Главная · Освещение · Минимальный часовой расход воды. Определение расчетных суточных расходов воды. Сколько воды нужно человеку для комфортной жизни

Минимальный часовой расход воды. Определение расчетных суточных расходов воды. Сколько воды нужно человеку для комфортной жизни

Разделим потребители воды на две категории: одна категория потребляет воду периодически, другая — длительное время.

Первая категория включает в себя точки водораз-бора, потребляющие воду в течение максимум 10 минут, например, умывальники, кухонные мойки, туалеты и т.д. Отличительной чертой этой категории является то, что вода никогда не льется одновременно из всех кранов. Семья, состоящая из двух человек, к примеру, обычно может использовать не более двух кранов одновременно, независимо от того, сколько их имеется в доме.

Более того, стиральные и посудомоечные машины забирают воду периодически, в зависимости от установленной программы. Поэтому очевидно, что выбор насоса с очень высокой производительностью экономически невыгоден с точки зрения стоимости, т. к. он будет использован не на полную мощность.

В таблице на следующей странице представлен нормальный расход воды для различных типов потребителей при периодическом использовании. Нормальный расход — это среднее потребление воды при достаточном давлении насоса, обычно оно составляет 10 метров.

Рис.91 Водоснабжение зданий

Рис.92 Различные области применения воды

Нормальный расчет расхода воды в наиболее часто используемых точках водоразбора

Потребители

Нормальный расход q n

Холодная вода

Горячая вода

л/с

м 3 /ч

л/с

м 3 /ч

Ванна

1,08

1,08

Биде

0,36

1,08

Душ

0,72

1,08

Раковина для умывания

0,36

1,08

Кухонная мойка

0,72

1,08

Душевые, используемые одновременно (например, на предприятиях)

0,36

1,08

Раковины для мытья, используемые одновременно (например, на предприятиях)

0,03

0,11

0,03

0,11

Питьевые чаны для скота

0,03

0,11

Слив писсуара

1,44

Слив унитаза

5,40

Краны с питьевой водой в конюшнях

0,72

0,72

0,72

0,72

Туалетный бачок

0,36

ий пример

Потребители

Нормальный расход q n

Холодная вода

Горячая вода

л/с

м 3 /ч

л/с

м 3 /ч

Ванна

1,08

1,08

Душ

0,72

1,08

Раковина для умывания

0,36

1,08

Кухонная мойка

0,72

1,08

Домашние стиральные и посудомоечные машины

0,72

0,72

Туалетный бачок

0,36

Всего

3,96

3,60

Полный нормальный расход составляет:

1,1 л/с (холодная вода) + 1 л/с (горячая вода) = 2,1 л/с, что соответствует 7,56 м 3 /ч.

Рис.93 Диаграмма, показывающая возможный максимальный расход воды

Возможный максимальный расход воды

Такого расхода на практике фактически не бывает, и он рассчитывается как максимальный расход, который теоретически может иметь место.

Точка водоразбора с наибольшим нормальным расходом определяет, какую характеристику (1, 2, 3 или 4) использовать. Если наибольший нормальный расход в доме приходится на ванну (0,3 л/с), то должна быть применена характеристика №3.

По оси Х из точки 2,1 проведите вертикальную линию вверх до пересечения с кривой характеристики №3. Далее из точки пересечения выведите горизонтальную линию до пересечения с вертикальной осью Y

Для данного примера, по диаграмме, нормальным наивысшим расходом будет 0,57 л/с, что соответствует 2,05 м 3 /ч для всех точек водоразбора периодического использования (категория 1).

Продолжительное использование

После подсчета возможного максимального расхода из потребителей, относящихся к категории 1, добавляется нормальный расход потребителей категории 2.

Нормальный расход для точек водоразбора продолжительного использования

Потребители

Нормальный расход q n

Холодная вода

Горячая вода

л/с

м 3 /ч

л/с

м 3 /ч

Тепловые насосные установки для отвода тепла

0,72

Полив сада и газона (каждый распылитель)

0,72

Наполнение плавательного бассейна

0,72

охлаждение молока и испарителей

0,72

оросительные системы

Запросить производителя

Максимальное потребление

Если в доме имеется тепловой насос (охладитель) для отвода тепла, с помощью которого происходит охлаждение летом и подогрев зимой, а также краны для поливки сада и газонов, то полное максимальное потребление будет следующим:

Бытовое использование

0,57

2,05

Тепловой насос

0,72

Полив сада

0,72

Полное максимальное потребление

0,97

3,49

На работу центробежного насоса при перекачивании воды оказывают влияние несколько факторов:

  • Высота всасывания (от поверхности воды до насоса)
  • Потери на трение во всасывающем трубопроводе и клапане
  • Высота от насоса до наивысшей точки водораз-бора
  • Потери на трение в напорном трубопроводе (в зависимости от производительности)
  • Необходимое минимальное давление в кранах (в зависимости от фитингов)

Рис.94 Фактический напор насоса

При подсчете фактического напора насоса должна быть использована величина максимального водо-потребления, в данном случае 0,97 л/с (3,49 м 3 /ч).

Рис.95 Потери напора во всасывающем и обратном клапанах типа BVF и MVF.

