Главная · Бытовая техника · Определение насыпной плотности отжатого сока. Насыпная плотность песка. От чего зависит плотность

Определение насыпной плотности отжатого сока. Насыпная плотность песка. От чего зависит плотность

Под средней плотностью материалов пони­мают отношение массы образца в сухом состоянии к его объему. Для материалов, представляющих собой куски различной крупности (сыпучие материалы), применяют понятие насыпной плотности, представляющей собой отношение массы материала в насыпном состоя­нии к его объему.

Все основные свойства теплоизоляционных материа­лов связаны с их пористостью, но самую непосредствен­ную связь с пористостью имеет средняя (насыпная) плотность. Знание этой характеристики позволяет су­дить о теплозащитных свойствах теплоизоляционного материала. По величине средней плотности теплоизоля­ционные материалы делят на марки: 15, 25, 35, 50, 75, 100, 125, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.

Маркой считают наибольшее значение средней плот­ности в пределах одного из вышеприведенных интерва­лов. Например, материал со средней плотностью 310 кг/м3 относят к марке 350, со средней плотностью 27 кг/мч - к марке 35 и т. п.

Все теплоизоляционные материалы можно разделить на три группы: жесткие (штучные теплоизоляционные материалы, выпускаемые в виде изделий определенной заданной формы), гибкие (в виде крупноразмерных ма­тов, матрацев и т. п.) и рыхлые (минеральная и стек­лянная вата, вспученные перлит и вермикулит, стекло - пор).

Методы определения средней (насыпной) плотности различных видов теплоизоляционных материалов в зна­чительной мере отличаются друг от друга.

Определение средней плотности жестких теплоизоля­ционных материалов осуществляют измерением линей­ных размеров и взвешиванием самих изделий или изме­рением и взвешиванием образцов, выпиливаемых, вы­сверливаемых или вырезаемых из различных частей изделий. При этом обычно образцы предварительно вы­сушивают при температуре 105-110° С. Средняя плот­ность (кг/м3)

Где M - масса образца или изделия, кг; V -объем образца или изделия, м3.

При определении средней плотности изделия в есте­ственно влажном состоянии применяют формулу

Где Wa - абсолютная влажность материала, по массе, %.

Размеры образцов и изделий находят с помощью металлического измерительного инструмента (линейки, штангенциркуля). Длину и ширину изделий измеряют не менее чем в трех местах - у краев и в середине, А толщину в пяти-шести местах. Например, толщину фибролитовых плит измеряют в шести точках; на рас­Стоянии 100 мм от каждого края и в двух местах по
Продольной осевой линии плиты. Измерение толщины может производиться штангенциркулем или специаль­ным прибором - толщиномером (рис. 7). Толщиномер применяют^ для измерения толщины торфяных, жестких минераловатных и теплоизоляционных древесноволок­нистых плит. Точность измерения толщины плит при использовании штангенциркуля и толщиномера состав­ляет 0,1 мм, а при использовании линейки-1 мм.

Среднюю плотность партии материала вычисляют как среднюю арифметическую величину не менее, чем трех определений. При этом взвешивание образцов hpo - изводят с точностью до 0,1 г, а изделий - до 1 г.

Определение средней плотности гибких теплоизоля­ционных материалов ведут следующим образом. Из раз­ных мест каждого из трех полотнищ войлока, отобран­ных для испытаний, вырезают по три образца размером 100 X 100 мм. Взвешенный с точностью до 0,01 г обра­зец укладывают на основание специального прибора (рис. 8) . Пластинку 7 массой 0,5 кг подводят вплот­ную к пластинке 6 и закрепляют винтом 5. Затем пла­стинки 7 я 6 опускают вниз, не доводя нижнюю поверх­ность пластинки 7 на 1-2 см до поверхности образца, и закрепляют их винтом 4. Ослабив винт 5, опускают пластинку 7 на поверхность образца, оставляют ее в этом положении 5 мин, после чего с помощью стрелки I производят отсчет по шкале 2 и определяют толщину образцов войлока под давлением 0,0005 МПа. Подвиж­ная пластина 3 используется и при других испытаниях минераловатных изделий.

