Главная · Инструмент · Онлайн определение размеров и построение развертки детали. Онлайн калькулятор выкройка сектора из листовой стали. Расчет длины развертки. Когда нужны расчеты

Онлайн определение размеров и построение развертки детали. Онлайн калькулятор выкройка сектора из листовой стали. Расчет длины развертки. Когда нужны расчеты

Элементы заготовки, расположенные в деформируемой зоне и прилегающие к внутренней поверхности изгибаемой детали (со стороны пуансона), подвергаются сжатию, а прилегающие к внешней поверхности (со стороны матрицы)-растяжению. Между растянутыми и сжатыми волокнами находится нейтральная линия длина которой не изменяется (Черт. 106).

Черт. 106

Радиус нейтральной линии R в мм (черт. 106) определяется по формуле

где r - радиус гибки, мм;

s- толщина материала мм;

x - коэффициент, величина которого зависит от отношения r/s (табл. 48).

Таблица 48

Отношение r/s

Коэффициент x

0,323

0,340

0,356

0,367

0,379

0,389

0,400

0,413

0,421

0,426

Отношение r/s

10 и более

Коэффициент x

0,441

0,445

0,463

0,469

0,477

0,780

0,485

0,490

0,495

0,500

При завивке шарниров (петель) вследствие наличия внешних сил трения, препятствую­щих деформированию, коэффициент х определяется по табл. 48а.

Таблица 48а

Отношение r/s

Коэффициент x

0,56

0,54

0,52

0,51

Длина развертки изгибаемой детали L р в мм (черт. 107) определяется по фор­муле

L р =(l 1 +l 2 +l 3 +. . .)+ π / 180 (φ 1 R 1 +φ 2 R 2 +φ 3 R 3 +. . .) (47)

где l 1 ; l 2 ; l 3 -прямые участки, мм;

φ 1 ; φ 2 ; φ 3 - углы гибки, град;

R 1 ; R 2 ; R 3 - радиусы нейтральной линии, определяемые по формуле (46).

Черт. 107

При гибке материалов толщиной свыше 3 мм под углом 90° с радиусом гибки r≤s радиус нейтральной линии R, рассчитанный по формуле (46), должен быть скорректи­рован до величины R 1 (черт. 108), исходя из условия целостности материала и сопряжения в точках а и а 1 криволинейного участка радиусом R 1 с прямыми а-а и а 1 -а 1 , преходящими через середину толщины s. На участке С-С 1 пунктиром показан внешний контур при расчете без учета утонения материала. В связи с утонением при гибке толщина s 1 на этом участке меньше исходной s.

Черт. 108

Значения R 1 радиуса скорректированной нейтральной линии и длину дуги abа 1 , следует подсчитать по формулам

R — определяется по формуле (46); r — радиус гибки, мм; остальные обозначения показаны на черт. 108.

Элементы для определения размеров разверток часто применяемых гнутых деталей приведены в табл. 49.

Таблица 49

Примечание :

  1. y, y 1 , y 2 — величины, учитывающие изменение длины развертки при гибке под углом 90°. При толщине материала до 2,5 мм принимаются по табл. 50, а при толщине 3 и более мм при r
  2. х — коэффициент, принимается по табл. 48а.

Таблица 50

Таблица 50а

Пример . Определить длину развертки для детали, изображенной нa черт. 109.

Черт. 109

Согласно табл. 49 L р =l+l 1 + у,

где l и l 1 -длины прямых участков гнутой детали;

у -находим по табл. 50а

При s=4 мм и r= 3,5 мм

L p =50+40+ 1,22=91,22 мм.

Если в рабочем чертеже детали заданы односторонние допуски, то для подсчета длины развертки эти допуски должны быть пересчитаны на двухсторонние, с сохранением заданного поля допуска. При этом должны быть также пересчитаны номинальные размеры детали (черт. 110).

Черт. 110

В табл. 51 и 52 приведены формулы для расчета длины развертки гнутых деталей при различных исходных данных на рабочем чертеже и различных формах сопряжения.

Таблица 51

Примечание : х — коэффициент, определяется по табл. 48.

Таблица 52






Определение размеров заготовки при гибке производится как развертка детали, при этом суммируются длины прямолинейных участков и длины закруглений, подсчитанных по нейтральному слою. Такие расчеты не представляют существенных затруднений. На практике при гибке особо сложных деталей рекомендуется получить их развертку опытным путем, так как не всегда удается точно подсчитать ее теоретически.

