Главная · Монтаж · Промышленная вентиляция и кондиционирование бжд кратко. Московский государственный университет печати. Практическое занятие по дисциплине «БЖД»

Промышленная вентиляция и кондиционирование бжд кратко. Московский государственный университет печати. Практическое занятие по дисциплине «БЖД»

Pиc. 4.3. Схемы подачи воздуха: схемы а - сверху вниз; б - сверху вверх; в - снизу вверх; г - снизу вниз Рис. 4.2. Распределение давлений в здании Рис. 4.4. Схема приточной вентиляции: 1 - устройство в виде канала или шахты; 2 - фильтр для очистки воздуха; 3 - обводной канал; 4 - воздухонагреватель; 5 - сеть воздухопроводов; 6 - вентилятор; 7 - приточные патрубки с насадками Рис. 4.5. Схемы приточных насадок: а, б - для вертикальной подачи; в, г - для односторонней подачи под разными углами; д - для сосредоточенной наклонной подачи; е, ж - для рассеянной горизонтальной подачи Рис. 4.6. Схема вытяжной вентиляции: 1 - устройство для очистки воздуха; 2 - вентилятор; 3 - центральный воздуховод; 4 - отсасывающие воздуховоды Рис. 4.7. Приточно-вытяжная вентиляция: 1 - шахта; 2 - фильтр для очистки воздуха; 3 - обводной канал; 4 - воздухонагреватель; 5 - воздухопроводы; 6 - вентилятор; 7 - приточные патрубки с насадками Рис. 4.8. Приточновытяжная вентиляция с рециркуляцией: 1 - шахта; 2 - фильтр для очистки воздуха; 3 - обводной канал; 4 - воздухонагреватель; 5 - воздуховоды; 6 - вентилятор; 7 - приточные патрубки с насадками; 8 - вытяжные патрубки с насадками; 9 - клапан Рис. 4.9. Воздушные завесы: а - с нижней подачей воздуха; б - с боковой двусторонней подачей воздуха; в - с односторонней подачей воздуха; г - деталь щели; Н, В - высота и ширина ворот (дверей) соответственно; b - ширина щели Рис. 4.11. Вытяжные шкафы: а - с верхним отсосом; б - с нижним отсосом; в, г - с комбинированным отсосом Рис. 4.10. Местные отсосы: а - зонт; б - опрокинутый зонт; в - всасывающая панель Рис. 4.12. Бортовые отсосы: а - для удаления летучих паров; б - для удаления тяжелых паров Рис. 4.13. Циклон ЦН-15 НИИОГАЗа: 1 - бункер; 2 - металлический цилиндр; 3 - труба; 4 - патрубок

На состояние человеческого организма большое влияние оказывают метеорологические условия (микроклимат) в производственных помещениях.

В соответствии с ГОСТ 12.1.005-88 микроклимат производственных помещений определяется действующими в них на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.

Если работы выполняются на открытых площадках, то метеорологические условия определяются климатическими условиями и сезоном года.

Температура воздуха - параметр, характеризующий его тепловое состояние, т.е. кинетическую энергию молекул газов, входящих в его состав. Измеряется температура в градусах по шкале Цельсия или Кельвина.

Температурный режим помещения зависит как от температуры воздуха в помещении формула" src="http://hi-edu.ru/e-books/xbook908/files/tp, эти два фактора и определяют конвективный и радиационный теплообмен человека и окружающей среды. Для оценки влияния температур нагретых поверхностей вводится понятие радиационной температуры. Ориентировочно ее можно определить так:

Gif" border="0" align="absmiddle" alt=".

Совместное воздействие формула" src="http://hi-edu.ru/e-books/xbook908/files/tp.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt="

В большинстве случаев для обычных помещений формула" src="http://hi-edu.ru/e-books/xbook908/files/tp.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=".

Под атмосферным давлением понимается величина, характеризующаяся давлением столба атмосферного воздуха на единичную поверхность. Нормальным принято считать давление, равное 1013,25 гПа (гектопаскаль, на практике применяется очень редко) или 760 мм. рт. ст. (1 гПа =
= 100 Па = 3/4 мм. рт. ст.).

