Главная · Бытовая техника · Краткий курс лекций по электростатике. Основные формулы электростатики Электростатика значение

Краткий курс лекций по электростатике. Основные формулы электростатики Электростатика значение

Электроста́тика, раздел теории электричества, в котором изучается взаимодействие неподвижных электрических зарядов . В основе электростатики, изучающей стационарное силовое взаимодействие между макроскопическими неподвижными заряженными телами, заложены три экспериментально установленных факта: наличие двух видов электрических зарядов, существование взаимодействия между ними, осуществляемое электрическим полем , и принцип суперпозиции , когда взаимодействие любых двух зарядов не зависит от присутствия других.

Существует два типа зарядов, положительные, обозначаемые знаком плюс «+», и отрицательные, которым присвоен знак минус «-». Заряды создают вокруг себя электрическое поле. Поле неподвижных зарядов является электростатическим полем . Электрический заряд и электрическое поле - первичные понятия электростатики.

Суммарный заряд тела, как положительный, так и отрицательный всегда кратен некоторому элементарному электрическому заряду . В электростатике изучаются физические величины, усредненные в пространстве и во времени. При усреднении в пространстве применяют обычные методы физики сплошных сред, усреднение по времени позволяет считать стационарными заряды, находящиеся в тепловом движении. Положительные и отрицательные заряды являются составными частями молекул, и все макроскопические тела содержат огромное количество положительных и отрицательных зарядов, но об электростатическом взаимодействии говорят лишь в том случае, когда тело имеет избыток зарядов одного знака. Заряд макроскопического тела определяется суммарным зарядом элементарных частиц, из которых состоит это тело. Усреднение позволяет рассматривать не только отдельные заряды, но и вводить представление об объемной плотности заряда. Закон сохранения зарядов утверждает, что в замкнутой системе заряд сохраняется.

Мерой электрического поля, осуществляющего взаимодействие зарядов, в любой его точке является напряженность . Изображают электрическое поле с помощью силовых линий - линий, касательная к которым совпадает с направлением напряженности поля. Напряженность поля в любой точке пропорциональна величине образующего заряда, поэтому в принципе возможно поставить в соответствие элементарному заряду определенное ограниченное число силовых линий.

Электрические заряды одного знака отталкивают друг друга, заряды противоположного знака - притягиваются. На этом явлении основан принцип работы электрометра . Регистрация взаимодействия зарядов всегда осуществляется на расстояниях, значительно больших, чем межатомные. Между электрическими зарядами, размером которых можно пренебречь, действует сила, величина которой определяется законом Кулона . Закон Кулона - основной закон электростатики, определяет силу взаимодействия неподвижных точечных зарядов в зависимости от их величины и расстояния между ними.

Из закона Кулона следует, что работа электрических сил при перемещении заряда не зависит от пути, по которому заряд движется из одной точки в другую, а определяется лишь положением этих точек в пространстве. Если одну из точек унести в бесконечность, то тогда в каждой точке можно поставить в соответствие электрический потенциал , который характеризует работу, которую нужно совершить, чтобы перенести единичный заряд из бесконечности в данную точку. Если в электрическом поле соединить все точки с одинаковым потенциалом, то мы получим поверхность равных потенциалов, или эквипотенциальную поверхность .

Принцип суперпозиции электрических полей - один из основных принципов электростатики, и является обобщений многих наблюдений. В соответствии с принципом суперпозиции напряженность электрического E поля нескольких неподвижных точечных зарядов q1, q2, q3 ...равна векторной сумме напряженности полей, которые бы создавал каждый из этих зарядов в отсутствии остальных. Фактически, он означает, что присутствие других зарядов не сказывается на поле, создаваемое данным зарядом.

Закон взаимодействия электрических зарядов можно сформулировать в виде теоремы Гаусса , которую можно рассматривать как следствие закона Кулона и принципа суперпозиции. Типичные задачи электростатики - нахождение распределения зарядов на поверхностях проводников по известным полным зарядам или потенциалам каждого из них, а также вычисление энергии системы проводников по их зарядам и потенциалам. Электростатика изучает также поведение различных материалов - проводников и диэлектриков - в электрическом поле.

Электростатика – это учение о покоящихся электрических зарядах и связанных с ними электростатических полях.

1.1. Электрические заряды

Основным понятием электростатики является понятие электрического заряда.

Электрический заряд – это физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Единица электрического заряда – кулон (Кл) – электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 ампер за 1 секунду.

