Главная · Монтаж · История и перспективы развития большепролетных конструкций. Проблемы большепролетных зданий Классификация большепролетных конструкций

История и перспективы развития большепролетных конструкций. Проблемы большепролетных зданий Классификация большепролетных конструкций

По функциональному назначению большепролётные здания можно разделить на:

1) здания общественного назначения (театры, выставочные павильоны, кинотеатры, концертные и спортивные залы, крытые стадионы, рынки, вокзалы);

2) здания специального назначения (ангары, гаражи);

3) промышленные здания (авиационных, судостроительных и машиностроительных заводов, лабораторные корпуса различных производств).

Несущие конструкции по конструктивной схеме подразделяются на:

Блочные,

Арочные,

Структурные,

Купольные,

Висячие,

Сетчатые оболочки.

Выбор той или иной схемы несущих конструкций здания зависит от целого ряда факторов: пролёта здания, архитектурно-планировочного решения и формы здания, наличия и типа подвесного транспорта, требований к жёсткости покрытия, типа кровли, аэрации и освещения, основания под фундаменты и т.д.

Сооружения с большими пролётами являются объектами индивидуального строительства, их архитектурные и конструктивные решения весьма индивидуальны, что ограничивает возможности типизации и унификации их конструкций.

Конструкции таких зданий работают в основном на нагрузки от собственного веса конструкций и атмосферных воздействий.

1.1 Балочные конструкции

Балочные большепролётные конструкции покрытий состоят из главных несущих поперечных конструкций в виде плоских или пространственных ферм (пролёт ферм от 40 до 100 м) и промежуточных конструкций в виде связей, прогонов и кровельного настила.

По очертанию фермы бывают : с параллельными поясами, трапециевидные, полигональные, треугольные, сегментные (см. схемы на рис. 1).

Высота ферм hф=1/8 ÷ 1/14L; уклон i=1/ 2 ÷ 1/15.

Треугольные фермы hф= 1/12 ÷ 1/20L; уклон поясов i=1/5 ÷ 1/7.

Рис.1 - Схемы строительных ферм

Поперечные сечения ферм:

При L > 36м одну из опор балочной фермы устанавливают подвижной.

Компоновка покрытия - вертикальные и горизонтальные связи по покрытию решаются аналогично промышленным зданиям со стропильными фермами.

А) нормальная компоновка

стена

б) усложнённая компоновка - с подстропильными фермами:

ПФ

Балочные схемы покрытий применяются:

При любых видах подопорных конструкций - кирпичные или бетонные стены, колонны (металлические или железобетонные);

Когда подопорные конструкции не могут воспринимать распорных усилий;

При строительстве зданий на просадочных или карстовых грунтах и подрабатываемых территориях.

Следует отметить, что балочные схемы покрытий тяжелее рамных и арочных, но просты в изготовлении и монтаже.

Расчёт ферм выполняют методами строительной механики (аналогично расчёту стропильных ферм промышленных зданий).

1.2 Рамные конструкции

Рамные конструкции для покрытий зданий применяют при пролёте

L=40 - 150м, при пролёте L > 150м они становятся неэкономичными.

Преимущества рамных конструкций по сравнению с балочными - это меньший вес, большая жёсткость и меньшая высота ригелей.

Недостатки - большая ширина колонн, чувствительность к неравномерным осадкам опор и изменениям T о.

Рамные конструкции эффективны при погонных жесткостях колонн, близких к погонным жесткостям ригелей, что позволяет перераспределить усилия от вертикальных нагрузок и значительно облегчить ригели.

При перекрытии больших пролётов применяют, как правило, двухшарнирные и бесшарнирные рамы самых разнообразных очертаний (см. рис.2).

Рис. 2 - Схемы сквозных рам

Бесшарнирные рамы более жёсткие и экономичные по расходу материала, однако, они требуют устройства мощных фундаментов, чувствительны к изменению Т о.

При больших пролётах и нагрузках ригели рам конструируют как тяжёлые фермы, при сравнительно малых пролётах (40-50м) они имеют такие же сечения и узлы, как лёгкие фермы.

Поперечные сечения рам аналогичны балочным фермам.

Компоновка каркаса и покрытия из рамных конструкций аналогична решению каркасов промышленных зданий и балочных покрытий.

Статический расчёт рамных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ.

Тяжелые сквозные рамы рассчитывают как решёточные системы с учётом деформации всех стержней решётки.

1.3 Арочные конструкции

Арочные конструкции покрытий большепролётных зданий оказываются более выгодными по затрате материала, чем балочные и рамные системы. Однако в них возникает значительный распор, который передаётся через фундаменты на грунт или устраивается затяжка для его восприятия (т.е. погашение распора внутри системы).

Схемы и очертания арок весьма разнообразны: двухшарнирные, трёхшарнирные, бесшарнирные (см. рис. 3).

Наиболее выгодная высота арок: f=1/4 ÷ 1/6 пролёта L.

Высота сечения арок:

Сплошностенчатых 1/50 ÷ 1/80 L,

Решёточных 1/30 ÷ 1/60 L.

Рис. 3 - Схемы арок. Самыми распространёнными являются двухшарнирные арки - они экономичны по расходу материала, просты в изготовлении и монтаже легко деформируются вследствие свободного поворота в шарнирах в них не возникает значительных дополнительх напряжений от Т о и осадок опор. В трёхшарнирных арках - всё аналогично двухшарнирным, однако ключевой шарнир осложняет конструкцию самих арок и покрытия. Бесшарнирные арки - самые лёгкие, наиболее благоприятно происходит распределение изгибающих моментов. Однако они требуют устройства мощных фундаментов. Их нужно рассчитывать на воздействие Т о. Сквозные арки конструируют аналогично фермам балочных схем покрытий. Компановка каркаса и покрытия из арочных конструкций аналогична решению каркасов из рамных конструкций. Статический расчёт арочных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ. Раскосы в сквозных арках проектируют как в фермах. Наиболее сложными в конструктивном плане являются опорные и ключевые шарниры (см. рис. 4 и 5)


Рис.4 - Схемы опорных шарниров арок и рам (а - плиточный,

б - пятниковый, в - балансирный:

1 - плита, 2 - цапфа, 3 -балансир).

Рис. 5 - Ключевые шарниры и арок

(а -плиточный; б -балансирный; в -листовой; г -болтовой)

После определения M, N, Q сечения стержней арки подбирают также, как сечения стерней ферм:

1.4 Пространственные конструкции покрытий большепролётных зданий

В балочных, рамных и арочных системах покрытий, состоящих из отдельных несущих элементов, нагрузка передаётся только в одном направлении - вдоль несущего элемента. В этих системах покрытий несущие элементы соединены между собой лёгкими связями, которые не предназначены для перераспределения нагрузок между несущими элементами, а только обеспечивают их пространственную устойчивость, т.е. с их помощью обеспечивается жёсткий диск покрытия.