Виды потерь (см. рис. 97, 98 и 99)

Потери в метрах

Потери на трение во всасывающем клапане

0,80

Потери на трение в 8 метровой 11"" всасывающей трубе составляют 8 х 0,08 м

0,64

Потери на трение в 60 метровом 11"" напорном трубопроводе:

Прямые участки труб: 60 х 0,08 м

6 колен, 3 клапана 0,05 (6 х 0,05 + 3 х 1,5)

4,80 0,38

Потери на трение в фитингах верхних кранов (установленные производителем при расходе 0,2 л/с)

2,00

Высота всасывания (от уровня воды до насоса)

6,05

Высота от насоса до наивысшей точки водоразбора

21,50

Необходимое минимальное давление в кране (установленное производителем при расходе 0,2 л/с)

10,00

Фактический напор насоса при 3,49 м 3 /ч

46,17

Рис.96 Потери давления в горячих оцинкованных стальных трубах с отложениями

Диаграммы потерь на трение

Данная таблица и диаграммы для расчета потерь на трение на прямых участках трубопровода и таких участках, как клапаны, колена и т. д., не обязательно идентичны тем, которые Вы используете в своих расчетах, но принципы их совпадают. Вы можете использовать тот вариант, который считаете наиболее подходящим для себя.

На практике 80% продаваемых насосов устанавливаются взамен старых, отработавших свой срок. При подборе насоса для замены часто остаются неизвестными такие параметры системы, как возраст труб, тип обратного клапана в скважине, тип водопроводных кранов в доме и уровень отложений ржавчины и ила в трубах. Поэтому необходимо предугадать эти факторы для более точного определения коэффициентов трения.

Во-первых, вы должны узнать тип насоса, который был прежде в данной установке. На основе полученной информации, Вы сможете определить тип нового насоса.

Если нет достаточной информации по старому насосу, Вы должны узнать, с какой глубины насос должен качать воду (например, 6,05 м) и какое расстояние от насоса до верхней точки водоразбора (в примере 21,5 м). Затем добавьте 10 метров, соответствующих необходимому давлению в верхней точке водоразбора. После этого определяем общий напор: 6,05 + 21,5 + 10 = 37,55 метров, к этому значению нужно добавить примерно 30%, равных 11,26 метра, запас на потери на трение во всасывающем клапане, трубопроводе, присоединениях и т. д.

Таким образом, фактический напор насоса будет равен: 37,55 + 11,26 = 48,81 метра.

Поделиться с друзьями:

Каждая секция жилого дома рассчитана на 35 квартир, всего в здании 35 · 2 секции = 70 квартир.

Количество потребителей на одном этаже секции составит: (2 кв. · 4 чел.) + (3 кв. · 2 чел.) = 14 чел. В одной секции – 14 · 7 эт. = 98 чел. В жилом здании – 2 секции · 98 чел. = 196 чел.

С учетом степени благоустройства общая норма расхода воды составят 300 л на чел.в сутки, в час наибольшего водопотребления норма расхода холодной воды 5,6 л/ч .

Расчет начинаем с определения расчетного расхода холодной воды на вводе в здание. Так как в здании одинаковые потребители, то вероятность действия приборов Р будет постоянна для всех участков. Вероятность действия приборов Р определяем по формуле

,

где Р – вероятность действия приборов;

– общая норма водопотребления воды в час наибольшего водопотребления, л/ч×чел. .

U – число потребителей (жильцов) в доме, 196 чел.;

секундный расход воды расчетным прибором, 0,2 л/с (прил. 2, ), при наличии в здании поливочных кранов = 0,3 л/с;

N – общее количество приборов в здании, N = 299 шт. (3 прибора в однокомнатной кв. и 6 приборов в трехкомнатной кв. Итого: 3 прибора · 3 кв. + 6 приборов · 2 кв. = 21 прибор на этаже секции. 21 прибор · 7 эт = 147 приборов в секции. 147 приборов · 2 секции = 294 прибора в доме + 2 смесителя в мусоросборных камерах + 3 поливочных крана = 299 приборов)

Находим произведение:

РN = 0,003399 · 299 = 1,016301.

Тогда максимальный расчетный секундный расход воды, л/с, на вводе будет равен

где q – максимальный секундный расход прибора, 0,3 л/с;

a – коэффициент, зависящий от вероятности действия приборов и их количества α → f(РN), по прилож. 4 α = 0,977:

q c = 5· 0,977· 0,3 = 1,466 л/с.

Расчет ввода

Расчет ввода сводится к определению диаметра ввода и потерь напора на вводе, возникающих при пропуске расчетного расхода.

В зависимости от величины q c по таблицам гидравлического расчета водопроводных труб подбирают диаметр ввода и величину потерь на единицу его длины.

По табл. для q c = 1,466 л/с при оптимальной скорости в пределах 0,9 … 1,2 м/с находим: диаметр ввода - 40 мм, удельные потери на трение – 0,0935 м; скорость – 1,163 м/с.

Общая величина потерь на вводе определяется по формуле

H ltot = i en · l en · K m ,

где i en = 0,0935 м – удельные потери на трение на вводе при расчетном расходе, л/с;

l en = 21 м – длина ввода;

K m = 1,1 – коэффициент, учитывающий потери напора в местных сопротивлени-ях на вводе:

H l = 0,0935 · 21 · 1,1 = 2,16 м.