Свойства электрического заряда:

    существуют положительные и отрицательные заряды;

    электрический заряд не изменяется при движении его носителя, т.е. является инвариантной величиной;

    электрический заряд обладает свойством аддитивности: заряд системы равен сумме зарядов составляющих систему частиц;

    все электрические заряды кратны элементарному:

Где e = 1,6 10 -19 Кл;

    суммарный заряд изолированной системы сохраняется – закон сохранения заряда.

В электростатике используется физическая модель – точечный электрический заряд – заряженное тело, форма и размеры которого несущественны в данной задаче.

1.2. Закон Кулона. Электрическое поле

Взаимодействие точечных зарядов, т.е. таких, размерами которых можно пренебречь по сравнению с расстояниями между ними, определяется законом Кулона : сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна величине каждого из них, обратно пропорциональна квадрату расстояния между ними и направлена по линии, соединяющей заряды:

где
- единичный вектор, направленный по линии, соединяющей заряды.

Направление векторов силы Кулона показано на рис. 1.

Рис.1. Взаимодействие точечных зарядов

В системе СИ

где 0 = 8,85 10 -12 Ф/м – электрическая постоянная

Если взаимодействующие заряды находятся в изотропной среде, то кулоновская сила:

где  - диэлектрическая проницаемость среды – безразмерная величина, показывающая во сколько раз сила взаимодействия F между зарядами в данной среде меньше их силы взаимодействия в вакууме F 0 :

Тогда закон Кулона в системе СИ:

Сила направлена по прямой, соединяющей взаимодействующие заряды, т.е. является центральной, и соответствует притяжению (F <0 ) в случае разноименных зарядов и отталкиванию (F >0 ) в случае одноименных зарядов.

Таким образом, пространство, где находятся электрические заряды, обладает определенными физическими свойствами: на любой заряд, помещенный в это пространство, действуют электрические силы.

Пространство, в котором действуют электрические силы, называется электрическим полем.

Источником электростатического поля являются покоящиеся электрические заряды. Любое заряженное тело создает в окружающем пространстве электрическое поле. Это поле действует с определенной силой на внесенный в него заряд. Следовательно, взаимодействие заряженных тел осуществляется по схеме:

заряд поле заряд.

Итак, электрическое поле – это одна из форм материи, основное свойство которой – передавать действие одних заряженных тел на другие.

... Все предсказания электростатики следуют из двух ее законов.
Но одно дело высказать эти вещи математически, и совсем другое -
применять их с легкостью и с нужной долей остроумия.

Ричард Фейнман

Электростатика изучает взаимодействие неподвижных зарядов. Ключевые эксперименты электростатики были проведены в XVII-XVIII веках. С открытием электромагнитных явлений и той революции в технологиях, которые они произвели, интерес к электростатике на некоторое время был утерян. Однако современные научные исследования показывают огромное значение электростатики для понимания многих процессов живой и неживой природы.

Электростатика и жизнь

В 1953 году американские ученые С. Миллер и Г. Юри показали, что одни из «кирпичиков жизни» - аминокислоты - могут быть получены путем пропускания электрического разряда через газ, близкий по составу первобытной атмосфере Земли, состоящей из метана, аммиака, водорода и паров воды. В течение последующих 50 лет другие исследователи повторили эти опыты и получили те же результаты. При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции. Таким образом, энергия, необходимая для зарождения жизни на Земле и ее эволюции, действительно могла быть электростатической энергией разрядов молний (рис. 1).

Как электростатика вызывает молнии

В каждый момент времени в разных точках Земли сверкает около 2000 молний, в каждую секунду примерно 50 молний ударяют в Землю, каждый квадратный километр поверхности Земли поражается молнией в среднем шесть раз в году. Еще в XVIII веке Бенджамин Франклин доказал, что молнии, бьющие из грозовых облаков, это электрические разряды, переносящие на Землю отрицательный заряд. При этом каждый из разрядов снабжает Землю несколькими десятками кулонов электричества, а амплитуда тока при ударе молнии составляет от 20 до 100 килоампер. Скоростная фотосъемка показала, что разряд молнии длится лишь десятые доли секунды и что каждая молния состоит из нескольких более коротких.

С помощью измерительных приборов, установленных на атмосферных зондах, в начале XX века было измерено электрическое поле Земли, напряженность которого у поверхности оказалась равной приблизительно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому можно сказать, что электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2–4 кА, плотность которого составляет (1–2)·10 –12 А/м 2 , и выделяется энергия до 1,5 ГВт. И если бы не было молний, это электрическое поле исчезло бы! Получается, что в хорошую погоду электрический конденсатор Земли разряжается, а при грозе - заряжается.