Атмосферный воздух состоит из смеси сухих газов и водяных паров, т.е. мы всегда имеем дело с влажным воздухом или паровоздушной смесью. Причем водяной пар может находиться или в перегретом или насыщенном состоянии. Для характеристики содержания влаги в воздухе используют понятия абсолютной и относительной влажности.

Абсолютной влажностью воздуха называется масса водяных паров, содержащихся в 1 пометка">Подвижность воздуха . Человек начинает ощущать движение воздуха при его скорости примерно 0,1 м/с. При обычных температурах легкое движение воздуха, сдувая обволакивающий человека насыщенный водяным паром и перегретый слой воздуха, способствует хорошему самочувствию. В то же время, в условиях низких температур, большая скорость движения воздуха вызывает увеличение теплопотерь конвекцией и испарением и ведет к сильному охлаждению организма.

Все жизненные процессы в организме человека сопровождаются образованием теплоты, количество которой меняется от 80 Дж/с (в состоянии покоя) до 700 Дж/с (при выполнении тяжелой физической работы).

Несмотря на то, что факторы, определяющие микроклимат в помещении, могут колебаться в очень широких пределах, температура тела человека остается, как правило, на постоянном уровне (36,6пометка">Метеорологические условия , при которых отсутствуют неприятные ощущения и напряженность системы терморегуляции называются комфортными (оптимальными) условиями .

Метеорологические условия воспринимаются человеком как комфортные только в том случае, когда количество выработанного организмом тепла равно общей отдаче тепла в окружающую среду, т.е. при соблюдении теплового баланса.

Теплообмен организма с окружающей средой может происходить различными путями: конвективной передачей тепла окружающему воздуху (в нормальных условиях до 5% всего отводимого тепла); лучистым теплообменом с окружающими поверхностями (40%); контактной теплопроводностью через соприкасающиеся поверхности (30%); испарением влаги с поверхности кожи (20%); за счет нагрева выдыхаемого воздуха (5%).

При понижении температуры воздуха для уменьшения теплоотдачи организм снижает температуру кожных покровов, уменьшает влажность кожи, снижая тем самым теплоотдачу. При повышении температуры воздуха кровеносные сосуды кожи расширяются, происходит повышенный приток крови к поверхности тела, и теплоотдача в окружающую среду значительно увеличивается..gif" border="0" align="absmiddle" alt="С и значительном тепловом излучении от нагретых поверхностей наступает нарушение терморегуляции организма. Это может привести к перегреву, особенно, если потеря влаги приближается к 5 л в смену. При этом наблюдается нарастающая слабость, головная боль, шум в ушах, искажение цветового восприятия (окраска всего в красный или зеленый цвет), тошнота, рвота, повышение температуры тела. Дыхание и пульс учащаются, артериальное давление вначале возрастает, затем падает. В тяжелых случаях наступает тепловой удар. Возможна судорожная болезнь, являющаяся следствием нарушения водно-солевого баланса и характеризующаяся слабостью, головной болью, резкими судорогами конечностей.

Но далее если не возникают подобные болезненные состояния, перегрев организма сильно сказывается на состоянии нервной системы и работоспособности человека. Установлено, что при 5-часовом пребывании в зоне с температурой воздуха 31подсказка"> , невритов, радикулитов и др., а также простудных заболеваний. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к уменьшению работоспособности. В особо тяжелых случаях воздействие низких температур может привести к обморожениям и даже смерти.

Различные сочетания параметров микроклимата, оказывая на человека комплексное воздействие, могут вызывать одинаковые тепловые ощущения. На этом основано введение так называемых эффективной и эффективно-эквивалентно и температур. Эффективная температура характеризует ощущения человека при одновременном воздействии температуры и движения воздуха. Эффективно-эквивалентная температура учитывает еще и влажность воздуха. Эффективную температуру и зону комфорта можно определять по номограмме, построенной опытным путем (рис. 4.1 ).

