Главная · Измерения · Потенциальная разность потенциалов. Электрическое напряжение. Разность потенциалов. Напряжение тока

Потенциальная разность потенциалов. Электрическое напряжение. Разность потенциалов. Напряжение тока

Электрическое напряжение.
Разность потенциалов. Напряжение тока.

Тема: что такое электрическое напряжение тока и разность потенциалов.

Пожалуй, одним из самых часто употребляемых выражений у электриков, является понятие электрическое напряжение. Его так же называют разность потенциалов и не совсем верное словосочетание, такое как напряжение тока, ну смысл у названий по сути общий. А что на самом деле обозначает это понятие? Пожалуй, для начала приведу книжную формулировку: электрическое напряжение - это отношение работы электрического поля зарядов при передачи пробного заряда из точки 1 в точку 2 . Ну а простыми словами говоря, это объясняется так.

Напомню Вам, что заряды бывают двух видов, это положительные со знаком «+» и отрицательные со знаком «-». Большинство из нас в детстве игрались с магнитиками, которые были честно добыты из очередной сломаной машинки с электромоторчиком, где они и стояли. Так вот когда мы пытались приблизить эти самые магниты друг к другу, то в одном случае они притягивались, а если развернуть один из них наоборот, то соответственно отталкивались.

Это происходило, потому что у любого магнита существует два полюса, это южный и северный. В том случае, когда полюса одинаковые, то магнитики будут отталкиваться, ну а когда разноименные, притягиваться. То же самое происходит и с электрическими зарядами, причем сила взаимодействия зависит от количества и разноимённости этих заряженных частиц. Проще говоря, чем на одном предмете больше «плюса», а на другом соответственно «минуса», тем сильнее они будут притягиваться друг к другу. Либо наоборот, отталкиваться при одинаковом заряде (+ и + или - и -).

Теперь представим, что у нас есть два небольших железных шарика. Если мысленно заглянуть в них, можно увидеть огромное множество маленьких частичек, которые расположены друг от друга на не большом расстоянии и неспособны к свободному передвижению, это ядра нашего вещества. Вокруг этих частичек с невероятно большой скоростью вращаются более мелкие частички, под названием электроны . Они могут оторваться от одних ядер и присоединятся к другим, тем самым путешествуя по всему железному шарику. В случае, когда количество электронов соответствует количеству протонов в ядре, шарики электрически нейтральны.

А вот если каким-то образом забрать некоторое количество, такой шарик будет стремиться притянуть к себе это самое, недостающее количество электронов, тем самым образуя вокруг себя положительное поле со знаком «+». Чем больше не хватает электронов, тем сильней будет это положительное поле . В соседнем шарике сделаем на оборот и добавим лишних электронов. В итоге получим избыток и соответственно такое же электрическое поле , но со знаком «-».

В результате получим два потенциала, один из которых жаждет получить электроны, ну а второй от них избавится. В шаре с избытком возникает теснота и эти частицы, вокруг которых существует поле, толкаются и выталкивают друг друга из шара. А там где их недостаток, соответственно происходит что-то наподобие вакуума, который пытается втянуть в себя эти электроны . Это наглядный пример разности потенциалов и не что иное как напряжение между ними. Но, стоит только эти железные шары соединить между собой, как произойдёт обмен и напряжение пропадёт, поскольку образуется нейтральность.

Грубо говоря, эта сила стремления заряженных частиц, перейти от более заряженных частей к менее заряженным между двумя точками и будет разностью потенциалов. Давайте мысленно представим провода, которые подключены к батарейке от обычного карманного фонарика. В самой батарейке происходит химическая реакция, в результате которой возникает избыток электронов («-»), внутри батареи они выталкиваются на отрицательную клемму. Эти электроны стремятся, вернутся на своё место, откуда их до этого и вытолкали.