Грозовое облако - это огромное количество пара, часть которого сконденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6–7 км, а низ - нависать над землей на высоте 0,5–1 км. Выше 3–4 км облака состоят из льдинок разных размеров, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха, поднимающегося снизу от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, и они увлекаются восходящими потоками воздуха и по дороге все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки собираются преимущественно в верхней части облака, а отрицательно заряженные крупные - внизу (рис. 2). Другими словами, верхушка облака заряжается положительно, а низ - отрицательно. При этом на земле непосредственно под грозовым облаком наводятся положительные заряды. Теперь все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Характерно, что перед грозой напряженность электрического поля Земли может достигать 100 кВ/м, т. е. в 1000 раз превышать ее значение в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом (рис. 3).

Фульгурит - след молнии на земле

При разряде молнии выделяется энергия порядка 10 9 –10 10 Дж. Большая часть этой энергии тратится на гром, нагрев воздуха, световую вспышку и излучение других электромагнитных волн, и только маленькая часть выделяется в том месте, где молния входит в землю. Но и этой «маленькой» части вполне достаточно, чтобы вызвать пожар, убить человека или разрушить здание. Молния может разогревать канал, по которому она движется, до 30 000°C, что гораздо выше температуры плавления песка (1600–2000°C). Поэтому молнии, попадая в песок, плавят его, а раскаленный воздух и водяные пары, расширяясь, формируют из расплавленного песка трубку, которая через некоторое время застывает. Так рождаются фульгуриты (громовые стрелы, чертовы пальцы) - полые цилиндры, сделанные из оплавленного песка (рис. 4). Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров.

Как электростатика защищает от молний

К счастью, большинство разрядов молнии происходят между облаками и поэтому не угрожают здоровью людей. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, ежегодно от удара молнии страдают около тысячи человек и более ста из них погибают. Ученые давно пытались защитить людей от этой «кары божьей». Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук в статье об электричестве, написанной для знаменитой французской «Энциклопедии», защищал традиционные способы предотвращения молнии - колокольный звон и стрельба из пушек, которые, как он считал, оказываются довольно эффективными.

В 1750 году Франклин изобрел громоотвод (молниеотвод). Пытаясь защитить здание Капитолия столицы штата Мэриленд от удара молнии, он прикрепил к зданию толстый железный стержень, возвышающийся над куполом на несколько метров и соединенный с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям. Механизм действия громоотвода легко объяснить, если вспомнить, что напряженность электрического поля вблизи поверхности заряженного проводника увеличивается с ростом кривизны этой поверхности. Поэтому под грозовым облаком вблизи острия громоотвода напряженность поля будет так высока, что вызовет ионизацию окружающего воздуха и коронный разряд в нем. В результате вероятность попадания молнии в громоотвод значительно возрастет. Так знание электростатики не только позволило объяснить происхождение молний, но и найти способ защититься от них.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие божьего гнева, казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы.

Любопытный случай произошел в 1780 году в одном небольшом городке на севере Франции, где горожане потребовали снести железную мачту громоотвода и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали... Максимилиан Робеспьер.

Ну, а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Электростатика, возвращающая жизнь

Энергия разряда конденсатора не только привела к возникновению жизни на Земле, но и может вернуть жизнь людям, у которых клетки сердца перестали синхронно сокращаться. Асинхронное (хаотичное) сокращение клеток сердца называют фибрилляцией. Фибрилляцию сердца можно прекратить, если пропустить через все его клетки короткий импульс тока. Для этого к грудной клетке пациента прикладывают два электрода, через которые пропускают импульс длительностью около десяти миллисекунд и амплитудой до нескольких десятков ампер. При этом энергия разряда через грудную клетку может достигать 400 Дж (что равно потенциальной энергия пудовой гири, поднятой на высоту 2,5 м). Устройство, обеспечивающее электрический разряд, прекращающий фибрилляцию сердца, называют дефибриллятором. Простейший дефибриллятор представляет собой колебательный контур, состоящий из конденсатора емкостью 20 мкФ и катушки индуктивностью 0,4 Гн. Зарядив конденсатор до напряжения 1–6 кВ и разрядив его через катушку и пациента, сопротивление которого составляет около 50 Ом, можно получить импульс тока, необходимый для возвращения пациента к жизни.

Электростатика, дающая свет

Люминесцентная лампа может служить удобным индикатором напряженности электрического поля. Чтобы убедиться в этом, находясь в темном помещении, потрем лампу полотенцем или шарфом - в результате внешняя поверхность лампового стекла зарядится положительно, а ткань - отрицательно. Как только это произойдет, мы увидим всполохи света, возникающие в тех местах лампы, к которым мы прикасаемся заряженной тканью. Измерения показали, что напряженность электрического поля внутри работающей люминесцентной лампы составляет около 10 В/м. При такой напряженности свободные электроны обладают необходимой энергией для ионизации атомов ртути внутри люминесцентной лампы.