Избыточное тепло, выделение влаги, тепловые излучения, высокая подвижность воздуха ухудшают микроклимат производственных помещений, затрудняют терморегуляцию, неблагоприятно влияют на организм работающих и способствуют снижению производительности и качества труда.

Воздух, загрязненный вредными газами, парами и пылью предопределяет опасность отравления или профессиональных заболеваний, вызывает повышенную утомляемость, и, как следствие этого, увеличивает опасность травматизма.

С точки зрения физиологии воздух следует рассматривать с двух позиций: как воздух, вдыхаемый человеком, и как среду, окружающую человека. Роль воздуха, соответственно, заключается в снабжении организма кислородом, удалении влаги при выдыхании и обеспечении теплообмена человека с окружающей средой. Воздух является также рабочим агентом, который уносит из помещения пыль, влагу, вредные выделения.

Санитарные нормы устанавливают значения оптимальных параметров микроклимата на рабочих местах (табл. 4.1).

Таблица 4.1

Оптимальные параметры микроклимата 5 на рабочих местах
(СанПиН 2.2.4.548-96)

Сезон года Категория работ по уровню энергозатрат, Вт Температура воздуха °С Температура поверхностей °С Скорость движения воздуха, м/с
Холодный (среднесуточная температура воздуха от +10°С и ниже Iа (до 139) 22-24 21-25 0,1
Iб (140-174) 21-23 20-24 0,1
IIа (175-232) 19-21 18-22 0,2
IIб (233-290) 17-19 16-20 0,2
III (более 290) 16-18 15-19 0,3
Теплый (среднесуточная температура воздуха от +10°С и выше) Iа (до 139) 23-25 22-26 0,1
Iб (140-174) 22-24 21-25 0,1
IIа (175-232) 20-22 19-23 0,2
IIб (233-290) 19-21 18-22 0,2
III (более 290) 18-20 17-21 0,3

5 Относительная влажность воздуха для всех сезонов и категорий

Оптимальным инструментом обеспечения нормативной чистоты и необходимых требуемых параметров микроклимата воздуха на рабочем месте считается промышленная вентиляционная сеть, т.е. искусственный и контролируемый, который имеет целью вывод из рабочего пространства отработанной воздушной массы, и приток свежей. Промышленная вентиляция и кондиционирование, БЖД — параметры которых соблюдены в соответствии со всеми стандартами, СНиП и нормами охраны труда и здоровья, создает условия для нормального труда людей, а также эксплуатации оборудования и инструментов.

В зависимости от способа перемещения и движения воздушных масс, можно сгруппировать вентиляционные сети на производстве в два основных класса:

  1. Естественный;
  2. Механический.

Организация естественного вентилирования

Естественное вентилирование

При условии, что движение воздушных потоков будет осуществляться через дверные и оконные проемы в силу перепада давления извне и изнутри эксплуатационного помещения, речь идет о естественной вентиляции. Такой перепад давления связан с разной плотностью воздуха, его температуры, а также напором ветра, который действует на здание. Естественная, или как говорят инженеры, неорганизованная вентиляция зачастую определяется случайными, неконтролируемыми факторами, как то:

  1. Направление и сила ветра;
  2. Наружная и внутренняя температура;
  3. Вид ограждения;
  4. Тип оконных и дверных конструкций.

При этом неорганизованная вентиляция, согласно нормам БЖД, должна достигать показателей в 1-1,5 объема помещения в час. Таких показателей достаточно трудно добиться, используя только естественные каналы воздухообмена. Согласно нормам охраны труда и БЖД, скорость воздушных потоков при таком виде вентиляции должна составлять 0,5-0,8 метров в секунду для верхнего этажа, и 1-1,5 метра в секунду для нижнего уровня и вытяжных шахт.