Внутри батареи у них не получается, значит остаётся ждать момента, когда им сделают мостик в виде электрического проводника и по которому они быстро перебегут на плюсовую клемму батареи, куда их притягивает. А пока мостика нет, то и будет желание перейти в виде этого самого электрического напряжения или разности потенциалов (напряжение тока).

Приведу некоторый аналогичный пример на ином представлении. Имеется обычный водопроводный кран с водой. Кран закрыт и, следовательно, вода не пойдёт из него, но внутри вода всё равно есть и более того, она там находится под некоторым давлением, она из-за этого давления стремится вырваться наружу, но ей мешает закрытый кран. И как только Вы повернёте ручку краника, вода тут же побежит. Так вот это давление и можно приблизительно сравнить с напряжением, а воду с заряженными частицами. Сам поток воды будет в данном примере выступать как электрический ток в самих проводах, а закрытый краник в роли электрического выключателя. Этот пример я привел только лишь для наглядности, и он не является полной аналогией!

Как ни странно, но люди не тесно связанные с профессией электрика, довольно часто называют электрическое напряжение , выражениемнапряжение тока и это является неправильной формулировкой, поскольку напряжение, как мы выяснили это разность потенциалов электрических зарядов, а ток, это сам поток этих заряженных частиц. И получается что, произнося напряжение тока в итоге небольшое несоответствие самого понятия.

Напряжение , так же как и все иные величины, имеет свою единицу измерения. Она измеряется в Вольтах. Это те самые вольты, которые пишутся на устройствах и источниках питания. Например, в обычной домашней розетки 220 В, или купленная вами батарейка с напряжением 1.5 В. В общем, думаю, вы поняли в общих чертах, что же такое это самое электрическое напряжение. В этой статье я основывался лишь на простом понимании этого термина и не вдавался в глубины формулировок и формул, чтобы не усложнять понимание. На самом деле эту тему можно гораздо шире изучить, но это уже зависит от Вас и Вашего желания.

P.S. Будьте внимательны при работе с электричеством, высокое напряжение опасно для жизни.

Пусть мы имеем бесконечное равномерное электрическое поле. В точке М помещен заряд + Q- Предоставленный самому себе заряд +Q под действием электрических сил поля будет перемещаться в направлении поля на бесконечно большое расстояние. На это перемещение заряда будет затрачена энергия электрического поля. Потенциалом данной точки поля называется работа, которую затрачивает электрическое поле, когда оно перемещает положительную единицу заряда из данной точки поля в бесконечно удаленную точку. Чтобы переместить заряд +Q из бесконечно удаленной точки снова в точку М, внешние силы должны произвести работу А, идущую на преодоление электрических сил поля. Тогда для потенциала точки М получим:


Таким образом, абсолютная электростатическая единица потенциала больше практической единицы - вольта в триста раз.

Если заряд, равный 1 кулону, из бесконечно удаленной точки перемещается в точку поля, потенциал которой равен 1 вольту, то при этом совершается работа в 1 джоуль. Если же в точку поля с потенциалом 10 в из бесконечно удаленной точки перемещается 15 кулонов электричества, то совершается работа 10 -15 = 150 джоулей.

Математически эта зависимость выражается формулой:

Чтобы переместить из точки А с потенциалом 20 в в точку В с потенциалом 15 в 10 кулонов электричества, поле должно совершить работу:

Изучая электрическое поле, отметим, что в этом поле разность потенциалов двух точек поля называется также напряжением между ними, измеряется в вольтах и обозначается буквой U.

Работу сил электрического поля можно записать и так:

Для того чтобы заряд q переместить вдоль линий поля из одной точки однородного поля в другую, находящуюся на расстоянии l, нужно проделать работу:

Такова простейшая зависимость между напряженностью электрического поля и электрическим напряжением для однородного поля.