Электрическое поле под высоковольтными линиями электропередач - ЛЭП - может достигать очень высоких значений. Поэтому если в темное время суток люминесцентную лампу воткнуть в землю под ЛЭП, то она загорится, и довольно ярко (рис. 5). Так с помощью энергии электростатического поля можно освещать пространство под ЛЭП.

Как электростатика предупреждает о пожаре и делает дым чище

В большинстве случаев при выборе типа детектора пожарной сигнализации предпочтение отдается дымовому датчику, так как пожар обычно сопровождается выделением большого количества дыма и именно этот тип детектора способен предупредить людей в здании об опасности. Дымовые датчики используют ионизацию или фотоэлектрический принцип для обнаружения дыма в воздухе.

В ионизационных детекторах дыма имеется источник α-излучения (как правило, америций-241), ионизирующий воздух между металлическими пластинами-электродами, электрическое сопротивление между которыми постоянно измеряется с помощью специальной схемы. Образующиеся в результате α-излучения ионы обеспечивают проводимость между электродами, а оказывающиеся там микрочастицы дыма связываются с ионами, нейтрализуют их заряд и увеличивают таким образом сопротивление между электродами, на что реагирует электрическая схема, подавая сигнал тревоги. Датчики, устроенные на этом принципе, демонстрируют весьма впечатляющую чувствительность, реагируя еще до того, как самый первый признак дыма обнаруживается живым существом. Следует отметить, что используемый в датчике источник радиации никакой опасности для человека не представляет, так как альфа-лучи не могут пройти даже через лист бумаги и полностью поглощаются слоем воздуха толщиной в несколько сантиметров.

Способность частичек пыли к электризации широко используется в промышленных электростатических пылеуловителях. Газ, содержащий, например, частицы сажи, поднимаясь вверх, проходит через отрицательно заряженную металлическую сетку, в результате чего эти частицы приобретают отрицательный заряд. Продолжая подниматься вверх, частицы оказываются в электрическом поле положительно заряженных пластин, к которым они притягиваются, после чего частицы падают в специальные емкости, откуда их периодически удаляют.

Биоэлектростатика

Одной из причин астмы являются продукты жизнедеятельности пылевых клещей (рис. 6) - насекомых размером около 0,5 мм, живущих в нашем доме. Исследования показали, что приступы астмы вызываются одним из белков, который выделяют эти насекомые. Структура этого белка напоминает подкову, оба конца которой заряжены положительно. Электростатические силы отталкивания между концами такого подковообразного белка делают его структуру стабильной. Однако свойства белка можно изменить, если нейтрализовать его положительные заряды. Это удается сделать, увеличив концентрацию отрицательных ионов в воздухе с помощью любого ионизатора, например люстры Чижевского (рис. 7). Одновременно с этим уменьшается и частота приступов астмы.

Электростатика помогает не только обезвреживать белки, выделяемые насекомыми, но и ловить их самих. Уже говорилось о том, что волосы «встают дыбом», если их зарядить. Можно себе представить, что испытывают насекомые, когда оказываются электрически заряженными. Тончайшие волоски на их лапках расходятся в разные стороны, и насекомые теряют способность передвигаться. На таком принципе основана ловушка для тараканов, показанная на рисунке 8. Тараканов привлекает сладкая пудра, предварительно электростатически заряженная. Пудрой (на рисунке она белая) покрывают наклонную поверхность, находящуюся вокруг ловушки. Оказавшись на пудре, насекомые становятся заряженными и скатываются в ловушку.

Что такое антистатики?

Одежда, ковры, покрывала и т. п. предметы заряжаются после контакта с другими предметами, а иногда и просто со струями воздуха. В быту и на производстве заряды, возникающие таким образом, часто называют статическим электричеством.

При нормальных атмосферных условиях натуральные волокна (из хлопка, шерсти, шелка и вискозы) хорошо впитывают влагу (гидрофильны) и поэтому слегка проводят электричество. Когда такие волокна касаются других материалов или трутся о них, на их поверхностях появляются избыточные электрические заряды, но на очень короткое время, поскольку заряды сразу же стекают обратно по влажным волокнам ткани, содержащим различные ионы.

В отличие от натуральных, синтетические волокна (полиэфирные, акриловые, полипропиленовые) плохо впитывают влагу (гидрофобны), и на их поверхностях имеется меньшее количество подвижных ионов. При контакте синтетических материалов друг с другом они заряжаются противоположным зарядами, но так как эти заряды стекают очень медленно, материалы прилипают друг к другу, создавая неудобства и неприятные ощущения. Кстати, волосы по структуре очень близки к синтетическим волокнам и тоже гидрофобны, поэтому при контакте, например, с расческой они заряжаются электричеством и начинают отталкиваться друг от друга.