Подбор водомеров

Для учета расхода холодной воды на вводе в здание у наружной стены в легкодоступном, освещенном и отапливаемом помещении (температура воздуха должна быть не ниже 5 0 С) предусматриваем установку водомера. Подбор калибра водомера производим по среднечасовому расходу холодной воды в сутки максимального водопотребления. Среднечасовой расход воды может быть определен по следующей формуле:

Где - среднечасовой расход воды, м 3 /ч;

Норма расхода холодной воды в сутки наибольшего водопотребления, 180 л/(чел.· сут), прил. 3 ;

U = 196 чел – число водопотребителей;

Т = 24 ч – период водопользования,

1,47 м 3 /ч.

Эксплуатационный расход воды выбранного счетчика должен быть не менее данного среднечасового расхода воды. По табл. 1 выбираем крыльчатый водомер калибра 15 мм.

Правильность выбранного водомера проверяем на пропуск расчетного максимального секундного расхода воды, при котором потери напора в водомере не должны превышать 5,0 м.

Потери напора в водомере следует определять по формуле:

h = S (q c ) 2 ,

где h – потери напора в водомере, м;

S – гидравлическое сопротивление водомера, S = 14,5 м·(л/с) -2 , см. табл. 1;

q c – максимальный секундный расход холодной воды на вводе, q c = 1,466 л/с,

h = 14,5 · (1,466) 2 = 30,1 м.

Так как потери напора превосходят допустимые, увеличиваем диаметр водомера, принимаем крыльчатый водомер диаметром 20 мм с гидравлическим сопротивлением, равным 5,18 м·(л/с) -2 , тогда потери напора при пропуске максимального секундного расхода воды

h = 5,18 · (1,466) 2 = 12,5 м.

Таблица 1

Технические характеристики водомеров

Диаметр условного прохода счетчика, мм Параметры
Расход воды, м 3 /ч Порог чувствитель-ности, м 3 /ч, не более Макс. объем воды за сутки, м 3 Гидравлич. сопротивление счетчика S, м·(л/с) -2
Миним. Эксплуатац. Макс.
0,03 1,2 0,015 14,5
0,05 0,025 5,18
0,07 2,8 0,035 2,64
0,1 0,05 1,3
0,16 6,4 0,08 0,5
0,3 0,15 0,143
1,5 0,6 810×10 -5
0,7 264×10 -5
1,2 76,6×10 -5
1,6 13×10 -5
3,5×10 -5
1,8×10 -5

Так как условия не выполняются, принимаем к установке крыльчатый водомер диаметром 25 мм (ВК-25) с гидравлическим сопротивлением равным 2,64 м·(л/с) -2 . Тогда потери напора в водомере при пропуске расчетного расхода составят

h = 2,64 · (1,466) 2 = 5,7 м.

Так как условия не выполняются, принимаем к установке крыльчатый водомер диаметром 32 мм (ВК-32) с гидравлическим сопротивлением равным 1,3 м·(л/с) -2 . Тогда потери напора в водомере при пропуске расчетного расхода составят

h = 1,3 · (1,466) 2 = 2,79 м.

Некоторые технические характеристики выбранного водомера приведены в табл. 2.

Таблица 2

Расчетные параметры принятого водомера

Гидравлический расчет

Определив расходы воды на ввод здание и подобрав водомер, переходим к гидравлическому расчету внутренней водопроводной сети.

За диктующую точку на сети внутри здания принят смеситель для умывальника, расположенный на 7-ом этаже в крайней левой секции здания, наиболее удаленного и высоко расположенного относительно ввода. Перед этим прибором необходимо обеспечить максимальный свободный напор Н f = 3 м ( прил. 2). Расчетные точки внутри здания проставлены на расчётной схеме и на аксонометрической схеме.

Гидравлический расчет начинаем с определения параметров сети по главному направлению, последовательно от диктующей точки к вводу в здание. Диаметр трубопроводов внутриквартирной разводки конструктивно принимаем 15 мм. Расход холодной воды расчетным прибором на этажах равен = 0,2 л/с

Результаты расчета сводим в табл. 3.

Таблица 3

Расчет водопроводной сети по стояку Ст. В1-1

Расчетные участки Длина участка l, м Вероятность действия приборов Р Общее число приборов на участке Произведение Р·N Коэффициент α Расчетный расход, л/с Диаметр трубопровода, мм Скорость воды, V м/с Потери напора по длине трубопровода
Удельные i , м На участке i·l , м
= 0,2 л/с
1-2 1,66 0,003399 0,003399 0,2 0,2 1,17 0,354 0,588
2-3 0,55 0,006798 0,2 0,2 1,17 0,354 0,195
3-4 3,7 0,010197 0,2 0,2 0,62 0,072 0,266
4-5 2,8 0,020394 0,215 0,215 0,68 0,089 0,249
5-6 2,8 0,030591 0,238 0,238 0,74 0,103 0,288
6-7 2,8 0,040788 0,257 0,257 0,8 0,118 0,33
7-8 2,8 0,050985 0,2745 0,2745 0,85 0,133 0,372
8-9 2,8 0,061182 0,2905 0,2905 0,9 0,145 0,406
9-10 5,56 0,071379 0,306 0,306 0,95 0,16 0,89
= 0,3 л/с
10-11 7,23 0,003399 0,074778 0,3105 0,466 0,88 0,1 0,723
11-12 0,55 0,146157 0,395 0,593 1,12 0,156 0,086
12-13 4,52 0,217536 0,464 0,696 0,736 0,049 0,222
13-14 2,58 0,220935 0,468 0,702 0,742 0,050 0,129
14-15 0,28 0,292314 0,527 0,791 0,831 0,062 0,017
15-16 10,5 0,435072 0,634 0,951 1,001 0,088 0,924
16-17 0,25 0,438471 0,637 0,956 1,006 0,089 0,022
17-18 0,53 0,50985 0,685 1,028 1,053 0,0972 0,052
18-19 4,5 1,016301 0,977 1,466 1,163 0,0935 0,421
H ltot = 6,18 м