В пространственных системах связи усиливают и привлекают к распределению нагрузок и передаче их на опоры. Приложенная к пространственной конструкции нагрузка передаётся в двух направлениях. Такая конструкция получается обычно легче плоской.

Пространственные конструкции могут быть плоскими (плиты) и криволинейными (оболочки).

Плоские пространственные системы (исключая висячие) для обеспечения необходимой жёсткости должны быть двухпоясными - по поверхности образующие сетчатую систему. Двухпоясные конструкции имеют две параллельные сетчатые поверхности, соединённые между собой жёсткими связями.

Однослойные конструкции, имеющие криволинейную систему поверхности, называются односетчатыми.

В таких конструкциях принцип концентрации материала заменён принципом многосвязности системы. Изготовление и монтаж таких конструкций очень трудоёмок, требует специальных приёмов изготовления и монтажа, что является одной из причин их ограниченного применения.

1.5 Пространственные сетчатые системы плоских покрытий

В строительстве получили распространение сетчатые системы регулярного строения, так называемые структурные конструкции или просто структуры , которые применяются в виде плоских покрытий большепролётных общественных и производственных зданий.

Плоские структуры представляют собой конструкции, образованные из различных систем перекрёстных ферм (см. рис.6):

1) Структуры, образованные из перекрёстных ферм, идущих в трёх направлениях. Поэтому они являются наиболее жёсткими, однако более сложными в изготовлении. Это структуры с поясными сетками из разносторонних треугольников.

2) Структуры, образованные из ферм, идущих в двух направлениях. Это структуры с поясными сетками из квадратных ячеек.

3) Структуры, образованные из ферм, также идущих в двух направлениях, но усиленных диагоналями в угловых зонах. Поэтому они более жёсткие.

Достоинства структур:

Большая пространственная жёсткость: можно перекрывать большие пролёты при различных опорных контурах или сетках колонн; получать выразительные архитектурные решения при высоте структуры.

Hструктур=1/12 - 1/20 L

Повторяемость стержней - из стандартных и однотипных стержней можно монтировать покрытия разных пролётов и конфигураций в плане (прямоугольные, квадратные, треугольные и криволинейные).

Позволяет крепить подвесной транспорт и изменять при необходимости направление его движения.

Системы покрытий из структур могут быть как одно-, так и многопролётными с опиранием как на стены, так и на колонны.

Устройством консольных свесов за линией опор уменьшают расчётный пролётный изгибающий момент и существенно облегчают конструкцию покрытия.

Рис. 6 - Схемы решёток структурных покрытий (а - с поясными сетками из равносторонних треугольных ячеек; б - с поясными сетками из квадратных ячеек; в - то же, усиленных диагоналями в условных зонах: 1 - верхние пояса,

2 - нижние пояса, 3 - наклонные раскосы, 4 - верхние диагонали, 5 -нижние диагонали, 6 - опорный контур).

Недостатки структур - повышенная трудоёмкость изготовления и монтажа. Пространственные узлы сопряжений стержней (см. рис. 7) - самые сложные элементы в структурах:

Шаровая вставка (а);

На винтах (б);

Цилиндрический сердечник с прорезями, стянутый одним болтом с шайбами (в, г);

Сварной узел сплюснутых концов стержней (д).

Рис. 7 - Узлы сопряжений стержней структур

Структурные конструкции представляют собой многократно статически неопределённые системы. Точный расчёт их сложен и выполняется на ЭВМ.

При упрощённом подходе структуры рассчитывают способами строительной механики - как изотропные плиты или как системы перекрёстных ферм без учёта крутящих моментов.

Величины моментов и поперечных сил определяют по таблицам для расчёта плит: Mплиты; Qплиты - далее переходят к расчёту стержней.

1.6 Оболочные покрытия

Для покрытий зданий применяют односетчатые, двухсетчатые цилиндрические оболочки и оболочки двоякой кривизны.

Цилиндрические оболочки (см. рис. 8) выполняют в виде сводов с опиранием:

а) прямолинейным образующим контура

б) на торцовые диафрагмы

в) на торцовые диафрагмы с промежуточными опорами

Рис.8 - Схемы опирания цилиндрических оболочек (1 - оболочка;

2 - торцовая диафрагма; 3 - связи; 4 - колонны).

Односетчатые оболочки применяют при пролётах В не более 30м.

Двухсетчатые - при больших пролётах В>30м.

По цилиндрической поверхности расположены стержни, образующие сетки различной системы (см. рис. 9):

Ромбическая сетка (а);

Ромбическая сетка с продольными рёбрами (б);

Ромбическая сетка с поперечными рёбрами (в);

Ромбическая сетка с поперечными и продольными рёбрами (г).

Наиболее простая сетка ромбического рисунка, которую получают из лёгких стандартных стержней (∟, ○, □) прокатных профилей. Однако такая схема не обеспечивает необходимой жёсткости в продольном направлении при передаче нагрузки на продольные стены.

Рис. 9 - Система сеток односетчатых оболочек

Жёсткость конструкции значительно увеличивается при наличии продольных стержней (схема "б") - конструкция может работать как оболочка пролётом L. В этом случае опорой могут служить торцовые стены или четыре колонны с торцовыми диафрагмами.

Наиболее жёсткими и выгодными являются сетки (схема "в"), у которых есть и продольные и поперечные рёбра (стержни), а решётка сетки направлена под углом 45 .

Расчёт оболочек выполняют методами теории упругости и методами теории оболочек. Оболочки без поперечных рёбер рассчитывают как безмоментные складки (способ Эллерса). При наличии поперечных рёбер , обеспечивающих жёсткость контура, - по моментной теории Власова (она сводится к решению восьмичленных уравнений).

При расчёте сквозных сетчатых оболочек, сквозные грани конструкций заменяются сплошными пластинами эквивалентной толщины при работе на сдвиг, осевое растяжение и сжатие.

Более точный расчёт сетчатых оболочек выполняют на ЭВМ по специально разработанным программам.

Двухсетчатые оболочки применяют при перекрытии пролётов шириной более B>30м.

Конструктивные схемы их аналогичны схемам двухсетчатых плоских плит - структур. Как и в структурах, они образуются системами перекрёстных ферм, связанных по верхним и нижним поясам специальными связями - решёткой. Но при этом в оболочках основная роль в восприятии усилий принадлежит криволинейным сетчатым плоскостям, соединяющая их решётка меньше участвует в передаче усилий, но придаёт конструкции большую жёсткость.