Различают два основных случая гибки: 1) по кривой определенного радиуса; 2) под углом закругления при r<0,3s.

Гибка по кривой определенного радиуса.

Для определения длины заготовки можно пользоваться способом развёртки детали, основанном на том, что нейтральная линия сохраняет при гибке свои первоначальные размеры и расположена в местах закруглений на расстоянии х 0 s от внутренней стороны изделия (рис. 2.4). Поэтому для определения длины заготовки сложной детали следует просуммировать длину прямолинейных участков загибаемого изделия с длиной закругленных участков, подсчитанных по нейтральному слою.

Для детали с одним перегибом при угле длина заготовки определяется по формуле

, (2.13)

где l 1 , l 2 – длина прямолинейных участков загибаемого изделия, мм;

l 0 - длина нейтрального слоя закругленного участка, мм ;

r - радиус закругления, мм ;

Угол гибки, град;

х 0 - коэффициент, определяющий положение нейтрального слоя.

Для детали с несколькими углами длина заготовки определяется по формуле

Рис. 2.4 Расчёт длинны заготовки

Для малых упругопластических деформаций, (при гибке заготовок с относительным радиусом закругления r / s >5 ) принимают, что нейтральный слой проходит по середине толщины полосы р(р 0 )=р ср то есть его положение определяется радиусом кривизны р= r + s /2 . А х 0 находится по формуле:

Для значительных пластических деформаций, что имеет место при гибке заготовок с относительным радиусом закругления изгиб сопровождается уменьшением толщины материала и смещением нейтрального слоя в сторону сжатых волокон. В этих случаях радиус кривизны нейтрального слоя деформации следует определять по формуле:

где - коэффициент утонения материала (толщина материала после гибки, мм).

Коэффициент утонения при гибке зависит от рода материала, относительного радиуса гибкии угла загиба. Расстояние нейтрального слоя от внутренней поверхности загибаемой заготовки при гибке широких полос находится по формуле

Значения коэффициентов их о для гибки приводятся в справочниках.

Гибка под углом без закругления.

При гибке под углом без закруглений или с закруглениями очень малого радиуса () , что сопровождается значительным утонением металла в местах перегиба, для определения размера заготовки (рис.2.5) до гибки АБ и после гибки АВГ, пользуются методом равенства масс.

Рис.2.5 Расчет длины заготовки

На практике, пользуются следующей формулой:

, (2.20)

где L – длина заготовки;

Величина прибавки (припуска) материала на образование угла.

Обычно эта величина в зависимости от твердости и толщины материала принимается равной на каждый угол. При этом, чем мягче материал, тем меньше прибавка, и наоборот.

Длина заготовки для n прямых углов, может быть определена по формуле:

При последовательной гибке . При одновременной гибке углов, изгиб сопровождается растяжением материала в середине и по концам участков. В этом случае растяжение материала получается на большей части изгибаемой заготовки, так что здесь образование углов идет частично за счет растяжения материала прямых участков. Поэтому для этих случаев прибавку к длине заготовки рекомендуется брать вдвое меньше, чем при последовательной гибке, то есть принимать.

Рассмотрим ситуацию, которая нередко возникает на гибочном производстве. Особенно это касается небольших цехов, которые обходятся средствами малой и средней механизации. Под малой и средней механизацией я подразумеваю использование ручных или полуавтоматических листогибов. Оператор суммирует длину полок, получает общую длину заготовки для требуемого изделия, отмеряет нужную длину, отрезает и.. после гибки получает неточное изделие. Погрешности размеров конечного изделия могут быть весьма значительными (зависит от сложности изделия, количества гибов и т.д.). Все потому, что при расчетах длины заготовки нужно учитывать толщину металла, радиус гибки, коэффициент положения нейтральной линии (К-фактор). Именно этому и будет посвящена данная статья.

Итак, приступим.

Честно говоря, произвести расчет размеров заготовки несложно. Нужно только понять, что нужно брать в расчет не только длины полок (прямых участков), но и длины криволинейных участков, получившихся ввиду пластических деформаций материала при гибке.

Притом, все формулы уже давно выведены «умными людьми», книги и ресурсы которых я постоянно указываю в конце статей (оттуда вы, при желании, можете получить дополнительные сведения).

Таким образом, для расчета правильной длины заготовки (развертки детали), обеспечивающей после гибки получение заданных размеров, необходимо, прежде всего, понять, по какому варианту мы будем производить расчет.

