Главная · Освещение · Гомеостатическая система организма. Каково значение гомеостаза и что это такое

Гомеостатическая система организма. Каково значение гомеостаза и что это такое

Допущено
Всероссийским учебно - методическим центром
по непрерывному медицинскому и фармацевтическому образованию
Министерства здравоохранения Российской Федерации
в качестве учебника для студентов медицинских институтов

Основная цель, проходящая через все главы читаемого тобой, коллега, учебника - формирование представления о болезни как о нарушении гомеостаза.

Способность организма, несмотря на довольно частые патогенные воздействия на организм неблагоприятных вредных факторов, поддерживать устойчивое состояние здоровья, известна с древних времен. Еще Гиппократ знал, что болезни могут излечиваться естественными силами природы "vis medicas nature". Теперь это явление природы живых организмов обозначают как Гомеостаз. Таким образом, термин гомеостаз в общей форме обозначает устойчивость организма к вредоносным влияниям среды.

Реакции, обеспечивающие гомеостаз, направлены на поддержание устойчивого (постоянного) неравновесного состояния внутренней среды, т.е. известных уровней состояния путем координации комплексных процессов для устранения или ограничения действия вредоносных факторов, на выработку или сохранение оптимальных форм взаимодействия организма и среды.

29.1. Реактивность

Изменения реактивности направлены на противодействие вредоносным влиянием среды и имеют, главным образом, защитный (приспособительный), т.е. адаптивный характер. Гомеостаз при этом сохраняется на новом уровне выраженности механизмов устойчивости.

Таким образом, термин реактивность в общей форме обозначает механизм устойчивости (резистентности) организма к вредным влияниям среды, т.е. механизм поддержания гомеостаза.

Общей формой реактивности является биологическая (видовая) реактивность. Она, в свою очередь, делится на групповую и индивидуальную реактивность.

Биологическая реактивность - изменения жизнедеятельности защитно-приспособительного характера, которые возникают под влиянием обычных (адекватных) для каждого вида животных раздражений окружающей среды. Она генетически закреплена и направлена на сохранение как вида (человек, птицы, рыбы) в целом, так и каждой особи в отдельности. Ч.Дарвин: "Эволюционный механизм изменчивости целенаправлен (телеологичен) на увеличение выживаемости".

Примеры: сложнорефлекторная деятельность пчел, сезонные миграции птиц, рыб, сезонные изменения жизнедеятельности животных (спячка сусликов, медведей и т.д.).

Давая характеристику основ учения о гомеостазе, крупный отечественный патофизиолог И.Д.Горизонтов писал: "Явление гомеостаза по существу представляет собой эволюционно выработанное, наследственно закрепленное адаптационное устройство организма к обычным условиям окружающей среды".

Измененная реактивность возникает при действии на организм болезнетворных факторов среды. Она, в общем, характеризуется:

  1. понижением приспособительных реакций;
  2. но в то же время при болезни имеет место и усиление ряда реакций для защиты организма от данного вредного фактора и от последствий вызванного им повреждения (лихорадка, потоотделение, повышение артериального давления, выработка антител, воспаление и др.).

Как же с точки зрения учения о гомеостазе должен вести себя организм в случаях воздействия факторов окружающей среды, выходящих за пределы "нормы", то есть вредоносных? Восстановление обычных свойств внутренней среды является результатом усиления функциональной активности либо кратковременной (тахикардия, тахипноэ, потоотделение), либо длительной, например, викарное усиление активности потовых желез при недостаточности почек; (лихорадка, выработка Т-лимфоцитов-киллеров); в тоже время болезнетворное начало может нарушить согласованность работы механизмов поддержания постоянства внутренней среды, что будет сопровождаться снижением приспособительных реакции организма.

Суммируем наши размышления: гомеостаз - более широкое понятие, чем реактивность. Различные виды реактивности - это механизм гомеостаза. Отсюда следует принципиальный вывод: гомеостаз означает не только сохранение постоянства или оптимальное восстановление и приспособление к условиям окружающей среды. Сама болезнь по своей биологической сущности также представляет собой проблему гомеостаза, нарушения его механизмов и путей восстановления. Болезнь - это нарушенный гомеостаз.

Итак, раздел "реактивность" целесообразно изучать и знать с позиции гомеостаза. О реактивности вы прочтете в учебнике А.Д.Адо и соавторов, а я расскажу вам далее о гомеостазе. Вместе с тем, вы должны четко представлять, что различные виды реактивности могут поддерживать гомеостаз до определенных пределов и составляют предмет изучаемой традиционной медицины. В измененных условиях среды физиологические механизмы гомеостаза не справляются, возникают экологические болезни (рак, аллергия, наследственные патологии), угроза может быть предупреждена только с позиций экологической медицины. Цель ее - идентификация вредного фактора окружающей среды, разработка мер профилактики и лечения его неблагоприятного воздействия на уровне популяции.

29.2. Гомеостаз, его механизм и значение. Исторические основы учения о гомеостазе

Почти 100 лет назад выдающийся французский ученый Клод Бернар впервые поставил вопрос о значении гомеостаза (хотя сам термин был введен позднее американским ученым У.Кенноном). Будучи непримиримым противником витализма (духовного первотолчка в происхождении жизни), К.Бернар придерживался материалистических взглядов. По его мнению, все проявления жизни обусловлены конфликтом между предшествующими силами организма (конституцией) и влиянием внешней среды.

Может быть, в этом же кроется и вечность проблемы "отцов и детей", конфликт между взглядами, традициями 25-35 летней давности (молодость отцов) и новыми взглядами, диктуемыми текущей жизнью, которые легко впитываются юношеством и критически воспринимаются отцами?

Возвращаясь к концепции К.Бернара. Сам конфликт между конституцией и средой выявляется в виде феноменов двух видов: синтеза и распада. На основе этих двух противоположных процессов и создается приспособление организмов к условиям среды или адаптация, которая представляет собой гармоничную связь между организмом и средой.

29.2.1. Формы жизни по К.Бернару

К.Бернар считал, что воздействие внешней среды привело к образованию 3-х форм жизни:

  1. Латентной - жизнь внешне не проявляется, полное подавление обмена веществ (цисты у глистов, споры у растений, сухие дрожжи);
  2. Осциллирующей - зависящей от окружающей среды. Это свойственно для беспозвоночных и холоднокровных позвоночных (лягушек, змей), некоторых видов теплокровных, впадающих в состояние гибернации (спячки). В это время они мало чувствительны к кислородному голоданию, травме, действию инфекции. В настоящее время искусственное охлаждение вызывают и у человека при производстве сложных операций на сердце. Обязательным условием благоприятного выхода из гибернации является предварительное накопление в организме питательных веществ;
  3. Постоянная или свободная жизнь - такая форма жизни характерна для животных с высокой организацией, жизнь которых не прекращается даже при резких изменениях условий окружающей среды. Поэтому эти формы жизни эволюционно более прогрессивны, и стали господствующими на Земле.

29.2.1.1. Две среды организма

Органы и ткани функционируют примерно одним и тем же образом, без значительного изменения уровня их активности. Происходит это благодаря тому, что внутренняя среда (кровь, лимфа, межклеточная жидкость), окружающая органы и ткани, не меняется.

К.Бернар писал, что в организме создается собственная неизменяемая среда, несмотря на меняющиеся условия внешней среды. В результате организм живет как бы в теплице, оставаясь свободным и независимым.

Таким образом, у каждого высокоорганизованного животного имеется две среды: внешняя (экологические взаимодействия), в которой находится организм, и внутренняя, в которой живут элементы тканей. Резюмируя, можно сказать, что гомеостаз, т.е. постоянство внутренней среды, является условием свободной и независимой жизни.

29.2.1.2. Значение резервов в организме для гомеостаза

Питание физиологических механизмов гомеостаза не является прямым, а осуществляется путем расходования резервов. Можно сказать, что мы едим не то, что приняли только что, а то, что съели перед этим (вчера). Следовательно, принимаемая пища должна ассимилироваться, а затем уже организм ее расходует. Значение резервов для гомеостаза позже было показано в трудах Кэннона. В организме существуют резервы углеводов (гликоген), жиров. Энергия запасается в виде АТФ, ГТФ. Значение этих резервов энергии чрезвычайно высоко, т.к. устойчивое неравновесие как уникальный признак биологической системы возможно только при условии постоянных энергетических затрат.