По сравнению с односетчатыми двухсетчатые оболочки обладают большей жёсткостью и несущей способностью. Ими можно перекрывать пролёты зданий от 30 до 700м.

Проектируют их в виде цилиндрической поверхности, опирающиеся на продольные стены или на металлические колонны. По торцам оболочки опираются на жёсткие диафрагмы (стены, фермы, арки с затяжкой и т.д.).

Наилучшее распределение усилий в оболочке при B=L.

Расстояние между сетчатыми поверхностями h=1/20÷1/100R при f/B=1/6÷1/10.

Как и в структурах, наиболее сложным является узел сопряжения стержней.

Расчёт двухсетчатых оболочек производят на ЭВМ по специально составленным программам.

Для приближённого расчёта оболочки необходимо стержневую систему привести к эквивалентной сплошной оболочке и установить модуль сдвига среднего слоя, эквивалентного по жёсткости соединительной решётке.

1.7 Купольные покрытия

Конструкции куполов бывают четырёх видов (см. рис.6): ребристые (а), ребристо-кольцевые (б), сетчатые (в), радиально-балочные (г).

Рис. 10 - Схемы куполов

Ребристые купола

Конструкции ребристых куполов состоят из отдельных плоских или пространственных рёбер в виде балок, ферм или полуарок, расположенных в радиальном направлении и связанных между собой прогонами.

Верхние пояса рёбер образуют поверхность купола (обычно сферическую). По прогонам устраивают кровлю.

В вершине для перестыковки рёбер устраивают жёсткое кольцо, работающее на сжатие. Рёбра к центральному кольцу могут крепиться шарнирно или иметь жёсткое закрепление. Пара рёбер купола, расположенных в одной диаметральной плоскости и прерванных центральным кольцом, рассматривается как единая, например арочная, конструкция (двухшарнирная, трёхшарнирная или бесшарнирная).

Ребристые купола являются распорными системами. Распор воспринимается стенами или специальным распорным кольцом в форме окружности или многогранника с жёсткими или шарнирными сопряжениями в углах.

Между рёбрами с определённым шагом укладывают кольцевые прогоны, на которые опирается кровельный настил. Погоны, помимо своего основного назначения, обеспечивают общую устойчивость верхнего пояса ребер из плоскости, уменьшая их расчётную длину.

Для обеспечения общей жёсткости купола в плоскости прогонов устраиваются с определённым шагом скатные связи между рёбрами, а также вертикальные связи для развязки внутреннего пояса арки - между вертикальными связями устраивают распорки.

Расчётные нагрузки - собственный вес конструкции, вес оборудования и атмосферные воздействия.

Расчётными элементами купольного покрытия являются: рёбра, опорное и центральное кольцо, прогоны, скатные и вертикальные связи.

Если распор купола воспринимают распорным кольцом, то при расчёте арки кольцо может быть заменено условной затяжкой, находящейся в плоскости каждой пары полуарок (образующих плоскую арку).

При расчёте опорного кольца - при частом расположении арок (рёбер) купола действия их распоров можно заменить эквивалентной равномерно распределённой нагрузкой:

Ребристо-кольцевые купола

В них погоны с рёбрами составляют одну жёсткую пространственную систему. В этом случае кольцевые прогоны работают не только на изгиб от нагрузки на покрытие, но и от реакций промежуточных рёбер и воспринимают растягивающие или сжимающие кольцевые усилия, возникающие от распоров в месте опирания многопролётных полуарок.

Вес рёбер (арок) в таком куполе уменьшается благодаря включению в работу кольцевых прогонов, как промежуточных опорных колец. Кольцевые рёбра в таком куполе работают так же, как и опорное кольцо в ребристом куполе, и при расчёте арок могут быть заменены условными затяжками.

При симметричной нагрузке расчет купола можно вести, расчленяя его на плоские арки с затяжками на уровне кольцевых рёбер (прогонов).

Сетчатые купола

Если в ребристом или ребристо-кольцевом куполе увеличить связность системы, то можно получить сетчатые купола с шарнирным соединением стержней в узлах.

В сетчатых куполах между рёбрами (арками) и кольцами (кольцевыми прогонами) располагают раскосы, благодаря которым усилия распределяются по поверхности купола. Стержни в этом случае работают в основном только на осевые силы, что уменьшает вес рёбер (арок) и колец.

Стержни сетчатых куполов выполняют из замкнутых профилей (круглого, квадратного или прямоугольного сечения). Узлы соединений стержней как и в структурах или сетчатых оболочках.

Расчёт сетчатых куполов производят на ЭВМ по специально разработанным программам.

Приблизительно их рассчитывают по безмоментной теории оболочек - как сплошную осесимметричную оболочку по формулам из соответствующих расчётно-теоретических справочников.

Радиально-балочные купола

Представляют собой ребристые купола, составленные из сегментных полу-ферм, расположенных радиально. В центре сегментные полуфермы присоединяются к жёсткому кольцу (решётчатому или сплошностенчатому с диафрагмами жёсткости).

1.8 Висячие покрытия

Висячими называются покрытия, в которых основные несущие элементы работают на растяжение.

В этих элементах наиболее полно используются высокопрочные стали, поскольку их несущая способность определяется прочностью, а не устойчивостью.

Несущие растянутые стержни - ванты - могут выполняться гибкими или жёсткими.

Жёсткие - выполняют из выгнутых двутавровых балок.

Гибкие - выполняют из стальных канатов (тросов) свитых из высокопрочной проволоки с R= 120 кН/см2 ÷ 240 кН/см2.

Висячие конструкции покрытий являются одной из наиболее перспективных конструктивных форм для применения высокопрочных материалов. Конструктивные элементы висячих покрытий легко транспортировать, относительно легко монтировать. Однако сооружение висячих покрытий имеет ряд трудностей, от удачного инженерного решения которых зависит эффективность покрытия в целом:

Первый недостаток - висячие покрытия - системы распорные и для восприятия распора необходима опорная конструкция, стоимость которой может составлять значительную часть стоимости всего покрытия. Уменьшения стоимости опорных конструкций можно достичь за счёт повышения эффективности их работы - созданием покрытий круглой, овальной и других не прямолинейных форм плана;

второй недостаток - повышенная деформативность висячих систем. Это вызвано тем, что модуль упругости витых тросов меньше чем у прокатной стали (Етроса=1,5 ÷ 1,8×10 5 МПа; Е прокатных стержней = 2,06×10 5 Мпа), а область упругой работы высокопрочной стали значительно больше, чем у обычной стали. Таким образом, относительная деформация троса в упругой стадии работы ε=G/Е получается в несколько раз больше чем у элементов из обычной стали.