Движение воздушных потоков

Механическое вентилирование

Для перманентного (постоянного) обмена воздушного потока, который необходим в соответствии с требованиями и условными параметрами уровня чистоты атмосферы, необходимо обустройство сети механической вентиляции, обладающей рядом достоинств в сравнении с предыдущим типом, а именно:

  1. Большой спектр действия, который обеспечивается использованием вентиляторов;
  2. Возможность поддержания и контроля необходимой кратности обмена воздушных масс вне зависимости от температурного режима и давления снаружи;
  3. Возможность совмещения функции вентиляции с функциями систем осушения, повышения влажности, очистки, нагрева и охлаждения воздуха;
  4. Возможность устройства распределения потоков в соответствии со схемой расположения рабочих мест и пожеланиями заказчика;
  5. Возможность фильтрации отработанного воздуха и минимизация вредных атмосферных выбросов.

Принципиальная схема механической вентиляции

БЖД-параметры механической вентиляции

К любому оборудованию, инженерному устройству или системе коммуникаций, к которым также может быть отнесена система воздухообмена, предъявляются определенные требования в отношении безопасности жизнедеятельности, охраны труда и здоровья персонала, охраны окружающей среды. Соответственно, механическая вентиляция также имеет ряд требований и стандартов, соблюдение которых является критическим условием ее организации.

Избыточная теплота

В операционном помещении, где работает оборудование, естественным является образование избыточного тепла. С этой перспективы, при условии наличия рабочих мест, расположенных нефиксированно по всему помещению, объем подающегося воздуха должен быть равен объему выводимого. Максимально допустимое отклонение от данной нормы составляет 10-15 % общей массы.

Для достижения таких параметров скорость движения потоков должна быть достаточно высока. Этого можно добиться, увеличив диаметр воздуховода и разброс между впускным и выводящим отверстиями.

Разводка промышленной вентиляции

Концентрация вредных примесей

Важным показателем воздушной среды в рабочем или производственном пространстве также является наличие в атмосфере примесей, как твердых, так и газообразных. Это может быть как пыль, образующаяся при производстве, так и вредные испарения – углекислый газ или сероводород.

Необходимо помнить, что 60-70% веществ с плотностью выше атмосферной удаляется из нижних слоев атмосферы помещения (т.е. такие газы опускаются вниз) и только 30-40% — из верхней секции. И наоборот, влажный воздух скапливается в верхней части помещения, в то время как сухой опускается вниз.

Проектировщик должен учитывать специфику производства, и соответствующим образом располагать вентиляционное оборудование и воздуховоды.

Компоновка вентиляционного канала

Оптимальным средством на таких предприятиях или зданиях станут установки приточной сети, которые, как правило, комплектуются следующим образом:

  1. Устройство подачи очищенного воздуха;
  2. Воздуховоды;
  3. Фильтры;
  4. Калориферы;
  5. Побудители потока;
  6. Увлажнители или осушители;
  7. Приточные каналы и решетки;
  8. Насадки для разводки в помещении.

ПДК загрязняющих веществ

Для расчета необходимой мощности вентиляции при наличии факторов вредного воздействия должны быть определены гранично допустимые концентрации таких веществ, а также количество воздуха, необходимое для ихразбавления.

Эффективным средством борьбы с вредными испарениями считается установка местных отсосов, таких как кожухи, камеры, шкафы вытяжные, вытяжной зонт и прочие. Мощность таких приборов определяется путем умножения площади вытяжного отверстия на скорость движения (принимаемую согласно справочным таблицам, в зависимости от выводимого вещества).

Вытяжной зонт

Кратность воздухообмена

Для расчета кратности, необходимой для того или иного помещения, необходимо знать объем помещения, количество работающих в нем людей, норму воздухообмена на одного человека. Как правило, при организации промышленной вентиляции на производстве, кратность обмена воздуха на одного человека составляет 60 м3/час.

При наличии избыточного теплового излучения в помещении используется более сложная формула подсчета, в которой также учитываются избыток теплоты в кВт, теплоемкость в кг/0С, температура воздуха ввода/вывода. При этом температуры наружного и внутреннего воздуха, принимаемого для таких вычислений, приводится в СНиП.