Напоминаю:

Таким образом, если вам нужна поверхность полки А без деформаций (например для расположения отверстий), то вы ведете расчет по варианту 1 . Если же вам важна общая высота полки А , тогда, без сомнения, вариант 2 более подходящий.

Вариант 1 (с припуском)

Нам понадобится:

в) Суммировать длины этих отрезков. При этом, длины прямых участков суммируются без изменения, а длины криволинейных участков – с учетом деформации материала и соответственного смещения нейтрального слоя.

Так, например, для заготовки с одним гибом, формула будет выглядеть следующим образом:

Где X 1 – длина первого прямого участка, Y 1 – длина второго прямого участка, φ – внешний угол, r – внутренний радиус гибки, k S – толщина металла.

Таким образом, ход расчета будет следующим..

Y1 + BA1 + X1 + BA2 + ..т.д

Длина формулы зависит от количества переменных.

Вариант 2 (с вычетом)

По моему опыту, это самый распространенный вариант расчетов для гибочных станков с поворотной балкой. Поэтому, давайте рассмотрим этот вариант.

Нам также необходимо:

а) Определить К-фактор (см таблицу).

б) Разбить контур изгибаемой детали на элементы, представляющие собой отрезки прямой и части окружностей;

Здесь необходимо рассмотреть новое понятие – внешняя граница гибки.

Чтобы было легче представить, см рисунок:

Внешняя граница гибки – вот эта воображаемая пунктирная линия.

Так вот, чтобы найти длину вычета, нужно от длины внешней границы отнять длину криволинейного участка.

Таким образом, формула длины заготовки по варианту 2:

Где Y 2 , X 2 – полки, φ – внешний угол, r – внутренний радиус гибки, k – коэффициент положения нейтральной линии (К-фактор), S – толщина металла.

Вычет у нас (BD ), как вы понимаете:

Внешняя граница гибки (OS ):

И в этом случае также необходимо каждую операцию рассчитывать последовательно. Ведь нам важна точная длина каждой полки.

Схема расчета следующая:

(Y2 – BD1 / 2) + (X2 – (BD1 / 2 + BD2 / 2)) + (M2 – (BD2 / 2 + BD3 /2)) + .. и т.д.

Графически это будет выглядеть так:

И еще, размер вычета (BD ) при последовательном расчете считать надо правильно. То есть, мы не просто сокращаем двойку. Сначала считаем весь BD , и только после этого получившийся результат делим пополам.

Надеюсь, что этой своей ремаркой я никого не обидел. Просто я знаю, что математика забывается и даже элементарные вычисления могут таить в себе никому не нужные сюрпризы.

На этом все. Всем спасибо за внимание.

При подготовке информации я использовал: 1. Статья «BendWorks. The fine-art of Sheet Metal Bending» Olaf Diegel, Complete Design Services, July 2002; 2. Романовский В.П. «Справочник по холодной штамповке» 1979г; материалы англоязычного ресурса SheetMetal.Me (раздел “Fabrication formulas”, ссылка:

Расчет размеров заготовки при гибке

Рассмотрим ситуацию, которая нередко возникает на гибочном производстве. Особенно это касается небольших цехов, которые обходятся средствами малой и средней механизации. Под малой и средней механизацией я подразумеваю использование ручных или полуавтоматических листогибов. Оператор суммирует длину полок, получает общую длину заготовки для требуемого изделия, отмеряет нужную длину, отрезает и.. после гибки получает неточное изделие. Погрешности размеров конечного изделия могут быть весьма значительными (зависит от сложности изделия, количества гибов и т.д.). Все потому, что при расчетах длины заготовки нужно учитывать толщину металла, радиус гибки, коэффициент положения нейтральной линии (К-фактор). Именно этому и будет посвящена данная статья.

Итак, приступим.

Честно говоря, произвести расчет размеров заготовки несложно. Нужно только понять, что нужно брать в расчет не только длины полок (прямых участков), но и длины криволинейных участков, получившихся ввиду пластических деформаций материала при гибке.

Притом, все формулы уже давно выведены «умными людьми», книги и ресурсы которых я постоянно указываю в конце статей (оттуда вы, при желании, можете получить дополнительные сведения).

Таким образом, для расчета правильной длины заготовки (развертки детали), обеспечивающей после гибки получение заданных размеров, необходимо, прежде всего, понять, по какому варианту мы будем производить расчет.

Напоминаю:

Таким образом, если вам нужна поверхность полки А без деформаций (например для расположения отверстий), то вы ведете расчет по варианту 1 . Если же вам важна общая высота полки А , тогда, без сомнения, вариант 2 более подходящий.