Подводя итоги работы, К.Бернар писал, что в латентной жизни существо целиком подчинено влиянию внешней среды. В осциллирующей - оно периодически зависит от окружающей среды. В постоянной жизни существо кажется свободным и его проявления образуются и направляются внутренними жизненными процессами. Однако, это понятие не адекватно независимому "жизненному началу", к которому прибегают виталисты для объяснения сущности жизни.

29.3. Дальнейшее развитие учении о гомеостазе

К.Бернар особо подчеркивал, что независимость проявлений внутренней жизни является иллюзорной. Наоборот, в механизмах постоянной или свободной жизни взаимоотношения внутренней и внешней среды являются наиболее тесными и наиболее очевидными.

В то же время К.Бернар, опираясь на свое учение о постоянстве реакций организма, считал, что он приобретает независимость от внешних превратностей и не признал учение Ч.Дарвина. Известно, что великий англичанин во главу своего учения ставил влияние внешней среды на организм. Изменившиеся организмы, приобретшие более совершенные механизмы приспособляемости, выживали, адаптировались. Другие - безжалостно уничтожались природой. Примирил эти два противоположных взгляда американский физиолог Кэннон.

Кэннон Вильямс (1871-1945) - выдающийся физиолог нашего столетия, основатель учения о гомеостазе как саморегуляции постоянства внутренней среды организма. Влияние этого учения не ограничилось физиологией и стало основополагающим для всей медицины. Значимость учения о гомеостазе для патофизиологии, изучающей теоретические основы болезни, делает необходимым подробнее остановиться на этой важной вехе развития медицинской науки. "Чудо биологии - удивительная способность живого организма сохранять постоянство своих реакций. И это вопреки непрочности компонентов, его составляющих".

Как же Кэннону удалось объединить экспериментальный и эволюционный способы мышления? Это удалось ему сделать, исходя из позиций телеологичности - целесообразности всего живого. Им была выдвинута идея о том, что сохранение постоянства внутренней среды делает организм более устойчивым к изменениям внешней среды, т.е. сохраняет выживаемость организма. Говоря проще, эволюционно приобретенное свойство гомеостаза высших организмов позволяет им быстрее приспосабливаться к изменениям внешней среды.

Организм в целом Кэннон рассматривает как активную саморегулирующуюся систему. Главным объектом саморегуляции является внутренняя среда - кровь, лимфа, межклеточная жидкость.

Основной механизм гомеостаза - реактивность. Главным мотором Кэннон считал симпато-адреналовую систему. В ходе исторического познания природы организма нервный и гуморальный факторы превратились в объекты специального анализа. Феномены, нераздельные в живом организме, оказались искусственно разграниченными.

29.4. Регулирующая роль нервной и эндокринной (САС, ОАС) систем в поддержании постоянства внутренней среды, т.е. гомеостаза

Кэннон в своей книге "Мудрость тела" разбирал роль симпатической нервной системы в гомеостазе. Он рассматривал симпатический отдел нервной системы в качестве главного фактора срочной мобилизации защитных сил организма для восстановления нарушенного равновесия. Можно вообще сказать, что быстрота реакции (сек) для экстренной перестройки обеспечивается именно нервной системой.

Л.А.Орбели, наш выдающийся физиолог, установил адаптационно-трофическую роль нервной системы, сущность которой заключается в том, что симпатическая нервная система меняет функциональную готовность органов в соответствии с условиями существования организма. Например, раздражение симпатической нервной системы восстанавливает работоспособность утомленной скелетной мускулатуры. Фактически им заложены основы учения о допинге. Большая роль при этом принадлежит ретикулярной формации (сетевидному образованию) ствола головного мозга - центральному отделу САС.

Гормональные влияния рассчитаны на более длительное время перестройки организма (минуты, часы). Кэннон соединил "симпатическое" и "адреналовое" дефисом, призванным отобразить понятие системного единого характера функционирования особого, целостного механизма - САС, предназначение которой - обеспечить гомеостаз.

Дальнейшее развитие представлений о возникновении болезни как патологии регуляторных систем организма, связано с именем канадского физиолога Ганса Селье, директора института экспериментальной хирургии и медицины в Монреале, автора одного из величайших открытий биологии XX века - явления стресса.

Развитие медицины XIX пека привело к представлению о том, что каждое заболевание должно иметь свою собственную причину.

Например, характерный синдром кори или дифтерии может быть обусловлен только специфическим организмом (микроорганизмом). Но специфических признаков, по которым ставят диагноз, так мало.

В отличие от этого, Г.Селье сформировал понятие о "синдроме заболевания вообще". К мысли об этом он пришел еще в студенческие годы. Много позже он вкладывал в это понятие неспецифичность однообразной реакции системы гипоталамус-гипофнз-кора надпочечников, отмечающейся при действии любого повреждающего агента.

Эта реакция была названа им "общим адаптационным синдромом" (ОАС), направленным на поддержание гомеостаза организма. Вот как описывает Г.Селье свои представления об ОАС: "Человек должен был уяснить, что во всех случаях, когда он сталкивался с длительной или непривычно тяжелой задачей - будь то плавание в холодной воде, поднимание тяжелых камней или голодание - он проходит через 3 стадии: вначале он ощущает трудность, затем привыкает к ней, и наконец, не может больше с ней справиться. Он не думает об этом, как об общем законе, регулирующем поведение животных существ в особо напряженных условиях. Настоятельная необходимость поиска пищи и жилья не позволяет ему думать о таких концепциях, как гомеостаз (поддержание постоянства внутренней среды) или биологический стресс".

Г.Селье было показано, что на различные агенты: хирургическая травма, ожог, боль, унижение, интоксикация, обстоятельства жизни делового человека, спортсмена и множество других, организм отвечает стереотипной формой биохимических, функциональных и структурных изменений. Для стрессорной реакции несущественно, вызвана она приятным или неприятным агентом. Основным здесь является интенсивность требования для организма, которое создаст стресс-агент.

Механизм этой неспецифической реакции основан на возбуждении системы гипоталамус-гииофиз-кора надпочечников и САС. Возникающие нейро-эндокринные импульсы способствуют запуску защитных сил организма. Это способствует резкому повышению гомеостатических возможностей организма. Многолетние исследования Г.Селье показали, что при любом заболевании специфические его проявления накладываются на неспецифические реакции, обусловленные системой гипоталамус-гипофиз-кора надпочечников. Этим вызвано широкое использование стероидов в медицинской практике.

29.5. Роль биомембран в механизмах поддержания гомеостаза

В.Кэннон и К.Бернар основой внутренней среды считали жидкую часть организма, в состав которой входит кровь, лимфа, межтканевая жидкость. Однако, кровь не приходит в непосредственное соприкосновение с клетками ткани. Как впервые показано отечественной исследовательницей Л.С.Штерн, между кровью и тканью находятся так называемые гисто-гематические барьеры, основу которых составляют биологические мембраны (ГЭБ, гемато-офтальмический, плацентарный и др. барьеры).

Кроме разделительной, есть еще одна важная функция мембран в гомеостазе - это р е ц е п т о р н а я функция клеточных мембран. Она играет решающую роль в осуществлении обратной связи. Обратная связь означает влияние выходного сигнала на вход - управляющую часть системы. Отрицательная обратная связь приводит к уменьшению влияния входного воздействия на величину выходного сигнала. Например, увеличение в крови концентрации гормонов щитовидной железы Т 3 , Т 4 приводит к снижению уровня в гипоталамусе соматостатина и угнетению выработки в гипофизе тиреотропного гормона.

Положительная обратная связь приводит к увеличению действия выходного сигнала. Например, переход острого воспаления в хроническое возникает при изменении конформации и антигенных свойств собственных белков - образования аутоантигенов. Последние вызывают усиление образования аутоантител, а иммунный конфликт поддерживает воспалительную реакцию. Если отрицательная обратная связь обычно способствует восстановлению исходного состояния, то положительная чаще уводит ее от этого состояния. Вследствие этого не происходит коррекции, что может послужить причиной возникновения "порочного круга", хорошо известного патофизиологам и клиницистам (пример патогенеза хронического воспаления, аутоаллергпи).

29.6. Гомеостаз и норма

В одной из своих первых работ по гомеостазу Кэннон напоминает, что животные существа представляют собой открытые системы, имеющие множество связей с окружающей средой. Эти связи осуществляются через посредство дыхательного и пищеварительного трактов, поверхность кожи, рецепторов, нервно-мышечных органов и костных рычагов. Изменения окружающей среды прямо или опосредованно воздействуют на указанные системы. Однако, эти воздействия обычно не сопровождаются большими отклонениями от нормы и не вызывают серьезных нарушений в физиологических процессах благодаря тому, что автоматическая регуляция ограничивает возникающие в организме колебания в указанных пределах "нормы".