Требуемый напор воды для здания рассчитываем, зная отметки расположения расчетного прибора и ввода воды в здание, тип расчетного прибора и соответственно свободный напор на излив из него, общие потери напора при движении от городской магистральной сети до расчетного прибора, по формуле:

Н tr = H qeom + H l + h + H l,tot + H m + H f ,

где H qeom – геометрическая высота расположения диктующего прибора, определяемая по разности отметок этого прибора и верха трубы городского водопровода:

H qeom = 16,8 + 0,8 + 1 + 2,1 = 20,7 м,

здесь 16,8 м – отметка перекрытия седьмого этажа;

0,8 м – высота установки крана-смесителя для умывальника;

1 м – высота перекрытия первого этажа над уровнем земли;

2,1 м – глубина заложения городского водопровода по своду трубы; (2,3 – d200мм.)

H l = 2,16 м потери напора на вводе;

h = 2,79 м – потери напора в водомере;

H ltot = 6,18 м – сумма потерь напора по длине трубопровода от водомерного узла до расчетного прибора (см. табл. 3);

H m – потери напора на местные сопротивления, принимаются равными 30 % от потерь напора по длине трубопровода:

H m = = = 1,854м;

H f = 3 м – свободный напор расчетного прибора, прил. 2, .

Н tr = 20,7 + 2,16 + 2,79 + 6,18 + 1,854 + 3 = 36,684 ≈ 36,7 м.

Так как расчетный требуемый напор больше гарантированного, для обеспечения бесперебойной работы системы водоснабжения необходимо установить насосы.

Требуемый напор насосов

Н р = Н tr - H q ,

где Н tr = 36,7 м– требуемый напор воды для здания;

Н g = 29 м– гарантированный напор воды в сети холодного водопровода,

Н р = 36,7 - 29 = 7,7 м.

Рабочий расход насоса q c = 1,466 л/с или 1,466 · 3,6 = 5,28 м 3 /ч.

С учетом потерь напора в насосе, равных 2 м,

Н р = 7,7 + 2 = 9,7 м.

Таким образом, следует подобрать и установить в подвальном помещении повысительные насосы (один рабочий, один резервный) с рабочим расходом q c ≥ 1,466 л/си напором Н р ≥ 9,7м.

Таким насосом мог бы быть «инлайн» насос Grundfos TP 32-150/2В с характеристиками Q = 8 м 3 /ч, Н р = 14 м.


Похожая информация.


Процесс формирования минимального стока на больших, средних и малых реках имеет ряд особенностей, поэтому и способы определения расчетных минимальных расходов для малых рек отличаются от расчета больших и средних.

К большим, средним и малым относят реки с площадью водосбора соответственно более 75000 км 2 , от 75000 до 10000 и менее 10000 км 2 .

Расчетные минимальные расходы воды (м 3 /с):

Q p =Q 80% ʎ p , (123)

где Q 80% - минимальный 30-суточный (среднемесячный) расход (м 3 /с) ежегодной вероятностью превышения р=80%; ʎ р - переходный коэффициент от минимального расхода обеспеченностью 80% к расходу другой обеспеченности; определяют по таблице, приведенной в СП 33-101-2003.

Для больших и средних рек минимальный 30- суточный расход (м 3 /с):

Q 80% = 10 -3 q 80% F,(124)

где q 80% - минимальный 30- суточный модуль стока ежегодной вероятностью превышения 80%, л/(с км 2);F- площадь водосбора, км 2 .

Минимальный 30-суточный модуль стока воды обеспеченности 80% за летне-осенний и зимний периоды находят по рекам – аналогам или по картам СП 33-101-2003 для центра тяжести расчетного бассейна путем интерполяции между изолиниями стока.

Для малых рек с площадью водосбора меньшей, чем указано в таблице 17. 4. 1, но не менее 20 км 2 для увлажненных районов и 50 км 2 для районов недостаточного увлажнения минимальный 30- суточный расход 80% обеспеченности определяют по эмпирической формуле (м 3 /с):

Q 80%= 10 -3 a (F + f 0) n (125)

где а, f 0 , n - параметры, определяемые в зависимости от географических районов по таблице СП 33-101-2003; F - площадь водосбора реки, км 2 .

Таблица 7. Наибольшие площади (км 2) водосбора малых рек

Районы по картам СП 33-101-2003 Летне- осенний период Зимний период Районы по картам СП 33-101-2003 Летне- осенний период Зимний период
А Г
Б Д
В Е

Вопросы для самоконтроля

1. Определение расчетных минимальных расходов воды при наличии гидрометрических данных.

2. Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных.

Список литературы

Основная

1. Михайлов, В. Н.

2. Бондаренко, Ю. В.

Дополнительная

1. СП 11-103-97.

2. СП 33-101-2003.