Вариант 1 (с припуском)

Нам понадобится:

а) Определить К-фактор (см Справочную);

в) Суммировать длины этих отрезков. При этом, длины прямых участков суммируются без изменения, а длины криволинейных участков – с учетом деформации материала и соответственного смещения нейтрального слоя.

Так, например, для заготовки с одним гибом, формула будет выглядеть следующим образом:

Где X1 – длина первого прямого участка, Y1 – длина второго прямого участка, φ – внешний угол, r – внутренний радиус гибки, k S – толщина металла.

Таким образом, ход расчета будет следующим..

Y1 + BA1 + X1 + BA2 + ..т.д

Длина формулы зависит от количества переменных.

Вариант 2 (с вычетом)

По моему опыту, это самый распространенный вариант расчетов для гибочных станков с поворотной балкой. Поэтому, давайте рассмотрим этот вариант.

Нам также необходимо:

а) Определить К-фактор (см таблицу).

б) Разбить контур изгибаемой детали на элементы, представляющие собой отрезки прямой и части окружностей;

Здесь необходимо рассмотреть новое понятие – внешняя граница гибки.

Чтобы было легче представить, см рисунок:

Внешняя граница гибки – вот эта воображаемая пунктирная линия.

Так вот, чтобы найти длину вычета, нужно от длины внешней границы отнять длину криволинейного участка.

Таким образом, формула длины заготовки по варианту 2:

Где Y2 , X2 – полки, φ – внешний угол, r – внутренний радиус гибки, k – коэффициент положения нейтральной линии (К-фактор), S – толщина металла.

Вычет у нас (BD ), как вы понимаете:

Внешняя граница гибки (OS ):

И в этом случае также необходимо каждую операцию рассчитывать последовательно. Ведь нам важна точная длина каждой полки.

Схема расчета следующая:

(Y2 – BD1 / 2) + (X2 – (BD1 / 2 + BD2 / 2)) + (M2 – (BD2 / 2 + BD3 /2)) + .. и т.д.

Графически это будет выглядеть так:

И еще, размер вычета (BD ) при последовательном расчете считать надо правильно. То есть, мы не просто сокращаем двойку. Сначала считаем весь BD , и только после этого получившийся результат делим пополам.

Надеюсь, что этой своей ремаркой я никого не обидел. Просто я знаю, что математика забывается и даже элементарные вычисления могут таить в себе никому не нужные сюрпризы.

На этом все. Всем спасибо за внимание.

При подготовке информации я использовал: 1. Статья «BendWorks. The fine-art of Sheet Metal Bending» Olaf Diegel, Complete Design Services, July 2002; 2. Романовский В.П. «Справочник по холодной штамповке» 1979г; материалы англоязычного ресурса SheetMetal.Me (раздел “Fabrication formulas”, ссылка: http://sheetmetal.me/formulas-and-functions/)

Расчет длины развертки детали

Упрощенно развертка рассчитывается следующим образом:

Допустим, имеется деталь как на рисунке.

Считаем суммарно развертку по СРЕДНЕЙ линии….. примерно так:

23.5+47+63+35+47+18.5=284 мм.

Затем считаем гибы. У нас получается 6 гибов. Каждый гиб уменьшает длину развертки примерно на толщину материала. У нас деталь из листа 3 мм. Из полученной суммарной длины развертки (284 мм) вычитаем 3х6=18 мм …. Получаем длину развертки 284-18 = 266. Цифра достаточно эмпирическая, но позволяет достаточно точно посчитать размер.

Еще необходимо учесть следующее ограничение – минимальное расстояние между гибами или от гиба до края заготовки должно быть не менее 15 мм. Это технологическое ограничение листогиба. Можно и меньше, но это необходимо обсудить. Есть и другие ограничения, но это уже будем решать вместе.

Расчет разверток деталей из листа под углом N°

Сейчас мы рассмотрим развертку детали, поверхности которой гнутся под любым углом относительно друг друга.Здесь ничего сложного нет. Обычная геометрия. Школьная программа.Длина развертки Lр равняется сумме длин прямых участков и длины дуги соединяющей эти участки. Расчет ведется по средней линии толщины материала.Здесь нужно знать, что средняя линия это не просто толщина материала деленная на два. Это нейтральный слой между растянутыми и сжатыми волокнами, длина которого не изменяется при гибке. Радиус средней линии определяется по формуле

Rср = r + t * K

где каэффициент K определяется по таблице. Он зависит от отношения внутреннего радиуса гибки и толщины материала r/t

Lр = L1 + L2 + Lдуги

Lдуги = pi * G/180 * Rср

Как мы видим r/t (на рисунке r/s) равно1,5.Выбираем из таблицы 1,5 получаем K=0,441

Ну вот получилась прожка.Данный файл xlРасчет развертки Вы можете скачать прямо с сайта.Он сам все расчитает.Нужно только ввести размеры. Если хотите посмотреть как работают формулы,снимите защиту с листа.Пароля нет.