Средняя плотность войлока (кг/м3)

Рср_ 7(1 +0,01 W)"

Средняя плотность партии войлока будет характери­зоваться средней арифметической величиной девяти определений (девять образцов из трех изделий).

Средняя (насыпная) плотность рыхлых теплоизоля­ционных материалов волокнистого строения зависит от многих факторов. Например, на среднюю плотность ми­неральной ваты оказывает влияние толщина волокон, количество «корольков» (стекловидных невытянувших - ся в волокна включений шаровидной или грушевидной формы размером более 0,25 мм), степень уплотнения ваты. Для получения сравнимых результатов среднюю плотность волокнистых материалов определяют под постоянным давлением. Например, среднюю плотность минеральной ваты определяют в специальном приборе (рис. 9) под давлением 0,002 МПа. С этой целью берут пять навесок ваты по 0,5 кг каждая. Взвешивание про­изводят с точностью до 1 г. Вата для каждой навески отбирается как средняя проба (из пяти упаковочных мест отбирают по 0,5 кг ваты).

Навеску ваты слоями укладывают в металлический цилиндр 1. Сверху на вату с помощью подъемного устройства 4 опускают металлический диск 2 массой 7 кг, что соответствует давлению на вату 0,002 МПа. Под нагрузкой вату выдерживают 5 мин и затем опре­деляют высоту слоя ваты с помощью шкалы, нанесен­ной на стержне 3. Вычисляют объем ваты и, зная ее

Материал в сосуд засыпают с высоты 5 см с помощью воронки или лотка до образования конуса. Избыток ма­териала снимают металлической линейкой без уплотне­ния. Сосуд, масса которого известна, с материалом взве­шивают с точностью до 1 г и по известной формуле опре­деляют насыпную плотность материала.

Среднюю плотность кусков (зерен) рыхлого тепло­изоляционного материала (например, перлитового щеб­ня, керамзитового гравия и т. п.) определяют с помощью песочных объемомеров или погружением в мерные ци­линдры, заполненные водой.

При использовании песочного объемомера (рис. 10) зерно испытуемого материала помещают внутрь прибо­ра. Объем зерна будет равен разности между уровнями песка в приборе с образцом и без него.

Более точно объем куска (зерна) материала можно измерить при погружении его в воду, т. е. по объему вытесненной им воды. С этой целью высушенный ДО постоянной массы и предварительно взвешенный с точ­ностью до 0,1 г образец парафинируют (покрывают тон­ким слоем расплавленного парафина), а затем погру­жают в воду, находящуюся в мерном цилиндре. Как правило, средняя плотность кусков пористых материа­лов ниже плотности воды, поэтому полное погружение образца достигается с помощью металлического диска, объем которого известен. Объем образца вычисляют по количеству вытесненной им воды. При этом учитывают объем металлического диска и парафина. Объем пара­фина

Где т - масса парафина, нанесенного на образец, г; 0,93 - плотность парафина, г/см3.

Зная объе. м образца и его массу, подсчитывают сред­нюю плотность данного куска. Для определения сред­ней плотности «в куске» партии материала производят несколько десятков определений и вычисляют среднюю арифметическую величину.

Определение средней плотности текучих формовоч­ных масс (растворных смесей, пеномасс, шликеров) осуществляют для контроля технологических процессов при тех или иных теплоизоляционных ма­териалов. Это, например, требуется при изготовлении изделий из ячеистых , из пенокерамических или Известково-кремнеземистых масс, и т. п.

Среднюю плотность смесей, находящихся в жидко - текучем состоянии, определяют в цилиндрическом со­суде емкостью 1 л. Сосуд наполняют испытуемой смесью, избыток смеси срезают шпателем или метал­лической линейкой и взвешивают сосуд с массой с точ­ностью до 1 г. Вычитая из общей массы массу" сосуда, узнают массу смеси. Плотность смеси вычисляют как среднее арифметическое по результатам двух измере­ний.