Расположение точек с равным потенциалом вокруг поверхности заряженного проводника зависит от формы этой поверхности. Если взять, например, заряженный металлический шар, то точки с равным потенциалом в электрическом поле, созданном шаром, будут лежать на сферической поверхности, окружающей заряженный шар. Поверхность равного потенциала, или, как.ее еще называют, эквипотенциальная поверхность, служит удобным графическим способом для изображения поля. На фиг. 13 представлена картина эквипотенциальных поверхностей положительно заряженного шара.

Для наглядного представления о том, как изменяется разность потенциалов в данном поле, эквипотенциальные поверхности следует чертить так, чтобы разность потенциалов между точками, лежащими на двух со-

Седних поверхностях, была одна и та же, например равная 1 в. Первоначальную, нулевую, эквипотенциальную поверхность очертим произвольным радиусом. Остальные поверхности 1, 2, 3, 4 чертим так, чтобы разность потенциалов между точками, лежащими на данной поверхности и на соседних поверхностях, составляла 1 в. Согласно определению эквипотенциальной поверхности разность потенциалов между отдельными точками, лежащими на одной и той же поверхности, равна нулю; поэтому заряд перемещается по эквипотенциальной поверхности без затраты работы. Из этой фигуры видно, что по мере приближения к заряженному телу эквипотенциальные поверхности располагаются теснее друг к другу, так как потенциал точек поля увеличивается, а разность потенциалов между соседними поверхностями, согласно принятому условию, остается одной и той же. И, наоборот, по мере удаления от заряженного тела эквипотенциальные поверхности располагаются реже. Электрические силовые линии перпендикулярны к эквипотенциальной поверхности в любой точке, так как только при условии перпендикулярности силы и перемещения работа электрических сил при движении заряда по эквипотенциальной поверхности может быть равной нулю. Сама поверхность заряженного проводника представляет собой эквипотенциальную поверхность, т. е. все точки поверхности проводника имеют одинаковый потенциал. Тот же потенциал имеют все точки внутри проводника.

Если взять два проводника с различными потенциалами и соединить их металлической проволокой, то, так как между концами проволоки имеется разность потенциалов или напряжение, вдоль проволоки будет действовать электрическое поле. Свободные электроны проволоки под действием поля придут в движение в направлении возрастания потенциала, т. е. по проволоке начнет проходить электрический ток. Движение электронов будет продолжаться до тех пор, пока потенциалы проводников не станут равными, а разность потенциалов между ними не станет равной нулю.

Если два сосуда с различными уровнями воды соединить снизу трубкой, то по трубке потечет вода. Движение воды будет продолжаться до тех пор, пока уровни воды в сосудах не установятся на одной высоте, а разность уровней не станет равной нулю.

Так как всякий заряженный проводник, соединенный с землей, теряет практически весь свой заряд, то потенциал земли условно принимается равным нулю.

Для изучения электростатического поля с энергетической точки зрения в него, как и в случае рассмотрения напряженности, вводится положительно заряженное точечное тело - пробный заряд. Допустим, что однородное электрическое поле, перемещая из точки 1 в точку 2 внесенное в него тело зарядом q и на пути l, совершает работу A = qEl (рис. 62, а). Если величина внесенного заряда будет 2q, 3q, ..., nq, то поле совершит соответственно работу: 2А, 3А, ..., nА . Эти работы различны по величине, поэтому не могут служить характеристикой электрического поля. Если взять соответственно отношения величин данных работ к величинам заряда тела, то окажется, что эти отношения для двух точек (1 и 2) есть величины постоянные:

Если подобным образом исследовать электрическое поле между двумя любыми его точками, то придем к заключению, что для любых двух точек поля отношение величины работы к величине заряда тела, перемещаемого полем между точками, есть величина постоянная, но оно в зависимости от расстояния между точками различно. Величина, измеряемая этим Отношением, называется разностью потенциалов между двумя точками электрического поля (обозначается φ 2 - φ 1) или напряжением U между точками поля. Скалярная величина, являющаяся энергетической характеристикой электрического поля и измеряемая работой, совершаемой им при перемещении точечного тела, заряд которого равен +1, из одной точки поля в другую, называется разностью потенциалов между двумя точками поля, или напряжением между этими точками. Из определения разность потенциалов напряжение U = φ 2 - φ 1 = Δφ.