С точки зрения гомеостаза дано наиболее емкое определение "нормы". Норма - это условное обозначение устойчивого неравновесия организма, отдельных его органов и тканей во внешней среде. Видно, что это определение учитывает индивидуальные особенности. Например, устойчивое состояние может быть при систолическом АД равном 120 мм рт.ст. (для одного индивидуума это норма) и при АД 140 (для другого - это тоже норма). Можно попользовать аналогию с парусом и рулем корабля. Есть ли для них нормальное положение? Нет, т.к. норма - это изменение, обеспечивающее движение данного корабля. Например, реакции иммунной системы под влиянием "ветра" антигенных воздействий (Р.В.Петрова).

Это относительное постоянство можно было бы обозначить термином уравновешивание, используемым в описании простых физико-химических процессов. Однако, в сложно устроенном живом организме кроме процессов уравновешивания обычно включается взаимодействие, интегративная кооперация целого ряда органов и систем. Так, например, когда создаются условия, меняющие состав крови или вызывающие нарушения дыхательных функций (геморрагия, пневмония), быстро реагируют мозг, нервы, сердце, почки, легкие, селезенка и т.к. Для обозначения таких явлений термин "уравновешивание" недостаточен, т.к. он не включает сложный и специфический процесс координации. Для его быстрейшего и устойчивого положения обязательно наличие контррегуляторных систем, цель которых - общая устойчивость внутренней среды.

Именно для этих состояний и процессов, обеспечивающих устойчивость организма, Кэннон и предложил термин гомеостаз. Слово "гомео" указывает не на фиксированную тождественность "тоже самое", а на сходство, подобие.

Таким образом, гомеостаз не обозначает простого постоянства физико-химических свойств внутренней среды. Этот термин включает в себя и физиологические механизмы, обеспечивающие устойчивость живых существ (т.е. процессы реактивности). Гомеостаз - это активная саморегуляция постоянства внутренней среды.

29.7. Гомеостаз и адаптация

По существу, на основе гомеостаза базируется явление адаптации. Т.е. организм приспосабливается (адаптируется) к изменяющимся условиям внешней среды, используя те или иные механизмы гомеостаза.

Компенсация - скрытая патология, выявляемая функциональной нагрузкой (порок аортального клапана компенсируется гипертрофией миокарда. Клинические его проявления выявляются повышенной физической нагрузкой).

29.7.1. Виды адаптации

Различают адаптацию кратковременную и длительную:

  1. При кратковременном выходе за пределы нормы при воздействии условий окружающей среды организм отвечает кратковременным изменением функциональной активности (бег вызывает тахикардию и тахипноэ);
  2. При длительном или повторном воздействии могут возникать более стойкие пли даже структурные изменения:
    1. повышенная физическая нагрузка и объем мускулатуры, гипертрофия беременной матки, структуры костной ткани при неправильном прикусе;
    2. при повреждении какого-либо органа происходит включение механизмов компенсации. Например, викарное (заместительное, компенсаторное) подключение других систем организма: кровопотеря вызывает тахикардию, тахипноэ, выход крови из депо, усиление кроветворения).

В медицинской практике под адаптацией подразумевают именно ту форму приспособления, которая создастся в необычных условиях существования организма. Следует еще раз подчеркнуть, что любой вид адаптации создастся на основе уже существующих механизмов гомеостаза.

29.8. Уровни регуляции гомеостаза

Организм с точки зрения гомеостаза представляет собой саморегулирующуюся систему. Различают 3 уровня регуляции:

  1. Низший, определяет постоянство физиологических констант и обладает автономностью (поддержание pH, Р осм).
  2. Средний, определяет приспособительные реакции при изменении внутренней среды организма. Регулируется нейро-эндокринной системой.
  3. Высший, определяет приспособительные реакции, сознательное поведение при изменениях внешней среды. По сигналам внешнего мира изменяются вегетативные функции и сознательное поведение организма. Регулируется ЦНС и ее внешним отделом - корой больших полушарий.

И.П.Павлов писал: "Большие полушария - орган живого организма, который специализирован на то, чтобы постоянно осуществлять все более и более совершенное уравновешивание организма с внешней средой".

Кора больших полушарий - эволюционно самый молодой, но в то же время и самый сложный орган регуляции. Это ни в коем случае не означает, что кора головного мозга постоянно вмешивается во все процессы организма. Ее цель, ее задача - поддержание связи организма с внешней средой, главным образом, социальных отношений. Это обеспечивает высшим животным лидирующее положение в животном мире.

Великой заслугой отечественного физиолога И.П.Павлова является разработка методов исследования свободного поведения, интеллектуальной сферы организма. Им было обосновано использование для этой цели метода условных рефлексов и показано, что сознательная деятельность коры больших полушарий во многом построена на принципе адаптивных условных рефлексов. И.П.Павловым было проведено преобразование понятия о рефлексе от истинного, автоматического, лежащего в основе гомеостаза, до рефлекса условного, определяющего механизмы "жизненных встреч организма со средой", основы социального гомеостаза.

Чрезвычайно важно понимать, что эволюция животных диктуется не только стремлением удержать устойчивость неравновесного состояния за счет гомеостаза с истинными, автоматическими рефлексами, она непрерывно связана с активностью свободного поведения (негомеостатическая высшая нервная деятельность с условными рефлексами), поддерживающей это неравновесие как отличительный признак живых систем.

Гомеостаз, поддерживаемый автоматически за счет деятельности САС, открывает простор для высших форм нервной деятельности, высвобождая для этого кору головного мозга. Т.е. Кэннон показал, что гомеостатические механизмы существуют автономно, независимо от контроля сознания, сохраняя его свободным для интеллектуальной деятельности. Таким образом, освобождая сознание от регуляции телесных процессов, мы, посредством коры головного мозга, устанавливаем интеллектуальное отношение с окружающим миром, анализируем опыт, занимаемся наукой, техникой и искусством, общаемся с друзьями, воспитываем детей, выражаем симпатии и т.д. - словом, ведем себя как человеческие существа - писал Кэннон.

Применительно к этому, тело, по мнению Кэннона, оказывается "мудрым" (название книги), поскольку оно ежесекундно сохраняет устойчивость крупного организма без вмешательства разума, открывая просторы для свободного поведения.

Заключая тему роли гомеостаза в изучении физиологии больного организма, хочу сказать, что основным направлением вашего обучения на клинических кафедрах старших курсов и будущей врачебной деятельности должно стать сознательное восстановление способности организма больного к самостоятельному поддержанию гомеостаза в условиях экологически безопасной среды.

Биологическая система любой сложности, от субклеточных структур функциональных систем и целого организма, характеризуется способностью к самоорганизации и саморегуляции. Способность к самоорганизации проявляется разнообразием клеток и органов при наличии общего принципа элементарной строения (мембран, органоидов и т. п). Саморегуляцию обеспечивают механизмы, заложенные в самой сущности живого.

Организм человека состоит из органов, которые для выполнения своих функций чаще всего сочетаются с другими, тем самым образуя функциональные системы. Для этого структуры любого уровня сложности, начиная от молекул и заканчивая целым организмом, нуждаются систем регуляции. Эти системы обеспечивают взаимодействие различных структур уже в состоянии физиологического покоя. Особенно они важны в активном состоянии при взаимодействии организма с изменчивой внешней средой, поскольку любые изменения требуют адекватного ответа организма. В таком случае одно из обязательных условий самоорганизации и саморегуляции - сохранение свойственных организму постоянных условий внутренней среды, что обозначают понятием гомеостаза.

Ритмичность физиологических функций. Физиологические процессы жизнедеятельности даже в условиях полного физиологического покоя протекают с различной активностью. Усиление или ослабление их происходит под влиянием сложного взаимодействия экзогенных и эндогенных факторов, что получило название "биологические ритмы". Причем периодичность колебания различных функций варьирует в чрезвычайно широких пределах, начиная от периода до 0,5 ч вплоть до многодневных и даже многолетних.