Если испытывают смесь с малой подвижностью (до 6 см), то ее уплотняют на вибростоле в течение 30 с Или на встряхивающем столике, производя 120 ударов (встряхиваний). В этом случае на сосуд сверху наде­вают специальную насадку, позволяющую заполнять мерный сосуд с некоторым избытком. После уплотнения насадка снимается, а избыток смеси удаляется метал» лической линейкой.

Определение средней плотности мастичных материа­лов. Отобранную пробу материала затворяют водой до нормальной (рабочей) консистенции, которую опреде­ляют с помощью стандартного конуса. Нормальная кон­систенция раствора соответствует глубине погружения конуса на 100+10 мм. Затем в специальные формы, предварительно очищенные и смазанные, размером 200 X 50 X 25 мм укладывают испытуемую смесь, уплот­няя ее в углах формы кончиком ножа и заглаживая поверхность ножом или шпателем заподлицо с бортами формы.

Заполненные формы помещают в сушильный шкаф, где образцы высушивают до постоянной массы, затем Их вынимают из форм и отшлифовывают.

Полученные образцы измеряют с точностью до 0,1 мм, взвешивают с точностью до 0,1 г и вычисляют среднюю плотность, кг/м3,

Но также производит и биологически активные добавки (БАД) к пище в таблетированной и капсулированной форме. В связи с этим кажется необходимым рассказать о некоторых похожих терминах и технологические свойствах этих продуктов.

Технологические свойства порошкообразных (таблетированных и капсулированных ) лекарственных веществ и биологически активных добавок к пище зависят от их физико-химических свойств. При производстве биологически активных добавок в форме таблеток и в форме твёрдых желатиновых капсул необходимо учитывать различные технологические характеристики, так как активные компоненты и многие экстракты лекарственных растений поступают в виде порошков или порошковых смесей.

Насыпная плотность

Базовой характеристикой всех сыпучих материалов является плотность. Существуют понятия истинной и насыпной плотности, которые измеряются в г/см 3 или кг/м 3 .

Истинная плотность – это отношение массы тела к объему этого же тела в сжатом состоянии, в котором не учитываются зазоры и поры между частицами. Истинная плотность – постоянная физическая величина, которая не может быть изменена.

В своем естественном состоянии (неуплотненном) сыпучие материалы характеризуются насыпной плотностью. Под насыпной плотностью различных сыпучих материалов понимают количество порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.

Насыпная плотность заданного порошка или любой сыпучей смеси (D нас. пл.) определяется отношением массы свободно засыпанного порошка (Mасса cып.) к объему этого порошка (Vcосуда) по формуле:

D нас.пл.= Mасса cып/Vcосуда

Насыпная плотность учитывает не только объем частиц материала, но и пространство между ними, поэтому насыпная плотность гораздо меньше, чем истинная. Например, истинная плотность каменной соли составляет 2,3 т/м 3 , а насыпная – 1,02 т/м 3 .

Зная насыпную плотность применяемых сыпучих материалов можно при проектировании емкостей или дозаторов, а так же капсул и таблеток рассчитать их объем и, соответственно, высоту засыпки. Понятно, что если нам частично известны некоторые параметры, а именно высота засыпки, а так же коэффициент засыпки, то можно рассчитать высоту предполагаемого объема, то есть высоту форматных частей, что очень важно при решении технологических задач. Конечно, если известна насыпная плотность порошка, тогда технологи могут легко рассчитать массу для одной дозы, порции или упаковки и тем самым определить величину дозировки для капсулятора или таблетпресса, а также для любого другого фасовочного оборудования.

Значение насыпной плотности определяется в соответствии со стандартом (ГОСТ 19440-94 «Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта») с помощью прибора волюмометра, принцип действия которого основан на точном определении массы порошка, заполняющего мерную емкость. Волюмометр состоит из воронки с ситом и корпуса с несколькими наклонными стеклами, по которым порошок, пересыпаясь, падает в тигелек с измеренным объемом и весом.