Вокруг каждого заряженного тела имеется электрическое поле. С увеличением расстояния от тела до любой точки поля сила, с которой оно действует на внесенный в него заряд, уменьшается (закон Кулона) и в какой-то точке пространства практически становится равной нулю. Место, где не обнаруживается действия электрического поля данного заряженного тела, называется бесконечно удаленным от него.

Если шарик электроскопа помещать в разные точки электрического поля заряженного шарика электрофорной машины, то оно заряжает электроскоп. При заземлении шарика электроскопа электрическое поле машины совсем не действует на электроскоп. Разность потенциалов между произвольной точкой электрического поля и точкой, расположенной на поверхности Земли, называется потенциалом данной точки поля относительно Земли. Он измеряется работой, для вычисления которой надо знать начальную и конечную точки пути. За одну из этих точек принята точка на поверхности Земли, и относительно ее вычисляется работа перемещения заряда, а следовательно, и потенциал другой точки.

Если электрическое поле образовано положительно заряженным телом (рис. 62, б), то оно само перемещает до поверхности Земли внесенное в него положительно заряженное тело С. Потенциалы точек такого поля считают положительными. Когда электрическое поле образовано отрицательно заряженным телом (рис. 62, в), для перемещения положительно заряженного тела С до поверхности Земли нужна посторонняя сила F пост. Потенциал точек такого поля считается отрицательным.

Если известны потенциалы точек поля φ 1 и φ 2 , то, исходя из формулы разности потенциалов, можно вычислить работу перемещения заряженного тела из одной точки поля в другую: A = q(φ 2 - φ 1), или A = qU. Поэтому разность потенциалов и является энергетической характеристикой электрического поля. По этим формулам подсчитывается работа перемещения заряда в однородном и неоднородном электрических полях.

Установим единицу измерения напряжения (разности потенциалов) в системе СИ. Для этого в формулу напряжения подставим значение А = 1 дж и q = 1 к:


За единицу напряжения - вольт - принята разность потенциалов между двумя точками электрического поля, при перемещении между которыми точечного тела с зарядом в 1 к поле совершает работу в 1 дж.

Потенциальные поля. Можно доказать, что работа любого электростатического поля при перемещении заряженного тела из одной точки в другую не зависит от формы траектории, гак же как и работа однородного поля. На замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными. Потенциальный характер, в частности, имеет электростатическое поле точечного заряда.

Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула справедлива для произвольного электростатического поля. Но только в случае однородного поля энергия выражается формулой (8.19)

Потенциал. Потенциальная энергия заряда в электростатическом поле пропорциональназаряду. Это справедливо как для однородного поля (см. формулу 8.19), гак и для любого другого. Следовательно, отношение потенциальной энергии к заряду не зависит от помещенного в поле заряда.

Это позволяет ввести новую количественную характеристику поля - потенциал. Потенциалом электростатического поля называют отношение потенциальной энергии заряда в поле к этому заряду.

Согласно данному определению потенциал равен:

Напряженность поля является вектором и представляет собой силовую характеристику поля; она определяет силу, действующую на заряд в данной точке поля. Потенциал - скаляр, это энергетическая характеристика поля; он определяет потенциальную энергию заряда в данной точке поля.

Если в качестве нулевого уровня потенциальной энергии, а значит, и потенциала принять отрицательно заряженную пластину (рис. 124), то согласно формулам (8.19 и 8.20) потенциал однородного поля равен:

Разность потенциалов. Подобно потенциальной энергии, значение потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Практическое значение имеет не сам потенциал в точке, а изменение потенциала, которое не зависит от выбора нулевого уровня отсчета потенциала.

Таким образом, разность потенциалов (напряжение) между двумя точками равна отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду.