Чтобы избавиться от статического электричества, поверхность одежды или другого предмета можно смазать веществом, которое удерживает влагу и этим увеличивает концентрацию подвижных ионов на поверхности. После такой обработки возникший электрический заряд быстро исчезнет с поверхности предмета или распределится по ней. Гидрофильность поверхности можно увеличить, смазав ее поверхностно-активными веществами, молекулы которых похожи на мыльные молекулы - одна часть очень длинной молекулы заряжена, а другая нет. Вещества, препятствующие появлению статического электричества, называют антистатиками. Антистатиком является, например, и обычная угольная пыль или сажа, поэтому, чтобы избавиться от статического электричества, в состав пропитки ковролиновых покрытий и обивочных материалов включают так называемую ламповую сажу. Для этих же целей в такие материалы добавляют до 3% натуральных волокон, а иногда и тонкие металлические нити.

где F - модуль силы взаимодействия двух точечных зарядов величиной q 1 и q 2 , r - расстояние между зарядами, - диэлек- трическая проницаемость среды, 0 - диэлектрическая постоянная.

    Напряженность электрического поля

где - сила, действующая на точечный заряд q 0 , помещенный в данную точку поля.

    Напряженность поля точечного заряда (по модулю)

где r - расстояние от заряда q до точки, в которой определяется напряженность.

    Напряженность поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей)

где - напряженность в данной точке поля, создаваемого i-тым зарядом.

    Модуль напряженностиполя, создаваемого бесконечной равномерно заряженной плоскостью:

где
- поверхностная плотность заряда.

    Модуль напряженности поля плоского конденсатора в средней его части

.

Формула справедлива, если расстояние между пластинами много меньше линейных размеров пластин конденсатора.

    Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром) на расстоянии r от нити или оси цилиндра по модулю:

,

где
- линейная плотность заряда.

а) через произвольную поверхность, помещенную в неоднородное поле

,

где - угол между вектором напряженности и нормалью к элементу поверхности, dS - площадь элемента поверхности, E n - проекция вектора напряженности на нормаль;

б) через плоскую поверхность, помещенную в однородное электрическое поле:

,

в)через замкнутую поверхность:

,

где интегрирование ведется по всей поверхности.

    Теорема Гаусса. Поток вектора напряженности через любую замкнутую поверхность S равен алгебраической сумме зарядов q 1 , q 2 ... q n , охватываемых этой поверхностью, деленной на 0 .

.

Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

а) поток сквозь плоскую поверхность, если поле однородно

б) в случае неоднородного поля и произвольной поверхности

,

где D n - проекция вектора на направление нормали к элементу поверхности, площадь которой равна dS .

    Теорема Гаусса. Поток вектора электрической индукции сквозь замкнутую поверхность S , охватывающую заряды q 1 , q 2 ... q n , равен

,

где n - число зарядов, заключенных внутри замкнутой поверхности (заряды со своим знаком).

    Потенциальная энергия системы двух точечных зарядов Q и q при условии, что W  = 0, находится по формуле:

W =
,

где r - расстояние между зарядами. Потенциальная энергия положительна при взаимодействии одноименных зарядов и отрицательна при взаимодействии разноименных.

    Потенциал электрического поля, созданного точечным зарядом Q на расстоянии r

 =
,

    Потенциал электрического поля, созданного металлической сферой радиуса R , несущей заряд Q :

 =
(r ≤ R ; поле внутри и на поверхности сферы),

 =
(r > R ; поле вне сферы).

    Потенциал электрического поля, созданного системой n точечных зарядов в соответствии с принципом суперпозиции электрических полей равен алгебраической сумме потенциалов 1 , 2 ,…, n , создаваемых зарядами q 1 , q 2 , ..., q n в данной точке поля

= .

    Связь потенциалов с напряженностью:

а) в общем случае = -qrad или =
;

б) в случае однородного поля

Е =
,

где d - расстояние между эквипотенциальными поверхностями с потенциалами 1 и 2 вдоль силовой линии;

в) в случае поля, обладающего центральной или осевой симметрией

где производная берется вдоль силовой линии.

    Работа, совершаемая силами поля по перемещению заряда q из точки 1 в точку 2

A = q ( 1 - 2 ),

где ( 1 - 2 ) - разность потенциалов начальной и конечной точек поля.

    Разность потенциалов и напряженность электрического поля связаны соотношениями

( 1 - 2 ) =
,

где Е е - проекция вектора напряженности на направление перемещения dl .