Понятие о гомеостаз

Эффективное функционирование биологических процессов требует определенных условий, большинство из которых должны быть постоянными. И что они стабильнее, тем надежнее функционирует биологическая система. К этим условиям прежде всего необходимо отнести те, которые способствуют сохранению нормального уровня обмена веществ. Для этого необходимо поступление исходных ингредиентов обмена и кислорода, а также удаление конечных метаболитов. Эффективность протекания обменных процессов обеспечивается определенной интенсивности внутриклеточных процессов, обусловленной прежде всего активностью ферментов. В то же время ферментативная активность зависит и от таких, казалось бы, внешних факторов, как, например, температура.

Стабильность большинстве условий необходима на любом структурно-функциональном уровне, начиная от отдельной биохимической реакции, клетки и кончая сложными функциональными системами организма. В реальной жизни эти условия часто могут нарушаться. Появление изменений отражается на состоянии биологических объектов, протекания в них процессов обмена. К тому же чем сложнее устроено биологическую систему, то большие отклонения от стандартных условий она выдерживает без существенных нарушений жизнедеятельности. Это связано с наличием в организме соответствующих механизмов, направленных на ликвидацию изменений, которые возникли. Так, например, активность ферментативных процессов в клетке при снижении температуры на каждые 10 °С снижается в 2-3 раза. Вместе с тем теплокровные животные благодаря наличию механизмов терморегуляции сохраняют внутреннюю температуру постоянной за достаточно широкого диапазона изменения внешней. Вследствие этого поддерживается стабильность этого условия для протекания ферментативных реакций на неизменном уровне. И например, человек, обладающий еще и разумом, имея одежду и жилье, может длительное время существовать при внешней температуре, значительно ниже 0 °С.

В процессе эволюции происходило формирование приспособительных реакций, направленных на поддержание постоянных условий внешней среды организма. Они существуют как на уровне отдельных биологических процессов, так и всего организма. Каждое из этих условий характеризуют соответствующие параметры. Поэтому системы регуляции постоянства условий контролируют постоянство этих параметров. А если указанные параметры по какой-то причине отклоняются от нормы, механизмы регуляции обеспечивают возвращение их к исходному уровню.

Универсальное свойство живого активно сохранять стабильность функций организма, несмотря на внешние воздействия, которые могут ЕЕ нарушить, называют гомеостазом.

Состояние биологической системы любого структурно-функционального уровня зависит от комплекса воздействий. Этот комплекс состоит из взаимодействия многих факторов, как внешних по отношению к ней, так и тех, что находятся внутри или образуются в результате процессов, происходящих в ней. Уровень воздействия внешних факторов определяют соответствующим состоянием среды: температурой, влажностью, освещенностью, давлением, газовым составом, магнитными полями и тому подобное. Однако степень воздействия далеко не всех внешних и внутренних факторов организм может и должен поддерживать на постоянном уровне. Эволюция отобрала те из них, которые более необходимы для сохранения жизнедеятельности, или те, для поддержания которых были найдены соответствующие механизмы.

Константы параметров гомеостаза Не имеют четкого постоянства. Возможны и отклонения их от среднего уровня в ту или другую сторону в своеобразном "коридоре". Для каждого параметра существуют свои пределы максимально возможных отклонений. Отличаются они и по времени, в течение которого организм может выдерживать нарушение конкретного параметра гомеостаза без каких-либо серьезных последствий. Вместе с тем само по себе отклонение параметра за пределы "коридора" может обусловить гибель соответствующей структуры - будь то клетка или даже организм в целом. Так, в норме рН крови составляет около 7,4. Но он может колебаться в пределах 6,8-7,8. Крайняя степень отклонений этого параметра организм человека может выдержать без пагубных последствий лишь в течение нескольких минут. Другой гомеостатический параметр - температура тела - при некоторых инфекционных заболеваниях может возрастать до 40 °С и выше и держаться на таком уровне в течение многих часов и даже дней. Таким образом, одни константы организма достаточно стабильны - - жесткие константы, другие отличаются более широким диапазоном колебаний - пластические константы.

Изменение гомеостаза может происходить под воздействием любых внешних факторов, а также иметь эндогенное происхождение: интенсификация процессов метаболизма стремится изменить параметры гомеостаза. При этом активизация систем регуляции легко обеспечивает возвращение их на стабильный уровень. Но, если в состоянии покоя у здорового человека эти процессы сбалансированы и механизмы восстановления функционируют с запасом мощности, то в случае резкого изменения условий существования, при заболеваниях они включаются с максимальной активностью. Совершенствование систем регуляции гомеостаза нашло отражение и в эволюционном развитии. Так, отсутствие системы поддержания постоянной температуры тела у холоднокровных, обусловив зависимость жизненных процессов от изменчивой внешней температуры, резко ограничила их эволюционное развитие. Однако наличие такой системы в теплокровных обеспечила расселение их по всей планете и сделала такие организмы действительно свободными существами с высокой эволюционной потенцией.

В свою очередь, каждому человеку присущи индивидуальные функциональные возможности самих систем регуляции гомеостаза. Это в большой степени определяет выраженность реакции организма на любые воздействия, а в конечном итоге сказывается и на продолжительности жизни.

Клеточный гомеостаз . Один из своеобразных параметров гомеостаза - "генетическая чистота" клеточных популяций организма. За нормальной пролиферацией клеток "следит" иммунная система организма. В случае ее нарушения или нарушения считывания генетической информации появляются клетки, чужеродные для данного организма. Уничтожает их упомянутая система. Можно сказать, что подобный механизм осуществляет и борьбу с поступлением в организм инородных клеток (бактерий, глистов) или их продуктов. И это также обеспечивает система иммунитета (см. разд. С - "Физиологическая характеристика лейкоцитов").

Механизмы гомеостаза и их регуляция

Системы, контролирующие параметры гомеостаза, состоят из механизмов различной структурной сложности: как с сравнительно просто устроенных элементов, так и достаточно сложных нейрогормональних комплексов. Одними из простейших механизмов считают метаболиты, часть которых может местно влиять на активность ферментативных процессов, на различные структурные компоненты клеток и тканей. Более сложные механизмы (нейроэндокринные), осуществляющих міжорганну взаимодействие, подключаются тогда, когда простых уже недостаточно для того, чтобы вернуть параметр до необходимого уровня.

В клетке происходят местные процессы авторегуляция с отрицательной обратной связью. Так, например, при интенсивной мышечной работе в скелетной мускулатуре через относительный дефицит 02 накапливаются недоокис нэп и продукты обмена. Они сдвигают рН саркоплазми в кислую сторону, что может обусловить гибель отдельных структур, всей клетки или даже организма. При снижении рН изменяются конформационные свойства цитоплазматических белков, мембранных комплексов. Последнее обусловливают изменение радиуса пор, повышение проницаемости мембран (перегородок) всех субклеточных структур, нарушение ионных градиентов.

Роль жидких сред организма в гомеостазе. Центральным звеном сохранения гомеостаза считают жидкие среды организма. Для большинства органов это кровь и лимфа, а для мозга - кровь и спинномозговая жидкость (СМЖ). Особенно большую роль играет кровь. Кроме того, для клетки жидкими средами является ее цитоплазма и міжклітинна жидкость.

Функции жидких сред В поддержание гомеостаза достаточно разнообразны. Во-первых, жидкие среды обеспечивают обменные процессы с тканями. Они не только приносят к клеткам необходимые для жизнедеятельности вещества, но и транспортируют от них метаболиты, которые иначе могут накапливаться в клетках в высокой концентрации.

Во-вторых, жидкие среды имеют собственные механизмы, необходимые для поддержания некоторых параметров гомеостаза. Например, буферные системы смягчают сдвиг кислотно-основного состояния при поступлении в кровь кислот или оснований.

в-третьих, жидкие среды принимают участие в организации системы контроля гомеостаза. Здесь также существует несколько механизмов. Так, за счет транспортировки метаболитов в процесс поддержания гомеостаза подключаются отдаленные органы и системы (почки, легкие и др). Кроме того, метаболиты, содержащиеся в крови, воздействуя на структуры и рецепторы других органов и систем, могут запускать сложные рефлекторные ответы, гормональные механизмы. Например, терморецепторы реагируют на "горячую" или "холодную" кровь и соответствующим образом изменяют активность органов, участвующих в образовании и сдаче тепла.

Рецепторы располагаются также и в самих стенках кровеносных сосудов. Они участвуют в регуляции химического состава крови, ее объема, давления. С раздражение сосудистых рецепторов начинаются рефлексы, ефекторною звеном которых являются органы и системы организма. Большое значение крови в поддержании гомеостаза стало основой для формирования специальной системы гомеостаза многих параметров самой крови, ее объема. Для их сохранения существуют сложные механизмы, включены в единую систему регуляции гомеостаза организма.