Большинство висячих систем покрытия являются системами мгновенной жёсткости, т.е. системами, которые работают упруго лишь на равновесные нагрузки, а при действии неравномерных нагрузок в них, помимо упругих деформаций, появляются ещё и кинематические перемещения системы, ведущие к изменению целостности геометрической системы покрытия.

Для уменьшения кинематических перемещений висячие системы покрытий часто снабжают специальными стабилизирующими устройствами и предварительно напрягают.

Типы схем висячих покрытий

1. Однопоясные системы с гибкими вантами

Такие системы покрытий в плане проектируют прямоугольными или изогнутыми, например, круглыми (см. рис.11).

Они представляют собой предварительно напряжённые железобетонные оболочки, работающие на растяжение. Напряжённой арматурой в них является система из гибких вант, на которые во время монтажа укладывают сборные железобетонные плиты. В это время на ванты даётся дополнительный пригруз, который после укладки всех железобетонных плит и замоноличивания швов снимают. Ванты обжимают железобетонные плиты и образовавшаяся железобетонная оболочка получает предварительное напряжение сжатия, позволяющее ей воспринимать растягивающее напряжение от внешних нагрузок и обеспечивает общую устойчивость конструкции. Несущая способность покрытия обеспечивается растяжением вант.

В покрытиях прямоугольного плана распор вант воспринимает опорная конструкция из оттяжек и анкеров, закреплённых в грунте.

Рис. 11 - Однопоясные покрытия с гибкими вантами

(а - прямоугольные в плане; б - круглые в плане)

В покрытиях круглого (овального) плана распор передаётся на наружное сжатое кольцо, лежащее на колоннах и внутреннее (растянутое) металлическое кольцо.

Стрела провеса вант таких покрытий обычно составляет f=1/10÷1/20 L. Такие оболочки являются пологими.

Сечение вант покрытия определяют по монтажной нагрузке. В этом случае ванты работают как отдельные нити, и распор в них можно определять без учёта их деформаций H=M/f , где M - балочный момент от расчётной нагрузки, f - стрела провисания нити.


Наибольшее усилие в ванте будет на опоре

где V - балочная реакция.

2. Однопоясные системы с жёсткими вантами

Рис. 12 - 1 - продольные изгибно-жёсткие рёбра; 2 - поперечные рёбра;

3 - мембрана алюминиевая, t = 1,5 мм

В таких покрытиях гнутые жёсткие ванты, прикреплённые к опорному поясу, работают под действием нагрузки на растяжение с изгибом. Причём при действии равномерной нагрузки доля изгиба в напряжениях невелика. При действии неравномерной нагрузки жёсткие ванты начинают сильно сопротивляться местному изгибу, чем значительно уменьшают деформативность всего покрытия.

Стрела провеса вант таких покрытий обычно составляет 1/20 ÷ 1/30 L. Однако, использование жёстких нитей возможно лишь при небольших пролётах, т.к. с увеличением пролёта значительно усложняется монтаж и увеличивается их масса. По таким жёстким вантам можно укладывать лёгкую кровлю, отсутствует необходимость в предварительном напряжении (его роль выполняет изгибная жёсткость ванты).

При равномерной нагрузке распор в ванте определяют по формуле

H = 8/3 ×[(EA)/(l 2 mо)] × (f+fо) × ∆f +Hо;

где ∆f=f–fо,

f - прогиб под нагрузкой,

fо – начальный провес;

m1=1+(16/3)/(fо/l) 2

Изгибный момент в середине ванты находят по формуле

M= q I 2 /8–Hf .


3. Однопоясные висячие покрытия, напрягаемые с помощью поперечных балок или ферм

Рис. 13

Стабилизация таких канатно-балочных систем достигается либо увеличенной массой поперечных и жёстких на изгиб элементов, либо предварительным напряжением оттяжек, которые соединяют поперечные балки или фермы с фундаментами или опорами. Таким способом напрягаются покрытия с лёгким кровельным настилом.

Благодаря изгибной жёсткости поперечных балок или ферм покрытие приобретает пространственную жёсткость, которая особенно проявляется при загружении пролётной конструкции местной нагрузкой.

4. Двухпоясные системы

Рис. 14

В покрытиях такого типа имеется две системы вант :

- Несущие - имеющие изгиб вниз;

- Стабилизирующие - имеющие изгиб вверх.

Это делает такую систему мгновенно жёсткой - способной воспринимать нагрузки, действующие в двух различных направлениях. Вертикальная нагрузка вызывает у несущей нити растяжение , а у стабилизирующей - сжатие . Отсос ветра вызывает в вантах усилия обратного знака.

В покрытиях данного типа можно применять лёгкие кровли.

5. Седловидные напряжённые сетки

Рис. 15

Покрытия такого типа применяются для капитальных зданий и временных сооружений.

Сетка покрытия: несущие (продольные) тросы изогнуты вниз, стабилизирующие (поперечные) тросы изогнуты вверх.

Такая форма покрытия позволяет предварительно напрягать сетку. Поверхность покрытия лёгкая из различных материалов: от стального листа до плёнки и тента.

Шаг сеток приблизительно один метр. Точный расчёт сеток таких покрытий возможен только на ЭВМ.

6. Металлические оболочки-мембраны

Рис. 16

По форме в плане это эллипс или круг, а форма оболочек довольно разнообразная: цилиндрическая, коническая, чашеобразная, седловидная и шатровая. Большинство из них работает по пространственной схеме, делает её весьма выгодной и позволяет применять листы толщиной 2 - 5мм.

Расчёт таких систем производят на ЭВМ.

Главное преимущество таких систем покрытий - это совмещение несущих и ограждающих функций.

Утеплитель и гидроизоляцию укладывают на несущую оболочку, не применяя кровельных плит.

Полотнища оболочки выпускают на заводе-изготовителе и доставляют на монтаж в виде рулонов, из которых на площадке строительства собирают всю оболочку без применения лесов.

Раздел 2. Листовые конструкции

Листовыми называют конструкции, состоящие в основном из металлических листов и предназначенные для хранения, транспортирования жидкостей, газов и сыпучих материалов.

К этим конструкциям относятся:

Резервуары для хранения нефтепродуктов, воды и других жидкостей.

Газгольдеры для хранения и распределения газов.

Бункера и силосы для хранения и перегрузки сыпучих материалов.

Трубопроводы больших диаметров для транспортирования жидкостей, газов и размельчённых или разжиженных твёрдых веществ.