с уважением Лариса Старых.


    Приспособление для разметки труб. Расчет и изготовление шаблона. Расчет заготовки трубы для гибки

    Расчет развертки трубы при гибке.

    Расчет развертки трубы при гибке. Длина развертки. Формула расчета развертки трубы. 4.43/5 (88.57%) проголосовало 7

    При определении общей длины разверт­ки необходимо трубу разбить на прямые и гнутые участки. Для опре­деления границы прямых и гнутых участков трубы из центров окружностей согнутых участков проводятся радиусы r1; r2; r3; r4 в точку их сопряжения с прямой. Тогда общая длина развертки гну­той трубы (рис. 1) будет:

    L общее = l + s,

    l - сумма длин прямых участков трубы;

    s - сумма длин согнутых по радиусу участков трубы.

    На рис. 1 видно, что:

    l = l1 + l2 + l3.

    Длина развертки согнутой трубы рассчитывается по средней ли­нии. За среднюю линию принимается ось симметрии трубы. Поэтому длина согнутых частей трубы рассчитывается по радиусам:

    r1; r2; r3; r4 – внутренние радиусы гибки трубы;

    d - наружный диаметр трубы.

    Длина развертки гнутой трубы в соответствии с правилами геомет­рии равняется:

    s = (2·π·R·α)/360,

    R - радиус средней линии трубы;

    α -угол загиба гнутой трубы.

    Для угла в 180° s = π·R;

    Для угла в 90° s = (π·R)/2.

    Сумма длин гнутых частей трубы в данном случае равняется:

    s = s1 + s2 + s3 + s4,

    s4 = (2π·R4·150)/360 = 5/6·π·R4.

    s1 = π·(R1 + R2 + R3 + 5/6·R4),

    L общее = (l1 + l2 + l3) + π·(R1 + R2 + R3 + 5/6·R4).

    Точно так же производится расчет разверток металла кругового профиля.

    Как я и обещал в комментариях к статье «Расчет усилия листогиба», сегодня поговорим о расчете длины развертки детали, согнутой из листового металла. Конечно, процессу гибки подвергают не только детали из листов. Гнут детали круглого и...

    Квадратного сечений, гнут и все прокатные профили – уголки, швеллеры, двутавры, трубы. Однако холодная гибка деталей из листового металлопроката, безусловно, является наиболее распространенной.

    Для обеспечения минимальных радиусов, детали перед гибкой иногда нагревают. При этом повышается пластичность материала. Используя гибку с калибрующим ударом, добиваются того, что внутренний радиус детали становится абсолютно равным радиусу пуансона. При свободной V-образной гибке на листогибе внутренний радиус получается на практике больше радиуса пуансона. Чем более у материала детали ярко выражены пружинные свойства, тем более отличаются друг от друга внутренний радиус детали и радиус пуансона.

    На рисунке, представленном ниже, изображен согнутый из листа толщиной s и шириной b уголок. Необходимо найти длину развертки.

    Расчет развертки выполним в программе MS Excel.

    В чертеже детали заданы: величина внутреннего радиуса R, угол a и длина прямолинейных участков L1 и L2. Вроде все просто – элементарная геометрия и арифметика. В процессе изгиба заготовки происходит пластическая деформация материала. Наружные (относительно пуансона) волокна металла растягиваются, а внутренние сжимаются. В середине сечения – нейтральная поверхность…

    Но вся проблема в том, что нейтральный слой располагается не в середине сечения металла! Для справки: нейтральный слой – поверхность расположения условных волокон металла, не растягивающихся и не сжимающихся при изгибе. Более того – эта поверхность (вроде как) не является поверхностью кругового цилиндра. Некоторые источники предполагают, что это параболический цилиндр…

    Я более склонен доверять классическим теориям. Для сечения прямоугольной формы по классическому сопромату нейтральный слой располагается на поверхности кругового цилиндра с радиусом r.