Приведенное выше можно наглядно проиллюстрировать на примере интенсивной мышечной деятельности. Во время ее выполнения из мышц в русло крови выходят продукты обмена в виде молочной, пировиноградной, ацетоуксусной и других кислот. Кислые метаболиты сначала нейтрализуются щелочными резервами крови. Кроме того, они через рефлекторные механизмы активируют кровообращение и дыхание. Подключение указанных систем организма, с одной стороны, улучшает поступление 02 к мышцам, а следовательно, уменьшает образование недоокисленных продуктов; с другой - способствует увеличению выделения СО2 через легкие, многих метаболитов через почки, потовые железы.

Гомеостаз

Гомеостаз, гомеорез, гомеоморфоз - характеристики состояния организма. Системная сущность организма проявляется в первую очередь в его способности к саморегуляции в непрерывно меняющихся условиях окружающей среды. Поскольку все органы и ткани организма состоят из клеток, каждая из которых является относительно самостоятельным организмом, состояние внутренней среды человеческого организма имеет огромное значение для его нормального функционирования. Для организма человека - сухопутного существа - окружающую среду составляют атмосфера и биосфера, при этом он в определенной мере взаимодействует с литосферой, гидросферой и ноосферой. В то же время большинство клеток человеческого тела погружено в жидкую среду, которая представлена кровью, лимфой и межклеточной жидкостью. Лишь покровные ткани непосредственно взаимодействуют с окружающей человека средой, все остальные клетки изолированы от внешнего мира, что позволяет организму в значительной мере стандартизировать условия их существования. В частности, способность поддерживать постоянную температуру тела около 37 °С обеспечивает стабильность метаболических процессов, поскольку все биохимические реакции, которые составляют сущность метаболизма, очень сильно зависят от температуры. Не менее важно поддерживать в жидких средах организма неизменное напряжение кислорода, углекислого газа, концентрацию разнообразных ионов и т.п. В обычных условиях существования, в том числе при адаптации и деятельности, возникают небольшие отклонения такого рода параметров, но они быстро устраняются, внутренняя среда организма возвращается к стабильной норме. Великий французский физиолог XIX в. Клод Бернар утверждал: «Постоянство внутренней среды является обязательным условием свободной жизни». Физиологические механизмы, обеспечивающие поддержание постоянства внутренней среды, называются гомеостатическими, а само явление, отражающее способность организма к саморегуляции внутренней среды, называется гомеостазом. Этот термин был введен в 1932 г. У. Кэнноном - одним из тех физиологов XX в., который наряду с Н.А.Бернштейном, П.К.Анохиным и Н.Винером стоял у истоков науки об управлении - кибернетики. Термин «гомеостаз» используется не только в физиологических, но и в кибернетических исследованиях, поскольку именно поддержание постоянства каких-либо характеристик сложноорганизованной системы и является главной целью любого управления.

Другой замечательный исследователь, К.Уоддингтон, обратил внимание на то, что организм способен сохранять не только стабильность своего внутреннего состояния, но и относительное постоянство динамических характеристик, т. е. протекания процессов во времени. Это явление по аналогии с гомеостазом было названо гомеорезом. Оно имеет особое значение для растущего и развивающегося организма и состоит в том, что организм способен сохранять (в определенных пределах, разумеется) «канал развития» в ходе своих динамических преобразований. В частности, если ребенок из-за болезни или резкого ухудшения условий жизни, вызванных социальными причинами (война, землетрясение и т.п.), существенно отстает от своих нормально развивающихся сверстников, то это еще не означает, что такое отставание фатально и необратимо. Если период неблагоприятных событий заканчивается и ребенок получает адекватные для развития условия, то как по росту, так и по уровню функционального развития он вскоре догоняет сверстников и в дальнейшем ничем существенно от них не отличается. Этим объясняется то обстоятельство, что перенесшие в раннем возрасте тяжелую болезнь дети нередко вырастают в здоровых и пропорционально сложенных взрослых. Гомеорез играет важнейшую роль как в управлении онтогенетическим развитием, так и в процессах адаптации. Между тем физиологические механизмы гомеореза пока недостаточно изучены.

Третьей формой саморегуляции постоянства организма является гомеоморфоз - способность поддерживать неизменность формы. Эта характеристика в большей мере присуща взрослому организму, поскольку рост и развитие несовместимы с неизменностью формы. Тем не менее если рассматривать короткие отрезки времени, особенно в периоды торможения роста, то и у детей можно обнаружить способность к гомеоморфозу. Речь идет о том, что в организме непрерывно происходит смена поколений составляющих его клеток. Клетки долго не живут (исключение составляют только нервные клетки): обычный срок жизни клеток тела составляет недели или месяцы. Тем не менее каждое новое поколение клеток почти в точности повторяет форму, размеры, расположение и соответственно функциональные свойства предыдущего поколения. Специальные физиологические механизмы препятствуют значительным изменениям массы тела в условиях голодания или переедания. В частности, при голодании резко повышается усвояемость пищевых веществ, а при переедании, напротив, большая часть поступающих с пищей белков, жиров и углеводов «сжигается» без всякой пользы для организма. Доказано (Н. А. Смирнова), что у взрослого человека резкие и значительные изменения массы тела (главным образом за счет количества жира) в любую сторону являются верными признаками срыва адаптации, перенапряжения и свидетельствуют о функциональном неблагополучии организма. Детский организм становится особенно чувствителен к внешним воздействиям в периоды наиболее бурного роста. Нарушение гомеоморфоза - такой же неблагоприятный признак, как нарушения гомеостаза и гомеореза.

Понятие о биологических константах. Организм представляет собой комплекс огромного количества самых разнообразных веществ. В процессе жизнедеятельности клеток организма концентрация этих веществ может существенно меняться, что означает изменение внутренней среды. Было бы немыслимо, если бы управляющие системы организма вынуждены были следить за концентрацией всех этих веществ, т.е. иметь множество датчиков (рецепторов), непрерывно анализировать текущее состояние, принимать управляющие решения и контролировать их эффективность. Ни информационных, ни энергетических ресурсов организма не хватило бы на такой режим управления всеми параметрами. Поэтому организм ограничивается слежением за сравнительно небольшим числом наиболее значимых показателей, которые необходимо поддерживать на относительно постоянном уровне ради благополучия абсолютного большинства клеток тела. Эти наиболее жестко гомеостазируемые параметры тем самым превращаются в «биологические константы», а их неизменность обеспечивается за счет иногда достаточно значительных колебаний других параметров, не относящихся к разряду гомеостазируемых. Так, уровни гормонов, участвующих в регуляции гомеостаза, могут меняться в крови в десятки раз в зависимости от состояния внутренней среды и воздействия внешних факторов. В это же время гомеостазируемые параметры изменяются лишь на 10-20 %.



Важнейшие биологические константы. Среди наиболее важных биологических констант, за поддержание которых на сравнительно неизменном уровне ответственны различные физиологические системы организма, следует назвать температуру тела, уровень глюкозы в крови, содержание ионов Н + в жидких средах организма, парциальное напряжение кислорода и углекислоты в тканях.

Болезнь как признак или следствие нарушений гомеостаза. Практически все болезни человека связаны с нарушением гомеостаза. Так, например, при многих инфекционных заболеваниях, а также в случае воспалительных процессов, в организме резко нарушается температурный гомеостаз: возникает лихорадка (повышение температуры), иногда опасная для жизни. Причина такого нарушения гомеостаза может заключаться как в особенностях нейроэндокринной реакции, так и в нарушениях деятельности периферических тканей. В этом случае проявление болезни - повышенная температура - представляет собой следствие нарушения гомеостаза.

Обычно лихорадочные состояния сопровождаются ацидозом - нарушением кислотно-щелочного равновесия и сдвигом реакции жидких сред организма в кислую сторону. Ацидоз характерен также для всех заболеваний, связанных с ухудшением работы сердечно-сосудистой и дыхательной систем (заболевания сердца и сосудов, воспалительные и аллергические поражения бронхолегочной системы и т.п.). Нередко ацидоз сопровождает первые часы жизни новорожденного, особенно если у него не сразу после появления на свет началось нормальное дыхание. Для устранения этого состояния новорожденного помещают в специальную камеру с повышенным содержанием кислорода. Метаболический ацидоз при тяжелой мышечной нагрузке может наблюдаться у людей любого возраста и проявляется в одышке и повышенном потоотделении, а также болезненных ощущениях в мышцах. После завершения работы состояние ацидоза может сохраняться от нескольких минут до 2-3 сут, в зависимости от степени утомления, тренированности и эффективности работы гомеостатических механизмов.