3. ГОСТ 19179-73

4. Бондаренко, Ю. В.

5. Базы данных, информационно-справочные и поисковые системы:

http://еlibrary.sgau.ru/ ;

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Кожемяченко, И. В. Гидрометрия. [Текст]: учеб. пособие / И. В. Кожемяченко, Ю. В. Бондаренко, О. В. Гуцол, О. Н. Жихарева. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2010. – 160 с. - ISBN978-5-7011-0603-9.

2. Кожемяченко, И. В. Гидрометрия. [Текст]: метод. пособие по проведению лабораторных работ/ И. В. Кожемяченко, С. В. Желудкова. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2009. – 61 с.

3. Захаровская, Н. Н. Метеорология и климатология [Текст] / Н. Н. Захаровская, В. В. Ильинич. – М.: Колос, 2005. - 127 с. - ISBN5-9532-0136-2.

4. Бондаренко, Ю. В. Климатология, метеорология и гидрология. [Текст]: учеб. пособие / Бондаренко Ю. В., Афонин В. В., Желудкова С. В. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2010 – 183 с.

5. Михайлов, В. Н. Гидрология. [Текст]: учеб. для вузов / В. Н. Михайлов, А. Д. Добровольский, С. А. Добролюбов. – 3-е изд., стер. – М.: Высш. шк., 2008. – 463 с. - ISBN978-5-06-005815-4.

6. Желудкова, С. В. Метеорология и климатология. [Текст]: метод. указания к расчетно-графическим работам./ С. В. Желудкова, Д. С. Майорова. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2010. – 68 с.

7. Бондаренко, Ю. В. Метеорологические наблюдения (Организация, производство, анализ). [Текст]: учеб. пособие / Бондаренко Ю. В., Желудкова С. В., Левицкая Н. Г., Киселева Ю. Ю. – Саратов.: Издательский центр «Наука», 2012. – 61 с.

8. Бондаренко, Ю. В. Методы полевых гидрологических и метеорологических исследований. [Текст]: учеб. пособие / Ю. В. Бондаренко. – 2-е изд. доп. и исп. – Саратов.: Издательский центр «Наука», 2011. – 202 с. - ISBN 978-5-9999-0885-8.

9. Левицкая Н. Г. Основы агрометеорологии. [Текст]: учеб. пособие. / Н. Г. Левицкая, Ю. В. Бондаренко. – Саратов.: Саратовский источник, 2012. – 150 с.- ISBN978-5-91879-163-9.

10. СНиП 23-01-99. Строительная климатология [Текст]. – М.: Госстрой РФ, 1999.

11. СП 11-103-97. Инженерно-гидрометеорологические изыскания для строительства [Текст]. – М.: Госстрой РФ, 1997 г.

12. СП 33-101-2003. Определение основных гидрологических характеристик [Текст]. – М.: Госстрой РФ, 2004 г.

13. ГОСТ 19179-73 . Гидрология суши. Термины и определения [Текст]. – М.: Госстандарт СССР, 1988 г.

14. Хромов, С. П. Метеорология и климатология [Текст] / Хромов С. П., Петросянц М. А. – 6-е изд., перераб. и доп. - М.: МГУ, 2004. - 582 с. - ISBN 5-211-04847-4. - ISBN 5-9532-0267-9.

15. Базы данных, информационно-справочные и поисковые системы:

Электронная библиотека СГАУ - http://library.sgau.ru;

Научная электронная библиотека - http://еlibrary.sgau.ru/ ;

Электронные данные Росгидромета: http://meteorf.ru;

Электронные данные Государственного гидрологического института - http://www.hydrology.ru.