Аварийная вентиляция

На некоторых предприятиях, особо опасных и опасных производственных объектах, должна быть также установлена аварийная вентиляция, устанавливаемая на случай резких выбросов и с целью их быстрого удаления. Такая система должна обеспечить не менее 8 полных смен воздуха за 1 час.

Вентилятор аварийной системы

Кондиционирование воздуха

Систему промышленного воздухообмена зачастую комбинируют с системой кондиционирования. Целью этого является создание оптимальных, требуемых согласно нормам и правилам БЖД, климатических условий на рабочем месте, в административном здании или производственном помещении. Система кондиционирования будет, безусловно, регулировать не только температуру, но также влажность воздуха, осуществлять его ионизацию, удаление запахов, насыщение озоном и т.д. Все зависит от потребностей и пожеланий клиента.

При организации промышленной вентиляции обычно используют местные или центральные кондиционеры, калориферы (для подогрева воздуха зимой), фильтры и другое оборудование, подбираемое в зависимости от требуемых функций сети.

Система промышленного кондиционирования

Климатический контроль и вентилирование воздуха являются важным компонентом не только в отношении безопасности жизнедеятельности, но также во многих производственных процессах, требующих стабильных показателей температурного режима, влажности или сухости, насыщения воздуха.

Основы работы приточно-вытяжной системы

Для системы вытяжной вентиляции. В системе приточной вентиляции обеспечивает защиту работающих и создание условий для эксплуатации ВТ, а в системе вытяжной вентиляции устройство обеспечивает защиту воздуха населенных мест от вредных воздействий.

В зависимости от использования средств, очистку подразделяют на:


  • грубую (концентрация более 100 мг/м 3 вредных в-в);

  • среднюю (концентрация 100 - 1 мг/м 3 вредных в-в);

  • тонкую (концентрация менее 1 мг/м 3 вредных в-в).
Очистку воздуха от пыли и создание оптимальных параметров микроклимата на РМ, обеспечивает система кондиционирования .

Очистка воздуха, удаляемого из помещения, осуществляется с помощью 2-х типов устройств:

Пылеуловители; - фильтры.

Очистка воздуха при использовании пылеуловителя осуществляется за счет действия сил тяжести и сил инерции.

По конструктивным особенностям пылеуловители бывают:

Циклонные;

Инерционные;

Пылеосадительные камеры.

Фильтры


  • бумажные; тканевые; электрические; ультрозвуковые; масляные; гидравлические; комбинированные

Способы очистки воздуха


  1. Механические (пыли, туманов, масел, газообразных примесей)

    1. Пылеуловители;

    2. Фильтры

  2. Физико-химические (очистка от газообразных примесей)

    1. Сорбция

      1. адсорбция (актив. уголь);

      2. абсорбция (жидкость)

    2. Каталитические (обезвреживание газообразных примесей в присутствии катализатора)

Контроль параметров воздушной среды

Осуществляется с помощью приборов:

  • Термометр (температура);

  • Психрометр (относительная влажность);

  • Анемометр (скорость движения воздуха);

  • Актинометр (интенсивность теплового излучения);
Газоанализатор (концентрация вредных веществ).
35. Ориентирующие и технические принципы нормализации воздушной среды и защиты человека от вредных факторов воздушной среды (микроклимат, вредные вещества, пыль).

Ориентирующие и технические принципы нормализации воздушной среды:


  • использование кондиционеров.

  • осуществление большего доступа воздуха.

  • использование вентиляции.
Защита человека от вредных факторов воздушной среды.

  1. от чрезмерного охлаждения

  • теплая одежда

  • устройства местного обогрева

  1. от теплового излучения

  • использование устройств устраняющих источник тепловыделения

  • использование устройств защищающих от тепловых излучений

  • использование устройств облегчающих теплоотдачу тепла человека
использование средств индивидуальной защиты
36. Организационные и управленческие принципы защиты человека от вредных факторов воздушной среды (микроклимат, вредные вещества, пыль).