Весьма опасны болезни, приводящие к нарушению водно-солевого гомеостаза, например холера, при которой из организма Удаляется огромное количество воды и ткани утрачивают свои функциональные свойства. К нарушению водно-солевого гомеостаза ведут также многие заболевания почек. В результате некоторых из этих заболеваний может развиваться алкалоз - чрезмерное повышение концентрации щелочных веществ в крови и увеличение рН (сдвиг в щелочную сторону).

В некоторых случаях незначительные, но длительные нарушения гомеостаза могут стать причиной развития тех или иных заболеваний. Так, есть данные, что неумеренное употребление в пищу сахара и других источников углеводов, нарушающих гомеостаз глюкозы, ведет к поражению поджелудочной железы, в результате человек заболевает диабетом. Также опасно чрезмерное употребление поваренной и других минеральных солей, острых приправ и т.п., увеличивающих нагрузку на выделительную систему. Почки Могут не справиться с обилием веществ, которые необходимо удалить из организма, в результате чего наступит нарушение водно-солевого гомеостаза. Одним из его проявлений являются отеки - скопление жидкости в мягких тканях организма. Причина отеков обычно лежит либо в недостаточности сердечно-сосудистой системы, либо в нарушениях работы почек и, как следствие, минерального обмена.

Гомеостаз - любой саморегулирующийся процесс, с помощью которого биологические системы устремляются к поддержанию внутренней стабильности, приспосабливаясь к оптимальным для выживания условиям. Если гомеостаз успешен, то жизнь продолжается; в противном случае, произойдет бедствие или смерть. Достигнутая стабильность фактически является динамическим равновесием, в котором происходят непрерывные изменения, но преобладают относительно однородные условия.

Особенности и роль гомеостаза

Любая система в динамическом равновесии желает достичь устойчивого состояния, баланса, который противостоит внешним изменениям. Когда такая система нарушена, встроенные регулирующие устройства реагируют на отклонения, чтобы установить новый баланс. Такой процесс является одним из элементов управления с обратной связью. Примерами гомеостатической регуляции являются все процессы интеграции и координации функций, опосредованные электрическими цепями и нервными или гормональными системами.

Другим примером гомеостатической регуляции в механической системе является действие регулятора комнатной температуры или термостата. Сердцем термостата является биметаллическая полоса, которая реагирует на изменения температуры, завершая или нарушая электрическую цепь. Когда помещение охлаждается, то контур завершается и включается обогрев, а температура поднимается. На заданном уровне цепь прерывается, печь останавливается, и температура падает.

Однако биологические системы, имеющие большую сложность, обладают регуляторами, которые сложно сравнивать с механическими устройствами.

Как отмечалось ранее, термин гомеостаз относится к поддержанию внутренней среды тела в узких и жестко контролируемых пределах. Основными функциями, важными для поддержания гомеостаза, являются баланс жидкости и электролита, регулирование кислотной среды, терморегуляция и метаболический контроль.

Контроль температура тела у людей считается отличным примером гомеостаза в биологической системе. Нормальная температура тела человека составляет около 37° C, но различные факторы могут влиять на этот показатель, включая гормоны, скорость метаболизма и болезни, приводящие к чрезмерно высоким или низким температурам. Регулирование температуры тела контролируется областью мозга, называемой Гипоталамус.

Обратная связь о температуре тела переносится через кровоток в мозг и приводит к компенсационным корректировкам в скорости дыхания, уровне сахара в и скорости метаболизма. Потеря тепла у людей обеспечивается уменьшением активности, потоотделением и механизмами теплообмена, которые позволяют большему количеству крови циркулировать вблизи поверхности кожи.

Снижение потерь тепла осуществляется за счет изоляции, уменьшения циркуляции на коже и культурных изменений, таких как использование одежды, жилья и сторонних источников тепла. Диапазон между высокими и низкими уровнями температуры тела составляет гомеостатическое плато - «нормальный» диапазон, который поддерживает жизнь. По мере приближения к любой из двух крайностей, корректирующее действие (через отрицательную обратную связь) возвращает систему в нормальный диапазон.

Концепция гомеостаза также применяется к экологическим условиям. Впервые предложенная американским экологом Робертом Макартуром в 1955 году идея, что гомеостаз в является продуктом сочетания биоразнообразия и большого количества экологических взаимодействий, происходящих между видами.

Такое предположение считалось концепцией, которая могла бы помочь объяснить устойчивость экологической системы, то есть ее сохранение как определенного типа экосистемы с течением времени. С тех пор концепция несколько изменилась, и включила неживую составляющую экосистемы. Этот термин использовался многими экологами для описания взаимности, которая происходит между живыми и неживыми составляющими экосистемы для поддержания статус-кво.

Гипотеза Геи - модель Земли, предложенная английским ученым Джеймсом Лавлоком, которая рассматривает различные живые и неживые составляющие, как компоненты более крупной системы или единого организма, делая предположение, что коллективные усилия отдельных организмов вносят вклад в гомеостаз на планетарном уровне.

Клеточный гомеостаз

Зависят от среды тела, чтобы сохранять жизнеспособность и правильно функционировать. Гомеостаз поддерживает среду тела под контролем и сохраняет благоприятные условия для клеточных процессов. Без правильных условий тела определенные процессы (к примеру, осмос) и белки (к примеру, ферменты) не будут функционировать должным образом.

Почему гомеостаз важен для клеток? Живые клетки зависят от движения химических веществ вокруг них. Химические вещества, такие как кислород, углекислый газ и растворенная пища, необходимо транспортировать в клетки и из них. Это осуществляется процессами диффузии и осмоса, зависящих от баланса воды и соли в теле, которые поддерживаются гомеостазом.

Клетки зависят от ферментов, чтобы ускорить многие химические реакции, поддерживающие жизнедеятельность и функциональность клеток. Эти ферменты работают лучше всего при определенных температурах, и поэтому снова гомеостаз жизненно важен для клеток, поскольку он поддерживает постоянную температуру тела.

Примеры и механизмы гомеостаза

Вот несколько основных примеров гомеостаза в теле человека, а также поддерживающие их механизмы:

Температура тела

Наиболее распространенным примером гомеостаза у людей является регулирование температуры тела. Нормальная температура тела, как мы писали выше составляет 37° C. Температура выше или ниже нормальных показателей может вызывать серьезные осложнения.

Мышечная недостаточность возникает при температуре 28° C. При 33° C происходит потеря сознания. При температуре 42° C центральная нервная система начинает разрушаться. Смерть наступает при температуре 44° C. Тело контролирует температуру путем выработки или высвобождения избыточного тепла.

Концентрация глюкозы

Концентрация глюкозы относится к количеству глюкозы (сахара в крови), присутствующего в кровотоке. Организм использует глюкозу в качестве источника энергии, но ее избыток или недостаток может вызвать серьезные осложнения. Некоторые гормоны осуществляют регулирования концентрации глюкозы в крови. Инсулин снижает концентрацию глюкозы, в то время как кортизол, глюкагон и катехоламины увеличивают.

Уровни кальция

Кости и зубы содержат приблизительно 99% кальция в организме, в то время как оставшийся 1% циркулируют в крови. Слишком большое или недостаточное содержание кальция в крови имеют негативные последствия. Если уровень кальция в крови слишком сильно снижается, паращитовидные железы активируют свои рецепторы, чувствительные к кальцию, и высвобождают паратиреоидный гормон.

ПТГ сигнализирует костям он необходимости высвобождения кальция, чтобы увеличить его концентрацию в кровотоке. Если уровень кальция увеличивается слишком сильно, щитовидная железа высвобождает кальцитонин и фиксирует избыток кальция в костях, тем самым уменьшая количество кальция в крови.

Объем жидкости

Тело должно поддерживать постоянную внутреннюю среду, а это означает, что ему необходимо регулировать потерю или восполнение жидкости. Гормоны помогают регулировать этот баланс, вызывая экскрецию или удерживание жидкости. Если организму не хватает жидкости, антидиуретический гормон сигнализирует почкам о сохранении жидкости и уменьшает выход мочи. Если организм содержит слишком много жидкости, он подавляет альдостерон и сигнализирует о выделении большего количества мочи.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Организм как открытая саморегулирующаяся система.