Введение …………………………………………………………………………………….
Лекция 1. Предмет, цели и задачи курса «Климатология и метеорология» …...…………..
1. 1. Предмет и задачи курса «Климатология и метеорология» ……………………..…..
1. 2. Состав и строение атмосферы ………………………………………………………..
Лекция 2. Радиационный режим атмосферы ….………………………………………
2. 1. Солнечная радиация и радиационный баланс земной поверхности ……………….
2. 2. Тепловой режим атмосферы ………………………………………………………….
2. 3. Характеристики влажности воздуха. Осадки и снежный покров ………………….
Лекция 3. Общая циркуляция атмосферы. Прогноз погоды ………………………..
3. 1. Атмосферное давление. Циклоны и антициклоны ………………………………….
3. 2. Ветер и воздушные течения в атмосфере ……………………………………………
3. 3. Воздушные массы атмосферные фронты ……………………………………………
3. 4. Прогноз погоды ………………………………………………………………………..
3. 5. Опасные явления погоды ……………………………………………………………..
Лекция 4. Климат и факторы его формирования …………………………………….
4. 1. Основные факторы климатообразования ……………………………………………
4. 2. Понятие макро-, мезо- и микрорельефа ……………………………...………………
4. 3. Классификация климатов ……………………………………………………………..
4. 4. Климатические пояса Земного шара и России ………………………………………
4. 5. Антропогенное влияние на климат …………………………………………………..
Лекция 5. Предмет и задачи курса «Гидрология» …………………………………….
5. 1. Предмет гидрологии. Значение гидрологии для экономики страны. Связь с другими науками ……………………………………………………………………………
5. 1. 1. Предмет гидрологии …………………………………………………......................
5. 1. 2. Значение гидрологии для экономики страны …………………………………….
5. 1. 3. Связь гидрологии с другими науками …...………………………………………..
5. 2. Краткие исторические сведения о развитии гидрологии …………………………..
5. 3. Тепловой и водный балансы ………………………………………………………….
5. 3. 1. Водные ресурсы Земли ……………………………………………………………..
5. 3. 2. Круговорот воды в природе ………………………………………………………..
5. 3. 3. Тепловой и водный балансы ……………………………………………………….
5. 4. Гидрологический режим и его характеристики ……………………………………..
Лекция 6. Речная система ……………...………………………………………………...
6. 1. Речная система и ее гидрографические характеристики ….………………………..
6. 2. Водосбор и бассейн реки …………………………….……………………………….
6. 3. Долина и русло реки …………………………………………………………………..
6. 4. Продольный профиль реки ……………………………………………….....………..
6. 5. Поперечный профиль реки. Поперечная циркуляция ……………………………....
Лекция 7. Организация и методы гидрометрических изысканий …..……………...
7. 1. Предмет и задачи гидрометрии ………………….…………………………………...
7. 2 Организация и методы гидрологических исследований …..………………………...
7. 3. Наблюдения за уровнями воды ………………………………...…………………….
7. 4. Измерение глубин ……………………………………………………………………..
Лекция 8. Скорость течения воды...…………………………………………………….
8. 1. Измерение скоростей течения воды …..……………………………………………...
8. 2. Измерение расходов воды ……………………………………...……………………..
8. 3. Определение зависимости между расходами и уровнями воды …………………...
8. 4. Измерение расходов воды на гидромелиоративных системах ……………………..
Лекция 9. Водная эрозия, речные наносы, русловые процессы ………...…………..
9. 1. Водная эрозия ……………………………………………………………………….....
9. 2. Речные наносы: виды, порядок расчета …………………...…………………………
9. 3. Русловые процессы ……………………………………………………………………
Лекция 10. Генетические и стохастические методы. Их применение в гидрологических расчетах ……………………………………………………………….
10. 1 Общие сведения о гидрологических расчетах ……………………………………...
10. 2. Норма годового стока ………………………………………………………………..
10. 3. Вычисление нормы годового стока при наличии гидрометрических данных.......
10. 4. Вычисление нормы годового стока при недостаточности гидрометрических данных.....................................................................................................................................
10. 5. Вычисление нормы годового стока при отсутствии гидрометрических данных...................................................................................................................................................
Лекция 11. Эмпирические и аналитические кривые обеспеченности ……………..
11. 1. Использование методов теории вероятности и математической статистики ……
11. 2. Изменчивость годового стока ……………………………………………………….
11. 3. Обеспеченность гидрологической характеристики ………………………………..
11. 4. Кривые распределения. Кривые обеспеченности ………………………………….
Лекция 12. Параметры аналитических кривых распределения (обеспеченности) ………………………………………………………………………………………………...
12. 1. Аналитические кривые обеспеченности ……………………………………………
12. 2. Определение параметров аналитических кривых обеспеченности стока ………..
Лекция 13. Внутригодовое распределение стока ……………………………………...
13. 1. Общие сведения ……………………………………………………………………...
13. 2. Расчет внутригодового распределения стока при наличии данных гидрометрических наблюдений …………………………………………………………....
Лекция 14. Методы расчета внутригодового распределения стока ………………..
14. 1. Метод реального года ………………………………………………………………..
14. 2. Построение кривой обеспеченности суточных расходов воды …………………...
14. 3. Расчет внутригодового распределения стока при отсутствии или недостаточности данных гидрометрических наблюдений ………………………………
Лекция 15. Максимальный сток рек …………………………………………………...
15. 1. Общие сведения ……………………………………………………………………...
15. 2. Особенности формирования максимального стока ………………………………..
Лекция 16. Расчетные максимальные расходы воды...……………………………...
16. 1. Расчет максимального расхода воды при наличии данных гидрометрических наблюдений …………………………………………………………………………………
Лекция 17. Определение максимальных расходов талых вод при недостаточности или отсутствии данных наблюдений ………………………………
17. 1. Расчет максимальных расходов талых вод при отсутствии данных гидрометрических наблюдений ……………………………………………………………
17. 2. Расчет максимальных расходов дождевых паводков при отсутствии данных гидрометрических наблюдений ……………………………………………………………
17. 3. Расчетные гидрографы половодья и дождевых паводков ………………………...
Лекция 18. Условия формирования и особенности расчета минимального стока рек …………………………………………………………………………………………...
18. 1. Общие сведения ……………………………………………………………………...
18. 2. Особенности и условия формирования минимального стока …………………….
Лекция 19. Определение расчетных минимальных расходов воды при наличии гидрометрических данных ……………………………………………………………….
19. 1. Определение расчетных минимальных расходов воды при наличии гидрометрических данных …………………………………………………………………
19. 2. Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных …………………………………………………………………
Библиографический список………………………………………………………………
Содержание………………………………………………………………………………….

Система водоснабжения - это совокупность трубопроводов и устройств, которые обеспечивают бесперебойную подачу воды к различным санитарно-техническим приборам и другим устройствам, для работы которых она требуется. В свою очередь расчет водоснабжения - это комплекс мероприятий, в результате которого изначально определяется максимальный секундный, часовой и суточный расход воды. Причем, рассчитывается не только общий расход жидкости, но и расход холодной и горячей воды в отдельности. Остальные же параметры, описанные в СНиП 2.04.01-85* "Внутренний водопровод и канализация зданий" , а также диаметр трубопровода, находятся уже в зависимости от показателей расхода воды. Например, одним из таких параметров является диаметр условного прохода счетчика.