Специальные конструкции металлургической, химической и др. отраслей промышленности:

Кожухи доменных печей

Воздухонагреватели

Пылеуловители - скрубера, корпуса электрофильтров и рукавных фильтров

Дымовые трубы

Сплошностенчатые башни

Градирни и т.д.

Такие листовые конструкции занимают 30% от всех металлических конструкций.

Условия работы листовых конструкций достаточно разнообразны:

Они могут быть надземными, наземными, полузаглублёнными, подземными, подводными;

Могут воспринимать статические и динамические нагрузки;

Работать под низким, средним и высоким давлением;

Под воздействием низких и высоких температур, нейтральных и агрессивных сред.

Для них характерно двухосновное напряжённое состояние, а в местах сопряжения с днищем и рёбрами жёсткости, в местах сопряжения оболочек различной кривизны (т.е. на границе изменения радиуса кривизны) возникают местные высокие напряжения, быстро затухающие по мере удаления от этих участков это - так называемое явление краевого эффекта.

Листовые конструкции всегда совмещают несущую и ограждающую функции.

Сварные соединения элементов листовых конструкций выполняют встык, внахлёстку и впритык. Соединения выполняют автоматической и полуавтоматической дуговой сваркой.

Большинство листовых конструкций являются тонкостенными оболочками вращения.

Рассчитывают оболочки методами теории упругости и теории оболочек.

Листовые конструкции рассчитывают на прочность, устойчивость и выносливость.

1.1 Резервуары

В зависимости от положения в пространстве и геометрической формы они делятся на цилиндрические (вертикальные и горизонтальные), сферические и каплевидные.

По расположению относительно планировочного уровня земли различают: надземные (на опорах), наземные, полузаглублённые, подземные и подводные.

Они могут быть постоянного и переменного объёмов.

Тип резервуара выбирают в зависимости от свойств хранимой жидкости, режима эксплуатации, климатических особенностей района строительства.

Наибольшее распространение получили вертикальные и горизонтальные цилиндрические резервуары как самые простые при изготовлении и монтаже.

Вертикальные резервуары со стационарной крышей являются сосудами низкого давления, в которых хранят нефтепродукты при малой их оборачиваемости (10 - 12 раз в год). В них образуется избыточное давление в паро-воздушной зоне до 2кПа, а при опорожнении вакуум (до 0,25кПа).

Вертикальные резервуары с плавающей крышей и понтоном применяют при хранении нефтепродуктов при большой оборачиваемости. В них практически отсутствует избыточное давление и вакуум.

Резервуары повышенного давления (до 30кПа) используют для длительного хранения нефтепродуктов при их оборачиваемости не более 10 - 12 раз в год.

Шаровидные резервуары - для хранения больших объёмов сжиженных газов.

Каплевидные резервуары - для хранения бензина с высокой упругостью паров.

Вертикальные резервуары


Рис. 17

Основные элементы:

Стенка (корпус);

Крыша (покрытия).

Все элементы конструкций изготавливают из листовой стали. Они просты в изготовлении и монтаже, достаточно экономичны по расходу стали.

Установлены оптимальные размеры вертикального цилиндрического резервуара постоянного объёма, при которых расход металла будет наименьшим. Так, резервуар со стенкой постоянной толщины имеет минимальную массу, если

[(mдн + mпок) / mст] = 2, а значение оптимальной высоты резервуара определяется по формуле

где V - объём резервуара,

∆= t дн.+t прив. покр. - сумма приведённой толщины днища и покрытия,

tст. - толщина стенки корпуса.

В резервуарах больших объёмов толщина стенки переменна по высоте. Масса такого резервуара получится минимальной, если суммарная масса днища и покрытия равна массе стенки, т.е. mдн.+mпокр.= mст.

В этом случае

где ∆= tдн. + tприв. покр.,

n - коэффициент перегрузки,

γ ж. - удельный вес жидкости.

Днище резервуара

Так как днище резервуара опирается по всей своей площади на песчаное основание, то от давления жидкости оно испытывает незначительные напряжения. Поэтому толщину листа днища не рассчитывают, а принимают конструктивно с учётом удобств монтажа и сопротивляемости коррозии.

При V≤1000м и Д<15м → tдн = 4мм; при V>1000м и Д=18-25м → tдн = 5мм; при Д > 25м → tдн = 6мм. Рис. 18

Листы полотнищ днища соединяют между собой по продольным кромкам внахлёстку с перекрытием 30 - 60мм при tдн. = 4 - 5мм, а при tдн.= 6мм - выполняются встык. Крайние листы - "окрайки" - принимают на 1-2мм толще листов средней части днища. Из завода-изготовителя всё поставляется в рулонах (Q ≤ 60т).

Конструирование стенок:

Рис. 19

Стенка резервуара состоит из ряда поясов высотой, равной ширине листа. Соединяют пояса между собой встык или внахлёстку в телескопическом или ступенчатом порядке. Сопряжение встык выполняют в основном на заводе изготовителе (реже на монтаже), внахлёстку - как на заводе, так и на монтаже.

Распространён метод строительства резервуаров методом рулонирования.

Расчёт на прочность - стенка корпуса является несущим элементом и рассчитывается по методу предельных состояний в соответствии с требованиями СНиП 11-23-81

Конструктивные решения металлических покрытий большепролетных зданий могут быть балочными, арочными, пространственными, висячими Байтовыми, мембранными и др. Учитывая, что в таких конструкциях основной нагрузкой является собственный вес, следует стремиться к его уменьшению, что достигается применением сталей повышенной прочности и алюминиевых сплавов.

Балочные системы (как правило, фермы) включаются в состав поперечных рам, что улучшает статическую схему работы. При пролетах более 60-80 м целесообразно использовать арочные покрытия (рис. 1). Такие покрытия при больших пролетах целесообразно проектировать предварительно-напряженными. В арочном покрытии, представленном на рис. 2, верхний пояс предусмотрен жестким, а нижний пояс и решетка арки выполнены из тросов. После монтажа арки осуществляют принудительное смещение опорных узлов наружу, что вызывает предварительное растяжение в нижнем поясе и раскосах арки.

Рисунок 1. 1 - арка; 2 - затяжка; 3 - неподвижная шарнирная опора; 4 - подвижная шарнирная опора

Рисунок 2. 1 - трос; 2 - жесткий пояс

Пространственные решетчатые конструкции покрытий могут быть плоскими двухслойными (двухсетчатыми) и криволинейными однослойными (односетчатыми) или двухслойными. В двухсетчатых конструкциях две параллельные сетчатые поверхности соединяются между собой решетчатыми связями.