Организационные и технические принципы:


  • принцип защиты временем – сокращение до безопасного значения времени пребывания в зоне действия вредных факторов воздушной среды;

  • принцип компенсации – возмещение ущерба человеку, подвергающемуся действию вредных факторов воздушной среды;

  • принцип нормирования – ПДК вредных веществ в воздухе рабочей зоны;

  • принцип рациональной организации труда;

  • принцип вакуумирования –для исключения попадания «вредных» газов и паров в гомосферу;
управленческий принцип – принцип контроля, т.е. контроль за состоянием микроклимата, воздуха рабочей зоны (контроль состояния концентрации вредных веществ ПДК и т.п.)
21. Методы нормализации воздушной среды и защиты человека от вредных факторов воздушной среды (микроклимат, вредные вещества, пыль).

Поддерживание на заданном уровне параметров, определяющих микроклимат – температуру, влажность и скорость воздуха, может осуществляться с помощью кондиционирования или , с большими допусками, вентиляцией.

Кондиционирование воздуха

Вентиляция - организованный воздухообмен, который обеспечивает удаление из помещения воздуха, загрязненного избыточным теплом и вредными веществами и тем самым нормализует воздушную среду в помещении.

Фильтры - устройства, в которых для очистки воздуха используются материалы (пр-во), способные осаживать или задерживать пыль.
22. Отопление, вентиляция и кондиционирование воздуха. Классификации. Области применения. Достоинства и недостатки.

Вентиляция – это организованный воздухообмен, заключающийся в удалении из рабочего помещения загрязненного воздуха и подаче вместо него свежего наружного (или очищенного) воздуха.

Вентиляция может быть приточной и вытяжной.

Вытяжная вентиляция служит для удаления из помещения загрязненного воздуха. Приточная служит для подачи в помещение чистого воздуха взамен удаленного.

Вентиляция может быть:


  • естественной (перемещение воздуха происходит под влиянием естественных причин);

  • механической;

  • местной;

  • общеобменной.
Кондиционирование воздуха – создание и поддержание в рабочей зоне производственных помещений постоянных или изменяющихся по заданной программе параметров воздушной среды, осуществляемое автоматически.

Кондиционеры бывают полного и неполного кондиционирования воздуха.

Кондиционеры полного кондиционирования включают в себя обеспечение постоянства температуры, постоянства относительной влажности, постоянства подвижности и чистоты воздуха, ионизации, озонирования, удаленных запахов.

Кондиционеры неполного кондиционирования поддерживают только часть приведенных параметров.

Применение вентиляции или кондиционирования зависит от места и среды их использования.
23.Основные элементы системы искусственной общеобменной вентиляции. Методы расчета необходимого воздухообмена для общеобменной вентиляции. Кратность воздухообмена.

Приточная система вентиляции


  1. Устройство забора

  2. Устройство очистки

  3. Система воздуховодов

  4. Вентилятор

  5. Устройство подачи на раб. место

Система вытяжной вентиляции



  1. Устройство для удаления воздуха

  2. Вентилятор

  3. Система возуховодов

  4. Пыле- и газоулавливающие устройства

  5. Фильтры

  6. Устройство для выброса воздуха
Система механической вентиляции должна обеспечивать допустимые параметры микроклимата на раб. местах в производственных помещениях.

Работоспособность системы вентиляции определяется показателем кратности воздухообмена (К ).

К = V/V п, где

V -кол-во воздуха, удаляемого из помещения в течение часа [м 3 /ч]

V П - объем помещения, м 3

К =

Для определения объема воздуха, удаляемого из помещения необходимо знать:

V 1 - объем воздуха с учетом тепловых выделений;

V 2 - объем воздуха с учетом выделения вредных веществ тех или иных процессов
25.Классификация, нормирование и организация естественного освещения.

При естественном освещении к-либо точки горизонтальной плоскости, за основу при нормировании принимается манимально допустимая величина коэффициента естественной освещенности.