    На базе этой формулы и создана программа расчета развертки листовых деталей из сталей марок Ст3 и 10…20 в Excel.

    В ячейках со светло-зеленой и бирюзовой заливкой пишем исходные данные. В ячейке со светло-желтой заливкой считываем результат расчета.

    1. Записываем толщину листовой заготовки s в миллиметрах

    в ячейку D3: 5,0

    2. Длину первого прямого участка L1 в миллиметрах вводим

    в ячейку D4: 40,0

    3. Внутренний радиус сгиба первого участка R1 в миллиметрах записываем

    в ячейку D5: 5,0

    4. Угол сгиба первого участка a1 в градусах пишем

    в ячейку D6: 90,0

    5. Длину второго прямого участка детали L2 в миллиметрах вводим

    в ячейку D7: 40,0

    6. Все, результат расчета - длина развертки детали L в миллиметрах

    в ячейке D17: =D4+ЕСЛИ(D5=0;0;ПИ()/180*D6*D3/LN ((D5+D3)/D5))+ +D7+ЕСЛИ(D8=0;0;ПИ()/180*D9*D3/LN ((D8+D3)/D8))+D10+ +ЕСЛИ(D11=0;0;ПИ()/180*D12*D3/LN ((D11+D3)/D11))+D13+ +ЕСЛИ(D14=0;0;ПИ()/180*D15*D3/LN ((D14+D3)/D14))+D16=91.33

    L = ∑(Li+3.14/180*ai*s/ln((Ri+s)/Ri)+L(i+1))

    Используя предложенную программу, можно рассчитать длину развертки для деталей с одним сгибом – уголков, с двумя сгибами – швеллеров и Z-профилей, с тремя и четырьмя сгибами. Если необходимо выполнить расчет развертки детали с большим числом сгибов, то программу очень легко доработать, расширив возможности.

    Важным преимуществом предложенной программы (в отличие от многих аналогичных) является возможность задания на каждом шаге различных углов и радиусов гибки.

    А «правильные» ли результаты выдает программа? Давайте, сравним полученный результат с результатами расчетов по методике изложенной в «Справочнике конструктора-машиностроителя» В.И. Анурьева и в «Справочнике конструктора штампов» Л.И. Рудмана. Причем в расчет возьмем только криволинейный участок, так как прямолинейные участки все, надеюсь, считают одинаково.

    Проверим рассмотренный выше пример.

    «По программе»: 11,33 мм – 100,0%

    «По Анурьеву»: 10,60 мм – 93,6%

    «По Рудману»: 11,20 мм – 98,9%

    Увеличим в нашем примере радиус гибки R1 в два раза - до 10 мм. Еще раз произведем расчет по трем методикам.

    «По программе»: 19,37 мм – 100,0%

    «По Анурьеву»: 18,65 мм – 96,3%

    «По Рудману»: 19,30 мм – 99,6%

    Таким образом, предложенная методика расчетов выдает результаты на 0,4%…1,1% больше, чем «по Рудману» и на 6.4%…3,7% больше, чем «по Анурьеву». Понятно, что погрешность существенно уменьшится, когда мы добавим прямолинейные участки.

    «По программе»: 99,37 мм – 100,0%

    «По Анурьеву»: 98,65 мм – 99,3%

    «По Рудману»: 99,30 мм – 99,9%

    Возможно Рудман составлял свои таблицы по этой же формуле, которую использую я, но с погрешностью логарифмической линейки… Конечно, сегодня «на дворе» двадцать первый век, и рыскать по таблицам как-то не с руки!

    В заключение добавлю «ложку дегтя». Длина развертки - это очень важный и «тонкий» момент! Если конструктор гнутой детали (особенно высокоточной (0,1 мм)) надеется расчетом точно и с первого раза определить ее, то он зря надеется. На практике в процесс гибки вмешается масса факторов – направление проката, допуск на толщину металла, утонение сечения в месте изгиба, «трапециевидность сечения», температура материала и оснастки, наличие или отсутствие смазки в зоне гибки, настроение гибщика… Короче, если партия деталей большая и дорого стоит – уточните практическими опытами длину развертки на нескольких образцах. И только после получения годной детали рубите заготовки на всю партию. А для изготовления заготовок для этих образцов, точности, которую обеспечивает программа расчета развертки, хватит с лихвой!

    Программы расчета «по Анурьеву» и «по Рудману» в Excel можете найти в Сети.

    Жду ваших комментариев, коллеги.

    Для ОСТАЛЬНЫХ - можно скачать просто так...