Сетчатые системы регулярного строения называются структурными и применяются, как правило, в виде плоских покрытий. Они представляют собой различные системы перекрестных ферм (рис. 3). Структурные плоские перекрытия благодаря большой пространственной жесткости имеют небольшую высоту (1/16-1/20 пролета), ими можно перекрывать большие пролеты. Устройством консольных свесов за линией опор достигается уменьшение изгибающих моментов и веса покрытия.

Рисунок 3. 1,2 - верхняя и нижняя поясные сетки; 3 - раскосы; 4 - тетраэдр; 5 - октаэдр; 6 - опорная капитель

Криволинейные пространственные покрытия имеют, как правило, цилиндрическую или купольную поверхность.

Цилиндрические покрытия могут быть односетчатыми или двухсетчатыми (криволинейные структуры). Они в поперечном направлении работают как свод, распор которого воспринимается стенами или затяжками.

Купольные покрытия могут иметь ребристую (или ребристо-кольцевую) конструктивную схему (рис. 4а) или сетчатую (рис. 4б). В ребристых куполах радиально расположенные ребра соединены между собой кольцевыми прогонами. Если последние составляют с ребрами единую жесткую пространственную систему, то тогда кольцевые прогоны работают не только на местный изгиб, но в составе купольной системы воспринимают также кольцевые сжимающие или растягивающие усилия. В сетчатых куполах в состав конструкции кроме ребер и кольцевых элементов входят раскосы, что создает условия, при которых стержни работают только на осевые усилия.

Рисунок 4. а - ребристое; б - сетчатое

Висячие покрытия состоят из опорного контура и основных несущих элементов в виде вант или тонких стальных листов, работающих на растяжение. Поскольку основные элементы покрытия работают на растяжение, их несущая способность определяется прочностью (а не устойчивостью), что позволяет эффективно использовать высокопрочные канаты или листовую сталь. Такие покрытия весьма экономичны, однако повышенная деформативность ограничивает их применение для покрытий производственных зданий. Кроме того, учитывая большую распорность таких систем, форму в плане целесообразно принимать круглой, овальной или многоугольной, что облегчает восприятие распора. В связи с этим они применяются, в основном, для покрытий спортивных зданий, крытых рынков, выставочных павильонов, складов, гаражей и других зданий больших пролетов.

В состав вантовых висячих покрытий входят гибкие ванты (стальные канаты или арматурные стержни), располагаемые в радиальном направлении (рис. 5а), в ортогональных направлениях (рис. 5б) или параллельно друг другу в одном направлении (рис. 6). Криволинейные замкнутые опорные контуры работают преимущественно на сжатие, а центральное кольцо - на растяжение. В этих случаях на поддерживающие покрытие конструкции (стены, колонны, рамы) передаются только вертикальные силы. В отличие от этого при незамкнутых контурах распор передается на несущие конструкции здания, что требует устройства анкерных фундаментов, работающих на выдергивание, или стен с контрфорсами и т. п. На систему вант укладываются плиты из легкого железобетона или металлические с полимерным утеплителем, трехслойные и др.

Рисунок 5. а - радиальное расположение вант; б - ортогональное; 1 - ванты; 2 - опорный контур; 3 - центральное кольцо

Рисунок 6. 1,2 - ванты соответственно в середине и в торце; 3 - опорный контур; 4 - железобетонные плиты; 5 - анкерный фундамент

Системы висячих вантовых покрытий отличаются большим разнообразием. Нередко применяют шатровую вантовую систему, при которой центральное кольцо покоится на колонне и поднимается на более высокую отметку, чем опорное контурное.

Примером такой системы может служить покрытие автобусного парка в Киеве диаметром 161м. Описанные выше системы являются однопоясными. Кроме них применяются также двухпоясные системы (особенно при больших ветровых нагрузках), в которых стабилизация покрытия осуществляется с помощью контура обратной кривизны. В таких системах несущие ванты имеют выгиб вниз, а стабилизирующие - вверх. Стабилизирующие ванты с установленным на них настилом могут быть расположены над несущими, что вызывает сжатие распорок (рис. 7а). При расположении стабилизирующих тросов под несущими вантами связи между ними будут растянутыми (рис. 7б). Возможен и третий вариант, при котором несущие и стабилизирующие тросы пересекаются, а стойки сжаты в средней части покрытия и растянуты - в крайних (рис. 7б).

Рисунок 7. 1 - стабилизирующие ванты; 2 - стойки; 3 - несущие ванты

Большое распространение в зарубежной и отечественной практике получили также висячие тонколистовые системы - мембранные покрытия.

Они представляют собой пространственную конструкцию из тонкого металлического листа (стального или из алюминиевых сплавов) толщиной в несколько миллиметров, закрепленного по периметру в опорном контуре. Их преимущества состоят в совмещении несущей и ограждающей функций, а также в повышенной индустриальности изготовления. В некоторых случаях вместо сплошной мембраны покрытие образуется из отдельных, не соединяемых друг с другом, тонких стальных лент. Располагаемые в двух взаимоперпендикулярных направлениях ленты могут переплетаться, что предотвращает их расслаивание.

Сплошное мембранное покрытие успешно применено для универсального стадиона на проспекте Мира в Москве, размеры, в плане которого достигают 183x224 м (рис. 8).

Рисунок 8. Конструктивная схема покрытия универсального стадиона на проспекте Мира в Москве (стальная мембрана толщиной 5 мм): а - план; б - продольный разрез; в - поперечный

В состав спортивного комплекса, построенного в г. Бишкеке, входит зал на 3 тысячи зрителей, покрытие которого решено в виде предварительно напряженной мембранно-балочной висячей системы (рис. 9). Каркас здания выполнен из монолитного здания железобетона в виде раскосных ферм, расположенных по периметру размерами в плане 42,5x65,15 м. Покрытие состоит из собственно мембраны толщиной 2 мм, продольных прогонов и поперечных балок - распорок. Утеплитель в виде минераловатных матов подвешен к мембране снизу, потолок выполнен из штампованных алюминиевых элементов.

Мембранные покрытия использованы и в ряде других большепролетных зданиях. Так, в Санкт-Петербурге универсальный спортивный зал диаметром 160 м перекрыт мембранной оболочной толщиной 6 мм. Подобными оболочками перекрыты также универсальный спортивный зал с размерами в плане 66x72 м на 5 тысяч зрителей в Измайлово (Москва), здание плавательного бассейна «Пионер» с размерами в плане 30x63 м в Харькове и др.

Складчатые своды покрытий - пространственная конструкция, которая может быть выполнена из металла (стали, алюминиевых сплавов), железобетона, пластмасс.