    Электроемкость уединенного проводника определяется отношением заряда q на проводнике к потенциалу проводника .

.

    Электроемкость конденсатора:

,

где ( 1 - 2 ) = U - разность потенциалов (напряжение) между обкладками конденсатора; q - модуль заряда на одной обкладке конденсатора.

    Электроемкость проводящего шара (сферы) в СИ

с = 4 0 R ,

где R - радиус шара, - относительная диэлектрическая проницаемость среды; 0 = 8,8510 -12 Ф/м.

    Электроемкость плоского конденсатора в системе СИ:

,

где S - площадь одной пластины; d - расстояние между обкладками.

    Электроемкость сферического конденсатора (две концентри- ческие сферы радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком, с диэлектрической проницаемость ):

.

    Электроемкость цилиндрического конденсатора (два коакси-альных цилиндра длиной l и радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью )

.

    Емкость батареи из n конденсаторов, соединенных после- довательно, определяется соотношением

.

Последние две формулы применимы для определения емкости многослойных конденсаторов. Расположение слоев параллельно пластинам соответствует последовательному соединению однослойных конденсаторов; если же границы слоев перпендикулярны пластинам, то, считают, что имеется параллельное соединение однослойных конденсаторов.

    Потенциальная энергия системы неподвижных точечных зарядов

.

Здесь i - потенциал поля, создаваемого в той точке, где находится заряд q i , всеми зарядами, кроме i -го; n - общее число зарядов.

    Объемная плотность энергии электрического поля (энергия, отнесенная к единице объема):

=
= = ,

где D - величина вектора электрического смещения.

    Энергия однородного поля:

W = V .

    Энергия неоднородного поля:

W =
.

Федеральное агентство по образованию ГОУ ВПО Тульский государственный педагогический университет

имени Л. Н. Толстого

Ю. В. Бобылев В. А. Панин Р. В. Романов

КУРС ОБЩЕЙ ФИЗИКИ

электродинамика

Краткий курс лекций

Допущено Учебно-методическим объединением

по направлениям педагогического образования Министерства образования и науки РФ в качестве учебного пособия

для студентов высших учебных заведений, обучающихся по направлению 540200 (050200)

«Физико-математическое образование»

Тула Издательство ТГПУ им. Л. Н. Толстого

ББК 22.3я73 Б72

Рецензент –

профессор Ю. Ф. Головнев (ТГПУ им. Л. Н. Толстого)

Бобылев, Ю. В.

Б72 Курс общей физики. Электродинамика: Краткий курс лекций / Ю. В. Бобылев, В. А. Панин, Р. В. Романов.– Тула: Изд-во Тул. гос. пед. унта им. Л. Н. Толстого, 2007.– 107 с.

Данное учебное пособие представляет собой краткий лекционный курс по электромагнетизму и содержит необходимый материал, который полностью соответствует Государственному образовательному стандарту.

Пособие предназначено главным образом для студентов, которые по тем или иным причинам не могут посещать или посещают нерегулярно аудиторные занятия и занимаются самообразованием, в том числе и при дистанционном обучении.

При сокращении математической части пособие может быть позиционировано для студентов нефизических специальностей.

© Ю. В. Бобылев, В. А. Панин, Р. В. Романов,

© Издательство ТГПУ им. Л. Н. Толстого,

Предисловие...........................................................................................

Введение..................................................................................................

Лекция 1. Электрический заряд...........................................................

Лекция 2. Закон Кулона........................................................................

Лекция 4. Теорема Гаусса.....................................................................

Лекция 5. Потенциал электрического поля........................................

Лекция 6. Потенциал электрического поля (продолжение)..............

Лекция 7. Проводники в электрическом поле....................................

Лекция 8. Диэлектрики в электрическом поле...................................

Лекция 9. Электрическая емкость. Конденсаторы.............................

Лекция 10. Электростатическая энергия.............................................

Лекция 11. Постоянный ток. Основные понятия и законы.. ............

Лекция 12. Электрические цепи...........................................................

Лекция 13 Ток в металлах.....................................................................

Лекция 14. Ток в вакууме.....................................................................

Лекция 15. Ток в газах. ..........................................................................

Лекция 16. Ток в электролитах. ...........................................................

Лекция 17. Основные законы магнетизма. .........................................

Лекция 18. Основные законы магнетизма (продолжение)................

Лекция 19. Движение заряженных частиц в магнитном поле..........

Лекция 20 Электромагнитная индукция. ............................................

Лекция 21. Электрический колебательный контур............................

Лекция 22. Переменный ток.................................................................