Объемная или Насыпная плотность зависит от размера, формы, влажности и плотности частиц гранул или порошка. По значению этого показателя можно прогнозировать и рассчитывать объем матричных каналов. Процедуру измерения насыпной плотности порошковой смеси или монопорошка проводят на специальном приборе (рис. 1).

Производят навеску массой 5,0 г порошка. Точность навески до 0,001 г. Далее засыпают навеску в мерный цилиндр. Устанавливают на приборе амплитуду колебаний (35-40 мм) при помощи регулировочного винта. Устанавливают отметку по шкале и фиксируют положение при помощи контргайки. Далее, с помощью трансформатора устанавливают частоту колебаний. Частота устанавливается в интервале от 100 до 120 кол/мин, по счетчику. После включения прибора тумблером оператор следит за отметкой, по которой установлен уровень порошка в цилиндре. Как правило, при работе прибора в течение 10 минут, уровень порошка или смеси становится постоянным, и прибор необходимо отключить.

Насыпную плотность рассчитывают по формуле:

где: ρ н – насыпная плотность, кг/м 3 ;

m – масса сыпучего материала, кг;

V – объем порошка в цилиндре после уплотнения, м 3 .

В зависимости от насыпной плотности порошки классифицируют следующим образом:

ρ н > 2000 кг/м 3 – весьма тяжелые;

2000 > ρ н > 1100 кг/м 3 – тяжелые;

1100 > ρ н > 600 кг/м 3 – средние;

ρ н < 600 кг/м 3 – легкие.

Одним из приборов, на котором проводят измерение насыпной плотности (а также другие характеристики порошковой смеси или монопорошка), является прибор ВТ-1000.

Анализатор ВТ-1000 (Рис. 2) используется для определения свойств различных сыпучих материалов, связанных с текучестью. Порошок или порошковые смеси, по определению, являются двухфазными системами. Свойства поверхности частиц порошковой смеси или монопорошка, так же как и их плотность, все эти параметры определяет его поведение в потоке и их сыпучесть. Правильное определение параметров сыпучести очень важно для расчетов процессов обработки порошка, его упаковки, транспортировки и хранения.

С помощью ВТ-1000 (Рис.3) возможно определить не только насыпную плотность, но и дисперсность, угол падения, угол естественного откоса, угол на плоской пластине и плотность утряски. Из данных характеристик легко рассчитать угол разности, прессуемость, объем пустого пространства, сжимаемость, униформность. По характеристикам зафиксированным на приборе, можно рассчитать индекс Карра, что позволяет определить значения сыпучести и аэрируемости

(поведения порошка в аэродинамической струе).

Порошок засыпается в мерный цилиндр. Отношение занятого им объема к массе порошка является объемной или насыпной плотностью. Рис.3

2.1. Оборудование и материалы

Порошок ПЖРВ. Волюометр Скотта (рисунок 3). Кювета (толщина 4 мм, глубина 40,4 мм, объем V=26,5 см 3), весы рычажные. Штангенциркуль ШЦЦ-1-125.00 ПС, ГОСТ 166-89, погрешность измерения 0,03; весы ВЛА-200г-М, №608, погрешность от неравноплечности коромысла ≤2 гр., весы рычажные. ГОСТ – 19440 49.

Рис.3. Волюмометр Скотта

2.2. Теоретические данные

Насыпная плотность (ρ насып, г/см 3), есть объемная характеристика порошка, и представляет собой массу единицы его объема при свободной насыпке. Ее величина зависит от плотности упаковки частиц порошка при свободном заполнении ими какого – либо объема. Она тем больше, чем крупнее и более правильной формы частицы. Наличие выступов и неровностей на поверхности частиц, а так же увеличение поверхности в связи с уменьшением размера частиц повышает межчастичное трение, что затрудняет их перемещение относительно друг - друга и приводит к снижению насыпной плотности.