Особенно эффективны такие покрытия из алюминиевых сплавов. Основным конструктивным элементом в последних может служить лист ромбовидной формы (рис. 10), согнутый вдоль большей диагонали. Сопряжения ромбовидных элементов между собой может осуществляться при помощи цилиндрических шарниров или жесткими фланцевыми сочленениями. Для повышения пространственной жесткости покрытия (особенно при шарнирных сопряжениях) необходимо

предусматривать установку продольных затяжек по выступающим узлам складчатого свода.

Рисунок 9. 1 - каркас здания; 2 - мембрано-балочная висячая система

Рисунок 10.

Большепролетные покрытия бывают плоскими, пространственными и пневматическими. Эти покрытия применяются в общественных и промышленных зданиях.

Плоские конструкции выполняются из балок, ферм, рам, арок, которые изготовляют из клееной древесины, стального проката, монолитного и сборного железобетона.

Железобетонные балки применяют для перекрытия пролетов до 24 м. Балки используют таврового и П-образного сечения.

Фермами и рамами (бесшарнирными и шарнирными) из дерева, стали и железобетона перекрывают пролеты до 60 м.

Бесшарнирные рамы жестко заделываются в фундамент. Они очень чувствительны к неравномерным осадкам. Поэтому их применяют на прочных и однородных грунтах. Шарнирные рамы менее чувствительны к неравномерным осадкам грунтов. Бывают одно-, двух- и трехшарнирные рамы. Одношарнирные - шарнир в середине пролета. Двухшарнирные - шарниры в опорах.

Арки - эффективные конструкции для перекрытия больших пролетов, т.к. их очертания можно приблизить к кривой давления и за счет этого оптимально использовать материал. Горизонтальные усилия (распор), возникающие в арочных конструкциях, уменьшаются при увеличении радиуса очертания арки. При этом увеличивается стрела подъема арки, а, следовательно, и строительный объем здания. Это ведет к увеличению затрат на отопление и приведенных затрат. Арки широко распространены в покрытиях спортивных зданий больших пролетов.

Пространственные конструкции - перекрестные покрытия, купола, оболочки, висячие покрытия.

Перекрестные покрытия бывают складчатые и сетчатые.

Для покрытий больших пролетов применяют складчатые покрытия из железобетона (до 50 м) и армоцемента (до 60 м). Они образуются плоскими взаимопересекающимися элементами поперек пролета. Складки бывают: прямоугольные и цилиндрические; пилообразные; в виде треугольных плоскостей; призматического типа; трапециевидного профиля и т.д.

Сетчатые покрытия из железобетона проектируют при пролетах до 50 м, а из стальных элементов - до 100 м. В этих покрытиях пересекаются железобетонные и стальные треугольники. Элементы работают в двух направлениях поэтому их высота меньше, чем балочных, - это уменьшает объем здания.

Перекрестные конструкции и системы с плоскими фермами и рамами делают открытыми внутрь помещений. Часто делают подвесные потолки, которые укрепляют к низу ферм.

Купол - наиболее древняя конструкция. Его применяли, т.к. можно подобрать такие очертания, при которых в элементах свода не возникают растягивающие усилия. В залах, где желательно создать большое воздушное пространство (рынки, спортзалы) и где нет больших текущих затрат на отопление, применяют различного вида купольные конструкции из монолитного или сборного железобетона, куполы-мембраны из стального листа толщиной 3 мм с подклеенным снизу утеплителем. Во временных залах выставок - из клеенопластиковых конструкций.

Висячие покрытия перекрывают пролеты до 100 м. Основные элементы этих покрытий работают на растяжение и передают нагрузки от покрытия на анкеры. Они имеют криволинейные очертания и представляют собой гибкие или жесткие нити, мембраны или висячие фермы. По конструктивным особенностям различают висячие покрытия: однопоясные; двупоясные; гипары (гиперболические параболоиды) и вантовые.

В висячих покрытиях несущими элементами являются стальные тросы. Они натягиваются через какую-либо опорную конструкцию и укрепляются растяжками. Достоинства висячих конструкций - экономия металла и более эффективное использование несущих элементов по сравнению с балочными и рамными конструкциями, т.к. тросы работают на растяжение. Недостатки: у висячих покрытий низкая жесткость, поэтому кровельный настил часто деформируется; трудно обеспечить отвод атмосферной влаги.

Однопоясные покрытия применяются чаще других, т.к. они технологичны в изготовлении, просты в монтаже. Ими можно придавать сооружению самую разную форму. Однопоясные покрытия состоят из системы радиальных или перекрещивающихся растяжек, которые передают горизонтальные усилия на жесткие рамы, рамы-стойки или балки-затяжки замкнутого контура. На растяжки навешивают плиты, и под этой нагрузкой нити-растяжки растягиваются. В это время между плитами омоноличивают швы, стыки заваривают. За счет упругих деформаций нитей происходит обжатие плит, и конструкция начинает работать как монолитная оболочка. В цилиндрических покрытиях создают небольшую кривизну покрова в направлении, перпендикулярном осям нитей. Это делается для отвода дождевых вод. С параболических систем в форме перевернутого купола вода поступает к центру покрытия и ее отводят внутренним водостоком. Стояки устраивают по периметру зала, а горизонтальные разводящие трубопроводы прячут в подвесном потолке. Самый простой отвод воды - с шатровых покрытий.

В двупоясных покрытиях применяют два вогнутых пояса, соединенных напряженными нитями. Наиболее распространены циркульные в плане конструкции. Нити по периметру крепят к внешнему кольцу, а в центре - к внутреннему. В зависимости от высоты центрального кольца систему можно делать вогнутой или выпуклой. Выпуклая система позволяет поднять центральную часть покрытия и за счет этого отвести воду к наружным стенам, не прибегая к горизонтальной разводке водостоков, и применить складчатую систему покрытия.

Гипары (гиперболические параболоиды) - это седловидные висячие покрытия. Они формируются в решетчатые мембраны двумя видами нитей. Одни нити несущие, а вторые - напрягающие. По периметру нити заделывают в замкнутый контур. По нитям укладывают плиты или диски. Их омоноличивают, предварительно подгружая балластом или натягивая несущие тросы домкратами. После этого напрягающие нити получают наибольшее напряжение и стыки плит, перпендикулярные этим нитям раскрываются. Их заделывают раствором на расширяющемся цементе. В результате конструкцию превращают в жесткую оболочку. Гипарами перекрывают сооружения, имеющие циркульное очертание плана.

Вантовые покрытия состоят из растянутых элементов - вант; конструкций, работающих на сжатие, - стоек и изгиб - балок, ферм, плит и оболочек. Эти покрытия могут иметь не только пространственную конструктивную схему, но и плоскую. В них используют прямолинейные стержни - ванты. Поэтому вантовые конструкции жестче, кинематические перемещения их элементов меньше, чем у других висячих покрытий.