    Продолжение темы - в статье о К-факторе.

    О расчете развертки при гибке труб и прутков читайте здесь.

    На главную

    Статьи с близкой тематикой

    Отзывы

    al-vo.ru

    ТЕХНОКОМ | Калькулятор усилия гибки онлайн

    Калькулятор расчета необходимого усилия листогибочного пресса позволяет просчитать необходимый тоннаж. Полезен для технологов и инженеров для общей проработки возможностей своего оборудования или подбора листогибочного пресса для выполнения определенной гибки по параметрам. Позволяет получить общие справочные значения в считанные секунды без сложного обсчета, в том числе для дальнейшего подбора гибочного инструмента или размещения заказов по гибке.
    Легенда
    F (усилие, тоннаж), тонн - общее необходимое усилие для осуществления гибаS (толщина), мм - толщина материала (листа) для гибкиV (открытие), мм - открытие матрицыh (длина полки), мм - минимальная необходимая длина для прямой остаточной полки детали после гибкиL (длина гибки), мм - основная длина гибки детали (параллельна ширине листогибочного пресса)R (радиус), мм - внутренний радиус гибаTS (предел прочности) - предел прочности материала детали для гибки
    Основная используемая формула для расчета:
    Гибочное усилие F = (1,42 x TS x S2 x L)/1000 x V Внутренний радиус R = (5 x V) / 32
    Внимание!
    Данный калькулятор предназначен исключительно для получения ориентировочной справочной информации и не может являться эффективным инструментом для точных расчетов и составления технических заданий. Для получения точных и достоверных значений необходимо консультироваться со специалистами.
    Таблица по усилиям гибки для листогибочного пресса
    Нижеприведенная таблица отображает примерное справочное усилие в соответствии с открытием матрицы, минимальной полкой, толщиной металла и радиусом. Данная таблица действительна для 1 метра конструкционной стали
    V H min R 0,5 0,8 1 1,2 1,5 1,8 2 2,5 3 3,5 4 4,5 5 6 7 8 9 10 12 15 18 20
    6 5 1 2,5 6,5 10
    8 6 1,3 2 5 8 11
    10 7 1,7 1,5 4 6 9 13
    12 9 2 3 5 7 11 16
    15 12 2,7 4 6 9 13 16
    20 15 3,3 4 7 10 13 19
    26 18 4,2 5 7,5 10 14 21
    30 22 5 6,5 8 12 19 24
    32 23 5,4 7,5 11,6 17 23 30
    37 25 5,8 10 14,5 20 26 33
    42 29 6,7 13 17 23 29 35,5
    45 32 7,5 16 21 27 33 48
    50 36 8,3 19 24 30 43 58
    60 43 10 20 25 36 49 64
    70 50 11,5 21 31 42 55 69
    80 57 13,5 27 37 48 60 75
    90 64 15 32 42 54 66 95
    100 71 17 38 48 60 86 134
    130 93 22 37 46 66 103 149
    180 130 30 33 48 75 107 133
    200 145 33 43 67 97 119
    250 180 42 54 77 95

    www.technocom-rus.ru

    Глубина прогиба ведущим валом - расчет онлайн калькулятором. Холодная гибка труб.

    Данный калькулятор можно разбить на 2 калькулятора. Первый рассчитывает

    параметры сегмента по хорде и высоте, второй - глубину прогиба ведущим валом.

    The field is not filled.

    "%1" is not a valid e-mail address.

    Please fill in this field.

    The field must contain at least% 1 characters.

    The value must not be longer than% 1 characters.

    Field value does not coincide with the field "%1"

    An invalid character. Valid characters:"%1".

    Expected number.

    It is expected a positive number.

    Expected integer.

    It is expected a positive integer.

    The value should be in the range of [%1 .. %2]

    The "% 1" is already present in the set of valid characters.

    The field must be less than 1%.

    The first character must be a letter of the Latin alphabet.

    An error occurred while importing data on line% 1. Value: "%2". Error: %3

    Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

    %3.%2.%1%4 %6:%7

    Wrong file format. Only the following formats: %1

    Please leave your phone number and / or email.

    hostciti.net

    Приспособление для разметки труб. Расчет и изготовление шаблона - Оборудование

    В крупных заготовительных мастерских разметку и резку труб производят на разметочно-отрезном агрегате, который позволяет получать детали трубопроводов с допуском ± 1 мм.

    В небольших заготовительных мастерских и на монтажной площадке разметку труб производят на разметочных стеллажах, применяя обычный разметочный и измерительный инструмент: линейки, рулетки, чертилки, шаблоны и др.