Величину, обратную насыпной плотности, называют насыпным объемом (V насып, см 3 /г), который представляет собой объем, занимаемый единицей массы порошка, при его свободной насыпке. Насыпная плотность порошка влияет на объемное дозирование и сам процесс формирования, а также на величину усадки при спекании (чем меньше насыпная плотность тем больше усадка).

При воздействии на свободно насыпанный порошок механических виброколебаний происходит уменьшение объема на 20-50%. Отношение массы порошка к величине этого нового, уменьшенного объема, называют плотностью утряски. Максимальная плотность утряски достигается на порошках со сферической формой частиц при минимальной шероховатости их поверхности.

Сущность метода – измерение массы определенного количества порошка, который в свободно насыпанном состоянии полностью заполняет емкость известного объема. Свободно насыпанное состояние получается при заполнении емкости путем последовательного прохождения порошка через систему наклонных пластин волюмометра Скотта. Отношение массы к объему – насыпная плотность.

2.3. Описание метода определения насыпной плотности

Некоторый объем порошка ПЖРВ насыпаем в верхнюю воронку волюмометра. Порошок в свободно насыпанном состоянии сыплется вниз, последовательно проходит через систему наклонных пластин волюмометра, заполняя при этом кювету, находящуюся под нижней воронкой. Образовавшаяся горка на поверхности снимается – поверхность выравнивается. Далее получившаяся масса порошка взвешивается на весах. Опыт проделывается два раза (таблица 2). Для каждого раза высчитывается значение ρ насып и V насып.

2.4. Результаты

Таблица 2. Значения насыпной плотности и объема для ПЖРВ

m к =153,7 г V к =26,5 см 3
ρ насып, г/см 3 V насып, см 3 /г
m П =72,42 г 2,733 0,3659
m П =77,3 г 2,917 0,3428
Ср.знач 2,825 0,3544

Где m к - масса кюветы, V к - объем кюветы, m П – масса порошка.

Вывод : проведены измерения насыпной плотности для порошка ПЖРВ, получившиеся значения укладываются в интервал теоретических: 2,71-2,90 г/см 3 .

Прессуемость порошков

3.1. Оборудование и материалы

Порошок ПЖРВ. Ручной гидравлический пресс 10 ТНС «Karl Zeiss Jena». Цилиндрические пресс-формы. Весы рычажные.

3.2. Теоретические данные

Уплотняемость порошка показывает его способность изменять начальную плотность упаковки частиц в процессе прессования. Эта характеристика оценивается по плотности прессовок, изготовленных при различных давлениях прессования в цилиндрической пресс-форме.

Прессуемость порошка оценивается его способностью образовывать прессовку под воздействием на него давления. Эта характеристика дает качественную оценку свойств порошка, комплексно связанную с уплотняемостью и формуемостью.

Хорошая прессуемость облегчает и удешевляет процесс формирования порошка. Чем выше насыпная плотность порошка, тем лучше прессуемость.

3.3. Описание способа прессования

Цилиндрическую пресс-форму заполнить порошком определенной массы (m=8,5 г для всех последующих испытаний берется та же масса). Пресс-форма помещается на предметный столик, находящийся под пуансоном. Далее пуансон опускается на пресс-форму и крепко фиксируется рычагами сверху. Затем выбирается давление и выдерживается на пресс-форме около 5 секунд. После этого давление необходимо снять, отжав рычаг рядом с монометром. Поднять пуансон и достать пресс-форму. Снять с пресс-формы верхний клапан и поставить на его место цилиндр, для того чтобы прессовка не выпала из пресс-формы. Далее так же установить пресс-форму под пуансон и подавать давление до тех пор, пока прессовка (рисунок 4) не выйдет. После, измерить размеры прессовки (диаметр D и высоту H), записать в таблицу 3.

Измерения проводились 13 раз: 12 из них с повышением давления на шаг, равный 10, и один для определения порога прессования (при Р=8).