Зная напряжение в осветительной сети, мы тем самым знаем работу, которую электрическое поле может совершить при перемещении единичного заряда от одного контакта розетки к другому по любой электрической цепи. С понятием разности потенциалов мы будем иметь дело на протяжении всего курса физики.

Единица разности потенциалов. Единицу разности потенциалов устанавливают с помощью формулы (8.24). В Международной системе единиц работу выражают в джоулях, а заряд - в кулонах. Поэтому разность потенциалов между двумя точками равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом

1. Какие поля называют потенциальными? 2. Как связано изменение потенциальной энергии с работой? 3. Чему равна потенциальная энергия заряженной частицы в однородном электрическом поле? 4. Дайте определение потенциала. Чему равна разность потенциалов между двумя точками поля?

Разность потенциалов между двумя точками в схеме представляет со­бой разность их напряжений (относительно общей точки, обычно зе­мли). Например, разность потенциалов между точками А и В на рис. 1.8 VAВ = (VA - VВ), где VA - напряжение в точке А и VВ - напряжение в точке В. Напряжения Уд и Уд измеряются относительно провода Е, име­ющего нулевой потенциал. Напряжение в любой точке электрической схемы измеряется относительно нулевого провода, корпуса или земли.

Например, если VA = 5 В и VВ = 3 В, то VAВ = VA - VВ = 5 - 3 = 2 В (рис. 1.9(а)).

Напряжения могут отличаться по знаку - быть отрицательными и по­ложительными. Разность потенциалов между двумя точками, имеющими напряжения с противоположными знаками, равна сумме этих напряже­ний.

Например, если VС = 3 В, а VD = -2 В, то V = VС + VD = 3 + 2 = 5 В (рис. 1.9(б)).

Итак, если два напряжения имеют одинаковую полярность, или оди­наковые знаки, то разность потенциалов между ними равна их разности. Если же напряжения имеют разные знаки, то разность потенциалов ме­жду ними равна их сумме.

Рис. 1.9. Наглядное представление напряжений с разными знаками относи­тельно линии нулевого потенциала

Параллельное соединение резисторов

На рис. 1.10 изображены два резистора, R1 и R2 соединенные парал­лельно. Ток I от батареи разветвляется в точке А на ток I1, протека­ющий через сопротивление R1, и ток I2, протекающий через сопротив­ление R2. В точке В эти токи складываются и образуют полный ток I = I1 + I2.



Рис. 1.10.

С другой стороны, к каждому резистору приложено полное напряже­ние V, т. е.

Полное напряжение V = напряжению на R1

Напряжению на R2.

Общее сопротивление

Общее сопротивление (R) двух резисторов, соединенных параллельно, определяется формулой:



Заметим, что общее сопротивление двух параллельных резисторов всегда меньше, чем сопротивление меньшего из них. Общее сопротивление двух параллельно соединенных резисторов, имеющих одинаковое сопротивле­ние, равно половине сопротивления одного из них.

Параллельное соединение трех и более резисторов

В общем случае общее сопротивление произвольного числа резисторов, соединенных параллельно, можно определить по формуле выше.

Пример 4

Определить общее сопротивление схемы, изображенной на рис. 1.11(а).

Решение

R1 и R2 соединены последовательно и их общее сопротивление RТ1 = R1 + R2 = 6 + 8 = 14 Ом.

Теперь, после замены резисторов R1 и R2 их общим сопротивлением RТ1, (схема на рис. 1.11(б)), резистор R3 оказался включенным параллельно с RТ1, равным ему по величине. Следовательно, их общее сопротивление RТ2 вполовину меньше каждого из них. Теперь схема примет вид, как показано на рис. 1.11(в), где RТ2 = 7 Ом и соединено последовательно с R4. Отсюда общее сопротивление схемы между точками А и В равно RТ2 + R4 = 7 + 3 = 10 Ом



Рис. 1.11