В настоящей статье представлен пример расчета водоснабжения на внутренний водопровод для частного 2-х этажного дома. В результате данного расчета найдены общий секундный расход воды и диаметры трубопроводов для сантехприборов, расположенных в ванной комнате, в туалете и на кухне. Также здесь определено минимальное сечение для входной трубы в дом. То есть имеется в виду труба, которая берет свое начало у источника водоснабжения и заканчивается в месте разветвления ее по потребителям.

Что касается других параметров, приведенных в упомянутом нормативном документе, то практика показывает, что их рассчитывать для частного дома не обязательно.

Пример расчета водоснабжения

Исходные данные

Количество проживающих людей в доме - 4 человека.

В доме имеются следующие санитарно-технические приборы.

Ванная комната:

Ванная со смесителем - 1 шт.

Сан. узел:

Унитаз со смывным бачком - 1 шт.

Кухня:

Умывальник со смесителем - 1 шт.

Расчет

Формула максимального секундного расхода воды:

q с = 5·q 0 tot ·α, л/с,

Где: q 0 tot - общий расход жидкости, одного потребляемого прибора, определяемый согласно п. 3.2 . Принимаем по прил. 2 для ванной комнаты - 0,25 л/с, сан. узла - 0,1 л/с, кухни - 0,12 л/с.

α - коэффициент, определяемый согласно прил. 4 в зависимости от вероятности Р и количества сантехприборов N.

Определение вероятности действия санитарно-технических приборов:

P = (U·q hr,u tot) / (q 0 tot ·N·3600) = (4·10,5) / (0,25·3·3600) = 0,0155 ,

Где: U = 4 чел. - количество водопотребителей.

q hr,u tot = 10,5 л - общая норма расхода воды в литрах, потребителем в час наибольшего водопотребления. Принимаем согласно прил. 3 для жилого дома квартирного типа с водопроводом, канализацией и ваннами с газовыми водонагревателями.

N = 3 шт. - количество сантехприборов.

Определение расхода воды для ванной комнаты:

α = 0,2035 - принимаем по табл. 2 прил. 4 в зависимости от NP = 1·0,0155 = 0,0155.

q с = 5·0,25·0,2035 = 0,254 л/с.

Определение расхода воды для сан. узла:

α = 0,2035 - ровно столько же, что и в предыдущем случае, так как количество приборов одинаково.

q с = 5·0,1·0,2035 = 0,102 л/с.

Определение расхода воды для кухни:

α = 0,2035 - как и в предыдущем случае.

q с = 5·0,12·0,2035 = 0,122 л/с.

Определение общего расхода воды на частный дом:

α = 0,267 - так как NP = 3·0,0155 = 0,0465.

q с = 5·0,25·0,267 = 0,334 л/с.

Формула определения диаметра водопровода на расчетном участке:

d = √((4·q с)/(π·V)) м,

Где: d - внутренний диаметр трубопровода на рассчитываемом участке, м.

V - скорость потока воды, м/с. Принимаем равной 2,5 м/с согласно п. 7.6 , в котором сказано, что скорость жидкости во внутреннем водопроводе не может превышать 3 м/с.

q c - расход жидкости на участке, м 3 /с.

Определение внутреннего сечения трубы для ванной комнаты:

d = √((4·0,000254)/(3,14·2,5)) = 0,0114 м = 11,4 мм.

Определение внутреннего сечения трубы для сан. узла :

d = √((4·0,000102)/(3,14·2,5)) = 0,0072 м = 7,2 мм.

Определение внутреннего сечения трубы для кухни:

d = √((4·0,000122)/(3,14·2,5)) = 0,0079 м = 7,9 мм.

Определение внутреннего сечения входной трубы в дом:

d = √((4·0,000334)/(3,14·2,5)) = 0,0131 м = 13,1 мм.

Вывод: для снабжения водой ванну со смесителем требуется труба с внутренним диаметром не менее 11,4 мм, унитаза в сан. узле - 7,2 мм, умывальника на кухне - 7,9 мм. Что касается входного диаметра водопровода в дом (для снабжения 3-х приборов), то он должен составлять не менее 13,1 мм.

Определить расчетные расходы холодной воды (суточный, м3/сут; средний часовой, м3/час; максимальный расчетный секундный расход, л/с; максимальный часовой расход, м3/час) на вводе в здание и подберите водомер

Определить секундный и часовой расходы воды для жилого дома с централизованным горячим водоснабжением с числом квартир n кв = 30 и средней заселённостью V o = 4,5 чел/м 2 , число потребителей U = V o n кв = 4,5 30 = 135 чел. В каждой квартире установлены следующие санитарно-технические приборы: ванны, длиной 1700 мм, умывальник, унитаз, мойка.