Рис.4. Форма прессовки

3.4. Результаты

Таблица 3. Размеры полученных прессовок

Давление Р, дел. Диаметр D,мм Высота H, мм Объем F, кН Pуд, МПа
16,6 1876,46 5,45 0,047419
1582,56 11,95 0,103975
12,11 12,41 1428,66 18,45 0,16053
11,56 1258,83 24,95 0,217085
12,14 11,43 1322,37 31,45 0,27364
11,35 1283,00 37,95 0,330196
12,11 11,29 1299,73 44,45 0,386751
12,18 10,35 1205,33 50,95 0,443306
12,24 10,28 1209,00 57,45 0,499861
12,16 10,05 1166,55 63,95 0,556417
12,12 10,10 1164,65 70,45 0,612972
12,15 10,22 1184,33 76,95 0,669527
8 (порог) 12,10 16,14 4,15 0,036108

m (навески порошка ПЖРВ) = 8,5 г

Объем вычисляется по формуле

Рис.5. Зависимость размеров прессовок от давления

Рис.6. Зависимость объема прессовки от давления

Для характеристики поведения порошков при прессовании используют коэффициент уплотнения k , равный отношению плотности прессовки при данном давлении P к насыпной плотности:

k = γ пр / γ нас.

Таблица 4. Расчет коэффициента уплотнения

Давление Р, Па Объем, см 3 ρ, г/см 3 коэффициент уплотнения k
1(порог) 1,855 4,58221 1,622021
1,876 4,530917 1,603864
1,582 5,372946 1,901928
1,429 5,948216 2,105563
1,259 6,75139 2,389873
1,322 6,429652 2,275983
1,283 6,625097 2,345167
1,3 6,538462 2,3145
1,205 7,053942 2,496971
1,209 7,030604 2,488709
1,167 7,283633 2,578277
1,165 7,296137 2,582703
1,184 7,179054 2,541258


Рис.7. Зависимость коэффициента уплотнения от приложенного давления

Вывод : прессуемость порошков была проведена на гидравлическом прессе «Karl Zeiss Jena». После получения прессовок были замерены их размеры и вычислен объем. В соответствии с таблицей построен график зависимости объема прессовок от приложенного давления - с увеличением давления объем уменьшается.

Усадка прессовок

После проведения прессовки порошка, получившиеся прессовки подвергли спеканию на установке СНВЭ - 131 при температуре 1200 0 С, при Р=10 -2 Па, 1 час. Далее была вычислена усадка прессовок.

4.1. Оборудование и материалы

Прессовки порошка ПЖРВ (13 шт.). Штангенциркуль ШЦЦ-1-125.00 ПС, ГОСТ 166-89, погрешность измерения 0,03; весы ВЛА-200г-М, №608, погрешность от неравноплечности коромысла ≤2 гр.

4.2. Полученные результаты

Необходимо измерить размеры прессовок после спекания (таблица 5). Затем сравнить объемы до и после усадки (таблица 6), вычислив тем самым величину усадки.

Таблица 5. Размеры прессовок после спекания

Диаметр D Высота H Объем
12,08 16,48 1887,821
12,10 14,05 1614,792
12,10 12,42 1427,454
12,13 11,81 1364,084
12,15 11,26 1304,85
12,14 11,2 1295,91
12,11 11,17 1285,912
12,12 10,41 1200,399
12,16 10,18 1181,638
12,19 10,10 1178,144
12,14 10,01 1158,087
12,13 10,07 1163,11
13 (Р=8) 12,10 16,10 1850,403

Таблица 6. Объемная усадка

Объем до спекания Объем после спекания Объемная усадка, %
1876,464 1887,821 -0,605
1582,56 1614,792 -2,037
1428,663 1427,454 0,0846
1258,829 1364,084 -2,361
1322,371 1304,85 1,325
1283,004 1295,91 -0,935
1299,726 1285,912 1,0628
1205,326 1200,399 0,4088
1208,998 1181,638 2,263
1166,549 1178,144 -0,994
1164,652 1158,087 0,5637
1184,331 1163,11 1,7918
1850,403 0,2478