Живой организм – открытая система, имеющая связь с окружающей средой посредством нервной, пищеварительной, дыхательной, выделительной систем и др.

В процессе обмена веществ с пищей, водой, при газообмене в организм поступают разнообразные химические соединения, которые в организме подвергаются изменениям, входят в структуру организма, но не остаются постоянно. Усвоенные вещества распадаются, выделяют энергию, продукты распада удаляются во внешнюю среду. Разрушенная молекула заменяется новой и т.д.

Организм – открытая, динамичная система. В условиях непрерывно меняющейся среды организм поддерживает устойчивое состояние в течение определенного времени.

Понятие о гомеостазе. Общие закономерности гомеостаза живых систем.

Гомеостаз – свойство живого организма сохранять относительное динамическое постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.

Сохранение целостности индивидуальных свойств организма один из наиболее общих биологических законов. Этот закон обеспечивается в вертикальном ряду поколений механизмами воспроизведения, а на протяжении жизни индивидуума – механизмами гомеостаза.

Явление гомеостаза представляет собой эволюционно выработанное, наследственно-закрепленное адаптационное свойство организма к обычным условиям окружающей среды. Однако эти условия могут кратковременно или длительно выходить за пределы нормы. В таких случаях явления адаптации характеризуются не только восстановлением обычных свойств внутренней среды, но и кратковременными изменениями функции (например, учащение ритма сердечной деятельности и увеличение частоты дыхательных движений при усиленной мышечной работе). Реакции гомеостаза могут быть направлены на:

    поддержание известных уровней стационарного состояния;

    устранение или ограничение действия вредностных факторов;

    выработку или сохранение оптимальных форм взаимодействия организма и среды в изменившихся условиях его существования. Все эти процессы и определяют адаптацию.

Поэтому понятие гомеостаза означает не только известное постоянство различных физиологических констант организма, но и включает процессы адаптации и координации физиологических процессов, обеспечивающих единство организма не только в норме, но и при изменяющихся условиях его существования.

Основные компоненты гомеостаза были определены К. Бернаром, и их можно разделить на три группы:

А. Вещества, обеспечивающие клеточные потребности:

    Вещества, необходимые для образования энергии, для роста и восстановления – глюкоза, белки, жиры.

    NaCl, Ca и другие неорганические вещества.

    Кислород.

    Внутренняя секреция.

Б. Окружающие факторы, влияющие на клеточную активность:

    Осмотическое давление.

    Температура.

    Концентрация водородных ионов (рН).

В. Механизмы, обеспечивающие структурное и функциональное единство:

    Наследственность.

    Регенерация.

    Иммунобиологическая реактивность.

Принцип биологического регулирования обеспечивает внутреннее состояние организма (его содержание), а также взаимосвязь этапов онтогенеза и филогенеза. Этот принцип оказался широко распространненым. При его изучении возникла кибернетика – наука о целенаправленном и оптимальном управлении сложными процессами в живой природе, в человеческом обществе, промышленности (Берг И.А., 1962).

Живой организм представляет сложную управляемую систему, где происходит взаимодействие многих переменных внешней и внутренней среды. Общим для всех систем является наличие входных переменных, которые в зависимости от свойств и законов поведения системы преобразуются в выходные переменные (Рис. 10).

Рис. 10 - Общая схема гомеостаза живых систем

Выходные переменные зависят от входных и законов поведения системы.

Влияние выходного сигнала на управляющую часть системы называется обратной связью , которая имеет большое значение в саморегуляции (гомеостатической реакции). Различают отрицательную и положительную обратную связь.

Отрицательная обратная связь уменьшает влияние входного сигнала на величину выходного по принципу: «чем больше (на выходе), тем меньше (на входе)». Она способствует восстановлению гомеостаза системы.

При положительной обратной связи величина входного сигнала увеличивается по принципу: «чем больше (на выходе), тем больше (на входе)». Она усиливает возникшее отклонение от исходного состояния, что приводит к нарушению гомеостаза.

Однако все виды саморегуляции действуют по одному принципу: самоотклонение от исходного состояния, что служит стимулом для включения механизмов коррекции. Так, в норме рН крови составляет 7,32 – 7,45. Сдвиг рН на 0,1 приводит к нарушению сердечной деятельности. Этот принцип был описан Анохиным П.К. в 1935 году и назван принципом обратной связи, который служит для осуществления приспособительных реакций.

Общий принцип гомеостатической реакции (Анохин: «Теория функциональных систем»):

отклонение от исходного уровня → сигнал → включение регуляторных механизмов по принципу обратной связи → коррекция изменения (нормализация).

Так, при физической работе концентрация СО 2 в крови увеличивается → рН сдвигается в кислую сторону → сигнал поступает в дыхательный центр продолговатого мозга → центробежные нервы проводят импульс к межреберным мышцам и дыхание углубляется → снижение СО 2 в крови, рН восстанавливается.

Механизмы регуляции гомеостаза на молекулярно-генетическом, клеточном, организменном, популяционно-видовом и биосферном уровнях.

Регуляторные гомеостатические механизмы функционируют на генном, клеточном и системном (организменном, популяционно-видовом и биосферном) уровнях.

Генные механизмы гомеостаза. Все явления гомеостаза организма генетически детерминированы. Уже на уровне первичных генных продуктов существует прямая связь – «один структурный ген – одна полипептидная цепь». Причем между нуклеотидной последовательностью ДНК и последовательностью аминокислот полипептидной цепи существует коллинеарное соответствие. В наследственной программе индивидуального развития организма предусмотрено формирование видоспецифических характеристик не в постоянных, а в меняющихся условиях среды, в пределах наследственно обусловленной нормы реакции. Двуспиральность ДНК имеет существенное значение в процессах ее репликации и репарации. И то и другое имеет непосредственное отношение к обеспечению стабильности функционирования генетического материала.

С генетической точки зрения можно различать элементарные и системные проявления гомеостаза. Примерами элементарных проявлений гомеостаза могут служить: генный контроль тринадцати факторов свертывания крови, генный контроль гистосовместимости тканей и органов, позволяющий осуществить трансплантацию.

Пересаженный участок называется трансплантатом. Организм, у которого берут ткань для пересадки, является донором , а которому пересаживают – реципиентом . Успех трансплантации зависит от иммунологических реакций организма. Различают аутотрансплантацию, сингенную трансплантацию, аллотрасплантацию и ксенотрансплантацию.

Аутотрансплантация пересадка тканей у одного и того же организма. При этом белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает.

Сингенная трансплантация проводится у однояйцовых близнецов, имеющих одинаковый генотип.

Аллотрансплантация пересадка тканей от одной особи к другой, относящихся к одному виду. Донор и реципиент отличаются по антигенам, поэтому у высших животных наблюдается длительное приживление тканей и органов.

Ксенотрансплантация донор и реципиент относятся к разным видам организмов. Этот вид трансплантации удается у некоторых беспозвоночных, но у высших животных такие трансплантанты не приживаются.

При трансплантации большое значение имеет явление иммунологической толерантности (тканевой совместимости). Подавление иммунитета в случае пересадки тканей (иммунодепрессия) достигается: подавлением активности иммунной системы, облучением, введением антилимфотической сыворотки, гормонов коры надпочечников, химических препаратов – антидепрессантов (имуран). Основная задача подавить не просто иммунитет, а трансплантационный иммунитет.

Трансплантационный иммунитет определяется генетической конституцией донора и реципиента. Гены, ответственные за синтез антигенов, вызывающих реакцию на пересаженную ткань, называются генами тканевой несовместимости.

У человека главной генетической системой гистосовместимости является система HLA (Human Leukocyte Antigen). Антигены достаточно полно представлены на поверхности лейкоцитов и определяются с помощью антисывороток. План строения системы у человека и животных одинаков. Принята единая терминология для описания генетических локусов и аллелей системы HLA. Антигены обозначаются: HLA-A 1 ; HLA-A 2 и т.д. Новые антигены, окончательно не идентифицированные обозначают – W (Work). Антигены системы HLA делят на 2 группы: SD и LD (Рис. 11).

Антигены группы SD определяются серологическими методами и детерминируются генами 3-х сублокусов системы HLA: HLA-A; HLA-B; HLA-C.

Рис. 11 - HLA главная генетическая система гистосовместимости человека

LD – антигены контролируются сублокусом HLA-D шестой хромосомы, и определяются методом смешанных культур лейкоцитов.