Коэф. естеств. освещ. (КЕО) = Е = E ВН /Е СН 100%, где

E ВН - освещенность к-либо точки горизонтальной пов-ти, находящейся внутри помещения [лк];

Е СН - освещенность к-либо точки, находящейся снаружи помещения на расстоянии 1 м от здания [лк];

Системы естественного освещения


  1. Боковое освещение;

  2. Верхнее освещение;

  3. Комбинированное освещение.
Эти величины в соответствии со СНиП II-4-79 (Строительные нормы и правила. Естественное и искусственное освещение. Нормы проектирования -М, Стройиздат, 1980) нормируются.

Для выбора естественного освещения необходимо учитывать следующие факторы:



  1. Минимальный размер объекта различения с фоном ;

  2. Разряд зрительной работы;

  3. Система освещения.

26.Классификация, нормирование и организация искусственного освещения.

Искусственное освещение - освещение помещений прямым или отраженным светом искусственного источника света

За основу при нормировании принимается минимально допустимая величина освещенности какой-либо точки.

Системы искусственного освещения


  1. общее;

  2. местное (локальное);

  3. комбинированное
Может быть использовано в производственных помещениях общее и комбинированное, а одно местное использовать нельзя.

Имеет место также освещение: - аварийное; - дежурное; - эвакуационное.

СНиП II-4-79

Факторы, учитываемые при нормировании искусственного освещения:


  1. Характеристика зрительной работы;

  2. Минимальный размер объекта различения с фоном;

  3. Разряд зрительной работы;

  4. Контраст объекта с фоном;

  5. Светлость фона (характеристика фона);

  6. Система освещения;

  7. Тип источника света.
Подразряд зрительной работы определяется сочетанием п.4 и п.
27.Источники искусственного света (виды, основные характеристики, достоинства и недостатки). Светильники (назначение, типы и основные характеристики). Требования безопасности к светотехническим изделиям.

Искусственное освещение применяют при недостаточном естественном освещении или при его отсутствии.

Оно классифицируется на рабочее, аварийное охранное и дежурное.

В качестве источников света применяют:

Лампы накаливания(спираль вольфрама накаляется до температуры плавления). Лампы накаливания могут быть вакуумными, газонаполненыыми.

Люминесцентные лампы. Они подразделяются на трубчатые лампы низкого давления и лампы ртутные высокого давления.

Лампа представляет собой запаянную с обоих сторон стеклянную трубку, внутренняя поверхность которой покрыта люминофором.

Светильники перераспределяют световой поток ламп, исключают вредное слепящее действие , предохраняют лампы от повреждений.

Для ламп накаливания используют:


  • универс-е светильники прямого света;
- светильник глубокоизлучатель(для влажных помещений)

  • светильник для взрывоопасных помещений
Для люминесцентных ламп применяют:

Светильники пылеводозащищенные

Светильники взрывозащищенные

Открытые подвесные рассеянного света

28.Методы расчета и контроль искусственного освещения.

Медодика расчета искусственного освещения


  1. Метод светового потока

  2. Метод удельной мощности

  3. Точечный метод
Метод светового потока

Задача. Определить освещенность на раб. месте

Е РМ = (0,9 - 1,2) Е Н

Для этого необходимо выбрать:


  1. систему освещения;

  2. источник света;

  3. светильник.
Формула для определения светового потока лампы или группы ламп

F=(ESK)/(NnZ), где

Е - нормируемая величина освещенности [лк];

S - площадь производственного помещения [м 2 ];

К - коэф. запаса;

N - кол-во светильников [шт];

Z - поправочный коэф-т, зависит от типа лампы

 - коэф-т использования светового потока, для выбора которого необходимо знать:

Коэф. отражения от стен и потолка ( С,  П);

Индекс помещения - i

Н Р - высота подвеса светильников над раб. поверхностью;

Для ЛЛ ламп, зная групповой световой поток F и кол-во ламп в сетильнике n (2 или 4), определим световой поток одной лампы.

F РАСЧ = (0,9 - 1,2) F ТАБЛ

Распределение светильников по площади производственного помещения.

Для ЛЛ - вдоль длинной стороны помещения, вдоль окон, параллельно стенам с окнами.

Для ЛН, ДРЛ - в шахматном порядке.
44.Опасные факторы лазерного излучения. Методы и принципы лазерной безопасности.