    Разметка трубы заключается в определении ее заготовительной длины и нанесении необходимых осей. Разметив трубу для резки, на ней намечают начала всех изгибов, отверстия для врезки отборов и тройников.

    Для изготовления гнутого отвода и определения длины заготовки должны быть известны радиус (R) и угол (а) загиба трубы, длина свободных концов или длина прямого участка между отводами. Длину заготовки (рис. 1) определяют по формуле

    Где LОбщ – длина заготовки, м;

    L= π/180*αR – длина изогнутом части, м;

    L1 = L – S – длина прямого участка, м;

    L2 = L1-S‑длина второго прямого участка, м; .

    Рисунок 1. Разметка трубы для изгиба
    • а – разметка отвода;
    • б – участок трубопровода.

    При пересечении двух труб тройник реза намечают по приспособлению, которое изготавливают на листе плотной бумаги. Вначале вычерчивают в двух проекциях и в натуральную величину пересечение двух труб, как показано на рис. 2. На врезаемой части трубы строят полуокружность, которую обычно делят на шесть частей (точки 1, 2, 3, 4, 5, 6). Через эти точки проводят прямые параллельные оси трубы. На второй проекции делают аналогичные построения, прямые проводят до пересечения с контуром трубы, в которую нужно сделать врезку (точки 0, 1, 2, 3). Проводя из этих точек параллельные прямые, как показано на рисунке, получим точки 0l, 1l, 2l, 3l, 4l, 5l, 6l.

    Рис. 5. Разметка пересечения двух труб
    • а – построена для изготовления шаблона;
    • б – шаблон.
    Таблица 5. Скиды и длины изогнутых частей трубы для любого радиуса

    Примечания; 1. Для определения величины скида или длины изогнутой части необходимо их значения, указанные в таблице, умножить на радиус гнутья (в мм)гнутья и углов гиба

    Длина изогнутой части трубы 1. мм 0,6981 0,7854 1,0472 1,1781 1,2915 1,5708
    Скид S, мм 0,364 0,4141 0,5774 0,6663 0,7673 1
    Угол гнутья а. град 40 45 60 57 30′ 75 90
    Длина изогнутой части трубы 1, мм 0,1745 0,2618 0,3491 0,3927 0,5236 0,6545
    Скид S, мм 0,0875 0,1316 0,1763 0,199 0,2679 0,3396
    Угол гнутья а. град 10 15 20 22 30′ 30 37 30′
    Длина изогнутой части трубы, мм 0,0087 0,0175 0,0349 0,0524 0,0698 0,0873
    Скид 5. мм 0,0045 0,0087 0,0175 0,0261 0,0349 0,0436
    Угол гнутья а. град 30′ 1 2 3 4 5

    Примечания; 1. Для определения величины скида или длины изогнутой части необходимо их значения, указанные в таблице, умножить на радиус гнутья (в мм).

    2. Величину скидов и длину изогнутой части для углов, не указанных в таблице, определяют путем сложения. Например, скид для угла 53е равен сумме скидов для углов 45 + 5 +3° и т. д.

    Изготовление шаблона

    Для построения линии развертки на листе плотной бумаги проводят прямую линию длиной πd и делят на 6 частей. В точках деления проводят перпендикуляры, на которых откладывают величины 1–1, 2–2, 3–3, 4–4, 5–5. Полученные точки соединяют плавной кривой. Легко заметить, что линия развертки симметрична. Вторую половину получают, согнув лист по перпендикуляру в точке 6. Изготовив шаблон, его переносят на трубу, намечая линию реза чертилкой или мелом.

    Рисунок 3. Универсальный циркуль
    • 1 – упор;
    • 2 – угломер;
    • 3 – гайка;
    • 4 – осевая стойка;
    • 5 – мерная линейка;
    • 6 – ползун;
    • 7 – штанга – чертилка;
    • 8 - натяжное устройство.

    Для разметки отверстий в трубах под врезку можно пользоваться универсальным циркулем (рис. 3.). Циркуль закрепляют на трубе и поворотом на 360° штанги-чертилки, установленной на определенном делении мерной линейки, очерчивают контур вырезаемого отверстия. Вырезку отверстий в трубах и резку врезаемых патрубков в небольших мастерских и на монтажной площадке проводят газопламенным методом.

    arxipedia.ru




Нашли ошибку?
Выделите ее и нажмите:
CTRL+ENTER