к допустимым значениям. Например, для функции F=1/x значение аргумента х=0 недопустимо. Или для функции Y=tg(x) аргумент не может иметь значение х=90°.

Убедитесь, что функция Y дифференцируема на всем заданном отрезке. Найдите первую производную Y". Очевидно, что до достижения точки локального максимума функция возрастает, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость изменения функции. Пока функция возрастает, скорость этого процесса является величиной положительной. При переходе через локальный максимум функция начинает убывать, и скорость процесса изменения функции становится отрицательной. Переход скорости изменения функции через ноль происходит в точке локального максимума.

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции:

Найдём критические точки функции.

Определение: Точка х0 называется точкой локального максимума (или минимума) функции, если в некоторой окрестности точки х0 функция принимает наибольшее (или наименьшее) значение, т.е. для всех х из некоторой окрестности точки х0 выполняется условие f(x) f(x0) (или f(x) f(x0)).

Точки локального максимума или минимума объединены общим названием - точками локального экстремума функции.

Отметим, что в точках локального экстремума функция достигает своего наибольшего или наименьшего значения лишь в некоторой локальной области. Возможны случаи, когда по значению уmaxуmin .

Необходимый признак существования локального экстремума функции

Теорема . Если непрерывная функция у = f(x) имеет в точке х0 локальный экстремум, то в этой точке первая производная либо равна нулю, либо не существует, т.е. локальный экстремум имеет место в критических точках I рода.

В точках локального экстремума либо касательная параллельна оси 0х, либо имеются две касательные (см. рисунок). Отметим, что критические точки являются необходимым, но недостаточным условием локального экстремума. Локальный экстремум имеет место только в критических точках I рода, но не во всех критических точках имеет место локальный экстремум.

Например: кубическая парабола у = х3, имеет критическую точка х0=0, в которой производная у/(0)=0, но критическая точка х0=0 не является точкой экстремума, а в ней имеет место точка перегиба (см. ниже).

Достаточный признак существования локального экстремума функции

Теорема . Если при переходе аргумента через критическую точку I рода слева направо первая производная у / (x)

меняет знак с “+” на “-”, то непрерывная функция у(х) в этой критической точке имеет локальный максимум;

меняет знак с “-” на “+”, то непрерывная функция у(х) имеет в этой критической точке локальный минимум

не меняет знак, то в этой критической точке нет локального экстремума, здесь имеет место точка перегиба.

Для локального максимума область возрастания функции (у/0) сменяется на область убывания функции (у/0). Для локального минимума область убывания функции (у/0) сменяется на область возрастания функции (у /0).

Пример: Исследовать функцию у = х3 + 9х2 + 15х - 9 на монотонность, экстремум и построить график функции.

Найдем критические точки I рода, определив производную (у/) и приравняв ее нулю: у/ = 3х2 + 18х + 15 =3(х2 + 6х + 5) = 0

Решим квадратный трехчлен с помощью дискриминанта:

х2 + 6х + 5 = 0 (а=1, в=6, с=5) D= , х1к = -5, х2к = -1.

2) Разобьем числовую ось критическими точками на 3 области и определим в них знаки производной (у/). По этим знакам найдем участки монотонности (возрастания и убывания) функций, а по изменению знаков определим точки локального экстремума (максимума и минимума).

Результаты исследования представим в виде таблицы, из которой можно сделать следующие выводы:

  • 1. На интервале у /(-10) 0 функция монотонно возрастает (знак производной у оценивался по контрольной точке х = -10, взятой в данном интервале);
  • 2. На интервале (-5 ; -1) у /(-2) 0 функция монотонно убывает (знак производной у оценивался по контрольной точке х = -2, взятой в данном интервале);
  • 3. На интервале у /(0) 0 функция монотонно возрастает (знак производной у оценивался по контрольной точке х = 0, взятой в данном интервале);
  • 4. При переходе через критическую точку х1к= -5 производная меняет знак с "+" на "-" , следовательно эта точка является точкой локального максимума
  • (ymax(-5) = (-5)3+9(-5)2 +15(-5)-9=-125 + 225 - 75 - 9 =16);
  • 5. При переходе через критическую точку х2к= -1 производная меняет знак с "-" на "+" , следовательно эта точка является точкой локального минимума
  • (ymin(-1) = -1 + 9 - 15 - 9 = - 16).

х -5 (-5 ; -1) -1

3) Построение графика выполним по результатам исследования с привлечением дополнительных расчетов значений функции в контрольных точках:

строим прямоугольную систему координат Оху;

показываем по координатам точки максимума (-5; 16) и минимума (-1;-16);

для уточнения графика рассчитываем значение функции в контрольных точках, выбирая их слева и справа от точек максимума и минимума и внутри среднего интервала, например: у(-6)=(-6)3 +9(-6)2+15(-6)-9=9; у(-3)=(-3)3+9(-3)2+15(-3)-9=0;

у(0)= -9 (-6;9); (-3;0) и (0;-9) - расчетные контрольные точки, которые наносим для построения графика;

показываем график в виде кривой выпуклостью вверх в точке максимума и выпуклостью вниз в точке минимума и проходящей через расчетные контрольные точки.