Лекция 23. Электрическое поле...........................................................

Лекция 24. Уравнения Максвелла.......................................................

Лекция 25. Электромагнитные волны.................................................

Заключение.............................................................................................

Литература..............................................................................................

Предисловие

Авторы данного пособия, работают на факультете математики, физики и информатики Тульского государственного педагогического университета им. Л. Н. Толстого и уже неоднократно читали в рамках курсов общей и теоретической физики различные дисциплины и спецкурсы, связанные с электромагнитными процессами, включая явления в неравновесных материальных средах.

Опыт преподавания, сформированный значительным стажем работы (от 20 до 25 лет) подсказали концепцию создания единого сквозного курса электродинамики. В него должны войти без дублирования и повторений, что достаточно важно, все темы, изучаемые в курсах общей и теоретической физики, такие как «Электричество и магнетизм», «Электродинамика и основы СТО», «Электродинамика сплошных сред» и так далее.

Такой курс позволит выдержать единый стиль изложения и оформления, одинаковые обозначения, единую систему единиц, схожее использование математического аппарата, что, безусловно, упростит восприятие этого непростого материала студентами.

Следует отметить, что научные интересы авторов лежат в областях электродинамики сильнонеравновесной плазмы, нелинейных явлений в электродинамических системах и структурах различной природы, отдельных вопросов плазменной электроники и радиофизики, что, безусловно, делает настоящее пособие максимально приближенным к современным научным достижениям.

Начало реализации указанной концепции было положено в 2002 году выходом учебного пособия по курсу “Электричество и магнетизм: курс лекций. Часть 1. Электростатика», которое было допущено Министерством образования в качестве учебного пособия для студентов физико-математических специальностей.

Преподавание с использованием этого пособия показало его несомненную эффективность и востребованность студентами. В 2004 году вышел сборник задач по курсу «Электричество и магнетизм». Подготовка этих материалов в формате WEB-документа позволила применить не только для студентов дневного отделения, но и при дистанционном обучении.

В настоящем пособии применен более лаконичный “телеграфный” стиль изложения, а язык, вообще говоря, далёк от академического и максимально приближен к разговорному, как, собственно и должно быть, поскольку материал представляет собой запись того, что студент услышал и увидел на лекции.

Использовано большое количество рисунков, которые, однако, схематичны и упрощены. Отдельные сложные формулы приведены с подробными выводами, что особенно будет ценно для студентов – выпускников сельских школ. Кроме того, как считают авторы, в пособии присутствует значительное число примеров решений задач, облегчающих восприятие

теоретического материала и способствующих развитию практических умений и навыков будущего учителя.

В качестве основной использована Международная система единиц (СИ).

В целом материал соответствует минимуму, указанному в Государственном образовательном стандарте высшего профессионального образования и учебному плану.

Авторы считают, что данное учебное пособие по электромагнетизму окажет помощь студентам, которые по тем или иным (будем считать уважительным) причинам не могут посещать или посещают нерегулярно аудиторные занятия и занимаются самообразованием. Таких студентов становится всё больше, но заставить их читать традиционные учебники и скрупулёзно выбирать из них нужные сведения, учитывая реалии настоящего времени, весьма проблематично. Данное же пособие содержит тот необходимый уже отобранный материал, который полностью соответствует Государственному образовательному стандарту, чтобы среднестатистический студент получил положительную оценку на экзамене без привлечения дополнительной литературы.

Для студентов же, которые хотят получить более глубокие знания, которые планируют продолжить обучение в магистратуре, в конце этого пособия приводится достаточно полный список полезной литературы.

Не следует думать, что данное пособие годится только для отстающих студентов. Оно предназначено для всех студентов с той лишь разницей, что студент, посетивший лекцию и студент, пропустивший лекцию, должны будут работать с этим пособием разными методами.

Более того, в условиях перехода на двухуровневое обучение и в условиях все большего проникновения и реализации основных идей Болонского процесса, подобные пособия, которые с одной стороны достаточно унифицированы под жесткие требования государственного стандарта, а с другой – имеют несомненную «печать» индивидуальности и творческих взглядов авторов, будут все более и более востребованы на «студенческом рынке».

Следует также отметить, что настоящее пособие при сокращении математической части может быть позиционировано для студентов не физических специальностей.

Тула, апрель 2007

Введение

1. Электродинамика как наука

Определение: Электродинамика – наука, изучающая поведение электромагнитного поля, осуществляющего взаимодействие между электрическими зарядами.

2. Историческая справка

Здесь можно привести практически весь курс истории физики, к которому мы Вас и отсылаем.