Каждый из генов, контролирующих HLA – антигены человека, имеет большое число аллелей. Так сублокус HLA-A – контролирует 19 антигенов; HLA-B – 20; HLA-C – 5 «рабочих» антигенов; HLA-D – 6. Таким образом, у человека уже обнаружено около 50 антигенов.

Антигенный полиморфизм системы HLA является результатом происхождения одних от других и тесной генетической связи между ними. Идентичность донора и реципиента по антигенам системы HLA необходима при трансплантации. Пересадка почки, идентичной по 4 антигенам системы, обеспечивает приживаемость на 70%; по 3 – 60%; по 2 – 45%; по 1 – 25%.

Имеются специальные центры, ведущие подбор донора и реципиента при трансплантации, например в Голландии – «Евротрансплантат». Типирование по антигенам системы HLA проводится и в Республике Беларусь.

Клеточные механизмы гомеостаза направлены на восстановление клеток тканей, органов в случае нарушения их целостности. Совокупность процессов, направленных на восстановление разрушаемых биологических структур называется регенерацией. Такой процесс характерен для всех уровней: обновление белков, составных частей органелл клетки, целых органелл и самих клеток. Восстановление функций органов после травмы или разрыва нерва, заживление ран имеет значение для медицины с точки зрения овладения этими процессами.

Ткани, по их регенерационной способности, делят на 3 группы:

    Ткани и органы, для которых характерны клеточная регенерация (кости, рыхлая соединительная ткань, кроветворная система, эндотелий, мезотелий, слизистые оболочки кишечного тракта, дыхательных путей и мочеполовой системы.

    Ткани и органы, для которых характерна клеточная и внутриклеточная регенерация (печень, почки, легкие, гладкие и скелетные мышцы, вегетативная нервная система, эндокринная, поджелудочная железа).

    Ткани, для которых характерна преимущественно внутриклеточная регенерация (миокард) или исключительно внутриклеточная регенерация (клетки ганглиев центральной нервной системы). Она охватывает процессы восстановления макромолекул и клеточных органелл путем сборки элементарных структур или путем их деления (митохондрии).

В процессе эволюции сформировалось 2 типа регенерации физиологическая и репаративная .

Физиологическая регенерация – это естественный процесс восстановления элементов организма в течении жизни. Например, восстановление эритроцитов и лейкоцитов, смена эпителия кожи, волос, замена молочных зубов на постоянные. На эти процессы влияют внешние и внутренние факторы.

Репаративная регенерация – это восстановление органов и тканей, утраченных при повреждении или ранении. Процесс происходит после механических травм, ожогов, химических или лучевых поражений, а также в результате болезней и хирургических операций.

Репаративная регенерация подразделяется на типичную (гомоморфоз) и атипичную (гетероморфоз). В первом случае регенерирует орган, который был удален или разрушен, во втором – на месте удаленного органа развивается другой.

Атипичная регенерация чаще встречается у беспозвоночных.

Регенерацию стимулируют гормоны гипофиза и щитовидной железы . Различают несколько способов регенерации:

      Эпиморфоз или полная регенерация – восстановление раневой поверхности, достраивание части до целого (например, отрастание хвоста у ящерицы, конечности у тритона).

      Морфоллаксис – перестройка оставшейся части органа до целого, только меньших размеров. Для этого способа характерна перестройка нового из остатков старого (например, восстановление конечности у таракана).

      Эндоморфоз – восстановление за счет внутриклеточной перестройки ткани и органа. Благодаря увеличению числа клеток и их размеров масса органа приближается к исходному.

У позвоночных репаративная регенерация осуществляется в следующей форме:

      Полная регенерация – восстановление исходной ткани после ее повреждения.

      Регенерационная гипертрофия , характерная для внутренних органов. При этом раневая поверхность заживает рубцом, удаленный участок не отрастает и форма органа не восстанавливается. Масса оставшейся части органа увеличивается за счет увеличения числа клеток и их размеров и приближается до исходной величины. Так у млекопитающих регенерирует печень, легкие, почки, надпочечники, поджелудочная, слюнные, щитовидная железа.

      Внутриклеточная компенсаторная гиперплазия ультраструктур клетки. При этом на месте повреждения образуется рубец, а восстановление исходной массы происходит за счет увеличения объема клеток, а не их числа на основе разрастания (гиперплазии) внутриклеточных структур (нервная ткань).

Системные механизмы обеспечиваются взаимодействием регуляторных систем: нервной, эндокринной и иммунной .

Нервная регуляция осуществляется и координируется центральной нервной системой. Нервные импульсы, поступая в клетки и ткани, вызывают не только возбуждение, но и регулируют химические процессы, обмен биологически активных веществ. В настоящее время известно более 50 нейрогормонов. Так, в гипоталамусе вырабатывается вазопрессин, окситоцин, либерины и статины, регулирующие функцию гипофиза. Примерами системных проявлений гомеостаза являются сохранение постоянства температуры, артериального давления.

С позиций гомеостаза и адаптации, нервная система является главным организатором всех процессов организма. В основе приспособления, уравновешивания организмов с окружающими условиями, по Н.П. Павлову, лежат рефлекторные процессы. Между разными уровнями гомеостатического регулирования существует частная иерархическая соподчиненность в системе регуляции внутренних процессов организма (Рис. 12).

кора полушарий и отделы головного мозга

саморегуляция по принципу обратной связи

периферические нервно-регуляторные процессы, местные рефлексы

Клеточный и тканевой уровени гомеостаза

Рис. 12. - Иерархическая соподчиненность в системе регуляции внутренних процессов организма.

Самый первичный уровень составляют гомеостатические системы клеточного и тканевого уровня. Над ними представлены периферические нервные регуляторные процессы типа местных рефлексов. Далее в этой иерархии располагаются системы саморегуляции определенных физиологических функций с разнообразными каналами "обратной связи". Вершину этой пирамиды занимает кора больших полушарий и головной мозг.

В сложном многоклеточном организме как прямые, так и обратные связи осуществляются не только нервными, но и гормональными (эндокринными) механизмами. Каждая из желез, входящая в эндокринную систему, оказывает влияние на прочие органы этой системы и, в свою очередь, испытывает влияние со стороны последних.

Эндокринные механизмы гомеостаза по Б.М. Завадскому, это – механизм плюс-минус взаимодействия, т.е. уравновешивание функциональной активности железы с концентрацией гормона. При высокой концентрации гормона (выше нормы) деятельность железы ослабляется и наоборот. Такое влияние осуществляется путем действия гормона на продуцирующую его железу. У ряда желез регуляция устанавливается через гипоталамус и переднюю долю гипофиза, особенно при стресс-реакции.

Эндокринные железы можно разделить на две группы по отношению их к передней доле гипофиза. Последняя считается центральной, а прочие эндокринные железы – периферическими. Это разделение основано на том, что передняя доля гипофиза продуцирует так называемые тропные гормоны, которые активируют некоторые периферические эндокринные железы. В свою очередь, гормоны периферических эндокринных желез действуют на переднюю долю гипофиза, угнетая секрецию тропных гормонов.

Реакции, обеспечивающие гомеостаз, не могут ограничиваться какой-либо одной эндокринной железой, а захватывает в той или иной степени все железы. Возникающая реакция приобретает цепное течение и распространяется на другие эффекторы. Физиологическое значение гормонов заключается в регуляции других функций организма, а потому цепной характер должен быть выражен максимально.

Постоянные нарушения среды организма способствуют сохранению его гомеостаза в течение длительной жизни. Если создать такие условия жизни, при которых ничто не вызывает существенных сдвигов внутренней среды, то организм окажется полностью безоружен при встрече с окружающей средой и вскоре погибает.

Объединение в гипоталамусе нервных и эндокринных механизмов регуляции позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральной функции организма. Нервная и эндокринная системы являются объединяющим механизмом гомеостаза.

Примером общей ответной реакции нервных и гуморальных механизмов является состояние стресса, которое развивается при неблагоприятных жизненных условиях и возникает угроза нарушения гомеостаза. При стрессе наблюдается изменение состояния большинства систем: мышечной, дыхательной, сердечно-сосудистой, пищеварительной, органов чувств, кровяного давления, состава крови. Все эти изменения являются проявлением отдельных гомеостатических реакций, направленных на повышение сопротивляемости организма к неблагоприятным факторам. Быстрая мобилизация сил организма выступает как защитная реакция на состояние стресса.

При "соматическом стрессе" решается задача повышения общей сопротивляемости организма по схеме, приведенной на рисунке 13.

Рис. 13 - Схема повышения общей сопротивляемости организма при