Оболочки - одинарной и двоякой кривизны. Одинарной кривизны - цилиндрические или конические поверхности. Двоякой кривизны - выполняется в виде купола, эллипсоида. По структуре оболочки бывают: гладкие, ребристые, волнистые, сетчатые, монолитные и сборные.

Применяются еще пневматические перекрытия для перекрытия пролетов до 30 м. Они используются для временных сооружений. Бывают трех видов: воздухоопорные оболочки; пневматические каркасы; пневматические линзы. Воздухоопорные оболочки - это баллоны из прорезиненных или синтетических тканей. Внутри них создается избыточное давление воздуха. Применяются для спортивных сооружений, выставок. Пневматические каркасы - это удлиненные баллоны в виде отдельных арок с избыточным давлением воздуха. Арки соединяются в непрерывный свод с шагом 3-4 м. Пневматические линзы - это большие подушки, надутые воздухом, которые подвешиваются к жестким каркасным конструкциям. Используются для устройства летних цирков, театров.

К большепролетным зданиям относятся здания театров, концертных и спортивных залов, выставочных павильонов, гаражей, ангаров, самолетостроительных и судостроительных заводов и другие здания с пролетами основньщ несущих конструкций 50 м и более. Как правило, такие здания проектируют однопролетными. Перекрывают их балочными системами (в основном фермами), рамами, арками, вантов"ыми (висячими), комбинированными и другими конструкциями.

В стержнях ферм больших пролетов возникают значительные усилия, поэтому вместо традиционных сечений из двух уголков применяют двухстенчатые составные сечения. Высоту ферм назначают в пределах l/s-Vis пролета, при этом она получается более 3,8 м. Перевозить фермы такой высоты по железной дороге нельзя, их собирают на строительной площадке.-

Рамы применяют в покрытиях зданий пролетами 60-120 м. Благодаря жесткому сопряжению ригеля со стойками изгибающие моменты в пролете будут меньше, чем в балочной конструкции:, Это позволяет не только уменьшить площадь сечения поясов, но и высоту ригеля, а следовательно, и высоту здания. Применяют как бесшарнирные, так и двухшариирные рамы. Бесшарнирные легче двухшарнирных, однако для них требуются фундаменты больших размеров и они более чувствительны к изменениям температуры и осадкам опор. Применять их при просадочных грунтах не рекомендуется. Двухстенчатые сечения поясов ферм

Арки применяют в покрытиях ч большепролетных Зданий с пролетами до:200 м. Они выгоднее балочных и рамных систем. Арки бывают: сплошные и сквозные; бесшарнирные, двухшариирные и трех-шарнирные. Бесшарнирные арки при одной и той же нагрузке легче двухшарнирных, но для них, как и для бесшарнирных рам, требуются массивные фундаменты и они так. же более чувствительны к изменениям"температуры и осадке опор.

Чаще всего применяют сквозные двухшарнирные арки со стрелой подъема, равной Vs-Ve. пролета. При увеличении стрелы подъема уменьшается продольная сила в арке и увеличивается изгибающий момент;

Сечения стержней арки могут быть одностенчатыми или двухстенчатыми

Устойчивость основных несущих конструкций (ферм, рам, арок) обеспечивается горизонтальными и вертикальными связями. В первую очередь должны, быть поставлены связи, закрепляющие сжатые пояса сквозных конструкций

Рамы и арки являются статически неопределимыми системами. Бесшарнирные рамы и арки-трижды статически неопределимы, двухшарнирные-однажды статиг чески неопределимы. Обычно за лишнее неизвестное принимают распор - усилие, приближенное значение которого для сквозных рам и арок можно найти по формулам, приведенным в справочнике проектировщика.

Зная распор, определяют изгибающие моменты М, продольные N и поперечные Q силы в раме или арке как в статически определимой конструкции, а по ним - и усилия в стержнях.

Усилия в стержнях сквозных рам и арок можно также определять построением диаграмм усилий. По полученным усилиям подбирают сечения стержней, рассчитывают узлы и сопряжения аналогично тому, как это делают для ферм.

Собственный вес несущих конструкций и вес кровли в< большепролетных сооружениях является основной нагрузкой, существенно влияющей на расход металла на покрытие, поэтому при выборе их конструктивной фор-» мы следует отдавать предпочтение более легким конструкциям. Особенно следует стремиться к снижению соб-» ственного веса кровли, применяя алюминиевые и другие панели покрытий с легким эффективным утеплителем.

Висячими и вантовыми называют покрытия, в которых в качестве несущей конструкции применяют гибкие нити, в основном тросы.

Основные несущие конструкции висячей системы - ванты - работают только на растяжение, поэтому в них полностью используется несущая способность материала

и представляется возможность применять сталь самой высокой прочности.

Транспортирование и монтаж их значительно, упрощаются, что удешевляет сооружение. Отмеченное выше является весьма важным преимуществом висячих систем по сравнению с фермами, рамами и арками. Однако у висячих конструкций есть и серьезные недостатки: они обладают повышенной деформативностью и нуждаются в устройстве специальных опор, для погашения распора.

Для уменьшения деформативности вант применяют различные способы их стабилизации. Например, в двух- поясных вантовых системах жесткость вант увеличивают благодаря устройству так называемых стабилизирующих вант, соединяемых с несущими вантами подвесками и распорками или решеткой из гибких предварительно-напряженных элементов.

Распор зависит от отношения ///. При ///>Ую приращение стрелы провисания нити с увеличением нагрузки незначительно и им можно пренебречь. В этом случае распор можно определять по формуле. По усилию Т подбирают сечение ванты.

Для вант применяют стальные канаты, пучки и пряди из высокопрочной проволоки, круглую горячекатаную сталь повышенной прочности И тонкие листы.

В комбинированных системах сосредоточенные силы передаются на гибкую нить через жесткий элемент, что позволяет значительнр уменьшить их деформативность.

Для большепролетных зданий, в частности для ангаров, применяют консольную комбинированную систему,состоящую из жесткого элемента и подвесок. В качестве Жесткого элемента служит ферма] которая перераспределяет сосредоточенные силы между подвесками. Последние служат ферме промежуточными опорами, и она работает как неразрезная балка на упруго-оседающих опорах. .

Достоинством консольной комбинированной системы является то, что для жесткого элемента (фермы) не требуется устраивать жесткую опору на втором конце. Благодаря этому для ангаров можно легко создать конструкцию ворот больших размеров.

Большепролетные здания могут быть перекрыты также пространственными системами в виде сводов, складок и куполов.