Таблица 7. Усадка за счет изменения высоты прессовок

Н до спекания Н после спекания Линейная усадка, %
16,6 16,48 0,7229
14,05 -0,357
12,41 12,42 -0,081
11,81 1,5833
11,43 11,26 1,4873
11,35 11,2 1,3216
11,29 11,17 1,0629
10,35 10,41 -0,58
10,28 10,18 0,9728
10,05 10,10 -0,498
10,10 10,01 0,8911
10,22 10,07 1,4677
16,14 16,10 0,2478

Рис.8. Зависимость усадки по объему и по высоте

Вывод : после проведения спекания размеры образцов изменились - диаметр увеличился, а высота соответственно уменьшилась. Построен график зависимости усадки по объему и по высоте - величина усадки монотонно уменьшается.

Представляет собой отношение массы этого вещества в свеженасыпанном состоянии к его объему. При этом учитывается как объем самого вещества, так и объем пустот внутри него и объем между отдельными частицами (например, в угле). По понятным причинам этот вид плотности меньше плотности истинной, которая исключает вышеуказанные пустоты.

Для определения насыпной плотности используются такие инструменты, как весы, линейка, прибор «Воронка стандартная», мерный сосуд определенного объема. Насыпная плотность того или иного вещества определяется для материала определенной влажности. Если образец не соответствует нормам влажности, то его увлажняют или, что чаще, подсушивают.

Когда мы определяем, какова насыпная то алгоритм действий должен быть таким:

1. Мерный сосуд взвешивается и устанавливается под воронкой стандартной (она имеет затвор снизу).

2. Песок засыпается в воронку, после чего затвор открывается так, чтобы песок разом высыпался в мерный сосуд, заполнил его и образовал горку сверху.

3. Избыток песка «отсекается» линейкой движением по верху мерного сосуда.

4. Сосуд с песком взвешивается, из общей массы вычитается вес самого сосуда.

5. Рассчитывается насыпная плотность.

6. Эксперимент повторяется 2-3 раза, после чего рассчитывается средняя величина.

Помимо плотности в рыхлом состоянии измеряется плотность в уплотненном варианте. Для этого песок в сосуде несколько утрамбовывается на виброплощадке в течение 0,5-1 минуты. Рассчитать, какова насыпная можно по такой же методике.

В соответствии с ГОСТ10832-2009, песок определенного вида (вспученный) по насыпной плотности делится на определенные марки - от М75 (показатель плотности равен 75 кг\м3) до М500 (плотность 400-500 кг\м3). Чтобы быть отнесенным к той или иной марке, песок должен иметь определенную теплопроводность и прочность при сдавливании. К примеру, теплопроводность марки М75 при температуре 25 С +-5С должна быть не более 0,043 Вт\м х С. А прочность сдавливания для песка марки М500 определяется как 0,6 мПа (не менее). типа (влажность материала 5%) имеет насыпную плотность 1500. Для цемента этот показатель равен около 1200 кг\м3 в свободнонасыпном состоянии и около 1600 кг\м3 в состоянии уплотнения. Часто для расчетов используют усредненную цифру, которая равна 1300 кг\кубический метр.

Зачем же нужна насыпная плотность? Дело в том, что в торговом обороте используется как раз эта величина, а не истинная плотность (к примеру, если песок продается в мешках). Поэтому для того чтобы перевести цены за кубометр в цены за тонну, необходимо как раз знать, какова плотность материала. Кроме того, для приготовления строительных растворов могут понадобиться объемные или весовые данные, в зависимости от инструкции.

Вся информация о продукте, в том числе плотность, наносится на каждую упаковку путем штемпелевания, нанесения краски по трафарету или типографским способом на этикетку. Здесь указываются данные о производителе, условные обозначения, дата изготовления и номер партии, количество вещества в упаковке и