1. Устанавливаем число водоразборных приборов в здании

N tot = N = 4*30 = 120;

2. В соответствии с прил. 3 СНиП 2.04.01-85* нормы расхода воды на одного потребителя в час наибольшего водопотребления составляет:

q tot hr,u = 15,6 л/ч; - общий

q h hr,u = 10 л/ч; - горячей воды

q c hr,u = 15,6 - 10 = 5,6 л/ч. - холодной воды

3. По той же таблице норма расхода воды санитарно-техническим прибором:

q tot o = 0,3 л/с (q tot o,hr = 300 л/ч); - общий

q c o = 0,2 л/с (q c o,hr = 200 л/ч); - холодной воды

4. Определяем секундную вероятность действия приборов по формуле:

5. Находим значение произведения NP и по приложению 4 СНиП 2.04.01-85* значения коэффициентов б. Промежуточные значения б находить точной интерполяцией.

N c P c = 135*0,0078 =1,053 б c = 0,99656;

NP = 1,05 б = 0,995

NP = 1,10 б = 1,021

6. Определяем максимальный секундный расход холодной воды:

q c = 5*q c o ? б c =5?0,2? 0,99656= 0,99656 л/с;

7. Определим часовую вероятность действия приборов по формуле:

8. Находим значение произведения NP hr и по приложению 4 СНиП 2.04.01-85* значения коэффициентов б hr . Промежуточные значения б hr находить точной интерполяцией.

N c P c hr = 135*0,028 = 3,78; б c hr = 2,102288;

NP hr = 3,7 б = 2,102

NP hr = 3,8 б = 2,138

9. Определяем максимальный часовой расход холодный воды в м3/ч по формуле:

q с hr = 0,005*q с o,hr ? б с hr =0,005?200?2,102288 = 2,102288 м 3 /ч

10. Из приложения 3 СНиП 2.04.01-85* можно найти:

300 - 120 = 180 л. в сутки наибольшего потребления.

11. Средний часовой расход холодной волы, м3/ч, за период (сутки, смена) максимального водопотребления Т, ч, определяют по формуле:

q T = = = 1,0125 м 3 /ч

Начертить принципиальную схему водоснабжения населенного пункта. Описать назначение основных элементов системы

Устройство водоснабжения населенного пункта

Для водоснабжения населенных пунктов используют воду из открытых водоемов (рек, озер) или из подземных источников. Вода из открытых водоемов содержит болезнетворные бактерии и различные примеси, поэтому требует очистки и обеззараживания. Подземные воды обычно такой обработки не требуют. При проектировании систем водоснабжения учитывают и предъявляемые к ней технические и экономические требования: 1) обеспечение нужд населенного пункта в воде в часы максимального ее потребления; 2) устройство магистральных и внутриквартальных водопроводных сетей, обеспечивающих снабжение водой всех вводимых в эксплуатацию объектов; 3) низкую стоимость воды, поступающей к потребителям; 4) создание эксплуатационной службы, задачей которой является обеспечение требуемого санитарно-гигиенического и технического уровня водоснабжения населенного пункта.

Забор воды из реки обычно осуществляется выше (считая по течению реки) населенных пунктов или промышленных предприятий, что уменьшает загрязнение поступающей в водоприемник воды. Затем она по самотечному трубопроводу 2 поступает в береговой колодец 3 и насосами первого подъема 4 направляется в отстойники 5, где из воды выпадает большая часть содержащихся в ней взвешенных веществ. Ускорения процесса осаждения взве сей достигают добавлением в воду коагулянтов -- химических веществ, которые вступают в реакцию с содержащимися в воде солями, в результате чего образуются хлопья. Последние быстро осаждаются в воде и увлекают за собой взвешенные частицы. Далее вода самотеком поступает на очистные сооружения 6, где сначала фильтруется через слой зернистого материала (кварцевого песка) в фильтрах, а затем обеззараживается -- добавлением в нее жидкого хлора.

Для этой цели применяют озонаторные установки, которые оказывают большее бактерицидное действие и придают воде более высокие вкусовые качества, чем ее хлорирование (озон получают из воздуха посредством электрических раз рядов).

Очищенная и обеззараженная вода стекает в запасные резервуары 7, откуда насосы второго подъема 8 нагнетают воду в магистральные водоводы 9, водонапорную башню 10 и далее через магистральные 11 и распределительные 12 трубопроводы вода поступает в здания к потребителям.

Для забора подземной воды из водоносных пластов устраивают трубчатые колод цы -- скважины, закрепленные колонной стальных труб.

Над колодцем делают надстройку в виде павильона. В ниж ней части колодца устраивают фильтр, через который по ступает вода. Подъем воды обычно осуществляют центро бежными насосами, которые подают ее в сборные резервуары или непосредственно в водопроводную сеть.

Водопроводные сети устраивают из стальных, напорных, чугунных, железобетонных и асбестоцементных труб. Оборудованием этих сетей являются задвижки, слу жащие для выключения отдельных участков сети на случай ремонта или аварии; пожарные гидранты, служащие для получения через них воды для тушения пожаров, и водо разборные колонки.

Хозяйственно-питьевые водопроводы при диаметре труб не более 100 мм допускается устраивать тупиковыми (в виде ряда отдельных ответвлений). При больших диаметрах сети ее устраивают кольцевой, состоящей из нескольких замк нутых колец (Приложение 1); кольцевая сеть обеспечивает бесперебойное снабжение водой всех потребителей и при повреждении ее в какой-либо точке.

вентиляция здание водоснабжение канализационный

Задание 3. Опишите устройства внутренней канализационной сети, её конструктивные элементы, их назначение. Укажите соединительные фасонные части канализационных сетей