3. Теория дально - и близкодействия

Долгое время в физике господствовала теория дальнодействия, которая, опираясь на математические законы, описывала взаимодействие тел без указания механизма данного взаимодействия. Это связано с тем, что хорошо сформулированные законы Ньютона прекрасно описывали все механические явления, сами, при этом, не поддаваясь какому-либо объяснению. Механический подход распространился и на другие разделы физики (закон Кулона). Трудами Остроградского, Гаусса, Лапласа и т.д. эта теория приобрела законченный математический вид. Вместе с тем ученых беспокоил вопрос о том, как же и с помощью чего передаётся взаимодействие. Фарадей ввел понятие поля, которое и является переносчиком взаимодействия. Долгое время теории существовали равноправно.

В квазистатических полях они приводят к одинаковым результатам. И только после опытов Герца и Попова с быстропеременными полями вопрос был однозначно решен в пользу теории близкодействия. Считается, что взаимодействия между зарядами осуществляются с помощью электромагнитного поля, которое распространяется в пространстве. В вакууме поле распространяется со скоростью

c=299792458 м/с≈3,00·108 м/с.

Электрический заряд

1. Общие понятия

Определение: Электрический заряд – это физическая величина, определяющая электромагнитное поле, посредством которого осуществляется взаимодействие между зарядами.

Несмотря на различные способы получения заряда, существует электричество только двух сортов: «стеклянное» и «смоляное» («+» и «–»). Хотя существует мнение, что на самом деле это избыток или недостаток электричества одного сорта, а именно отрицательного. В природе количество положительного электричества примерно равно количеству отрицательного.

2. Способы получения наэлектризованных тел

3. Измерение заряда

Определение: Пробный заряд – это заряд, который не вносит искажений в существующее поле.

Пусть существует некоторое электрическое поле. В какую-то точку поля помещаем пробный заряд. Поле на него будет действовать с некоторой силой.

Вносим в это поле другой пробный заряд. Если силы направлены в одну сторону, то заряды одноименные, если нет, то разноименные.

F 1 = F 2 q 1 q 2

F 1 = const = q 1 F 2 q 2

Зная отношения сил, знаем и отношение зарядов, а, приняв один из зарядов за эталон, указываем принципиальный способ измерения зарядов.

4. Единица заряда

Определение: 1 Кулон – единица СИ электрического заряда, равная заряду, протекающему через поперечное сечение проводника за 1 с при силе неизменяющегося тока 1 А.

5. Закон сохранения заряда

Если на замкнутую систему падает энергичный фотон, может возникнуть парный электрический заряд. В сумме заряд системы не изменится. Все эксперименты показывают, что заряду присуще свойство сохраняться, поэтому это положение возводится в ранг постулата.

Закон: В замкнутой системе электрический заряд есть величина постоянная.

∑ qi = const.

i= 1

6. Заряд Земли

Заряд Земли отрицателен.

q = − 6 105 Кл .

7. Инвариантность заряда

Принципиально заряды измеряются путем сравнения сил. Сила является инвариантом, т.е. она одинакова в разных системах отсчёта. Следовательно, отношение зарядов также инвариантно. А если и эталон заряда одинаков, то можно говорить, что заряд имеет одно и то же количественное значение в разных системах отсчета.

8. Дискретность заряда

Любой заряд можно представить в виде

q = N e , N = 0, ± 1, ± 2, ...

|e| = 1,6021892(46)·10-19 Кл - элементарный заряд

Говорят, что электрический заряд дискретен или квантуется, т.е. существует некоторая минимальная порция заряда, которую дальше разделить нельзя.

9. Модели заряженных тел

Как правило, считается, что заряд непрерывно «размазан» по телу и вводятся понятия физически бесконечно малых заряда и объема.

<< dV <

10− 27

÷ 10

− 30 м 3 ;

<< dq << Q ;

Объёмная плотность

Поверхностная

Линейная плотность

плотность

ρ =

= ρ (x , y , z )

σ = dq

τ = dq

Q = ∫ ρ (x, y, z) dV

Q = ∫ σ dS

Q = ∫ τ dl

V тела

S тела

L тела

10. Точечный заряд

Определение: Точечным зарядом называется материальная точка, обладающая зарядом.

Плотность точечного заряда может быть записана в виде формулы;

ρ (r ) = q δ (r − r 0 ).

Здесь r 0 – радиус-вектор, определяющий положение точечного заряда; δ (r − r 0 )

– дельта-функция Дирака.

11. Дельта функция или функция Дирака.

В одномерном случае эта функция определяется следующим образом:

0, x ≠ 0

∫ δ (x) dx = 1

δ (x ) = ∞ , x = 0

Отсюда следует также, что