Лазерное излучение:  = 0,2 - 1000 мкм.

Основной источник - оптический квантовый генератор (лазер).

Особенности лазерного излучения - монохроматичность; острая направленность пучка; когерентность.

Свойства лазерного излучения: высокая плотность энергии: 10 10 -10 12 Дж/см 2 , высокая плотность мощности: 10 20 -10 22 Вт/см 2 .

По виду излучение лазерное излучение подразделяется:

Прямое излучение; рассеянное; зеркально-отраженное; диффузное.

По степени опасности:


  1. Класс. К лазерам первого класса относятся такие, выходное излучение которых не представляет опасности для глаз и кожи.

  2. Класс. К лазерам второго класса относятся такие лазеры, эксплуатация которых связана с воздействием прямого и зеркально-отраженного излучения только на глаза.

  3. Класс. Лазеры характеризуются опасностью воздействия на глаза прямого, и зеркально и диффузно отраженного излучения на расстоянии 10 см от диффузно отражающей поверхности на глаза, а также прямого и зеркально отраженного излучения на кожу.

  4. Класс. Лазеры характеризуются опасностью воздействия на кожу на расстоянии 10 см от диффузно отражающей поверхности.
Биологические действия лазерного излучения зависит от длины волны и интенсивности излучения, поэтому весь диапазон длин волн делится на области:

  • ультрафиолетовая 0.2-0.4 мкм

  • видимая 0.4-0.75 мкм

  • инфракрасная: ближняя 0.75-1, дальняя свыше 1.0

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

Тема

«РАСЧЁТ ПОТРЕБНОГО ВОЗДУХООБМЕНА ПРИ ОБЩЕОБМЕННОЙ ВЕНТИЛЯЦИИ»

Цель: Ознакомиться на практике с методикой расчёта потребной кратности воздухообмена для проектирования общеобменной вентиляции в производственных помещениях.

    Общие сведения

В целях поддержания в цехах оптимальных условий микроклимата и предотвращения чрезвычайных ситуаций, (массовые отравления, взрывы), для удаления вредных газов, пыли и влаги устанавливается вентиляция. Вентиляцией называется организованный регулируемый воздухообмен, обеспечивающий удаление из помещения загрязнённого воздуха и подачу на его место свежего. В зависимости от способа движения воздуха вентиляция может быть естественная и механическая.

Естественная – вентиляция, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания.

Механическая – вентиляция, с помощью которой воздух подаётся в производственное помещение или удаляется из него по системе вентиляционных каналов за счёт работы вентилятора. Она позволяет поддерживать в рабочих помещениях постоянную температуру и влажность.

В зависимости от способа организации воздухообмена вентиляция подразделяется на местную, общеобменную, смешанную и аварийную.

Общеобменная вентиляция предназначена для удаления избыточной теплоты, влаги и вредных веществ во всём объёме рабочей зоны помещений. Она создаёт условия воздушной среды, одинаковые по всему объёму вентилируемого помещения, и применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению.

В зависимости от требований производства и санитарно - гигиенических правил приточный воздух можно нагреть, охладить, увлажнить, а удаляемый из помещений воздух очистить от пыли и газа. Обычно объём воздуха L пр, подаваемого в помещение при общеобменной вентиляции, равен объёму воздуха L в, удаляемого из помещения.

Существенное влияние на параметры воздушной среды в рабочей зоне оказывают правильная организация и устройство приточных и вытяжных систем.

  1. Методика расчёта потребного воздухообмена при общеобменной вентиляции.

При общеобменной вентиляции потребный воздухообмен определяется из условий отвода избыточного тепла, удаления избыточной влаги, удаления ядовитых и вредных газов, а также пыли.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объёма помещения, приходящегося на одного работающего. Отсутствием вредных выделений считается такое их количеств в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. При этом предельно допустимые концентрации вредных и ядовитых веществ в воздухе рабочей зоны должны соответствовать ГОСТ 12.1.005 – 91.

Если в производственном помещении объём воздуха на каждого работающего составляет V пр i < 20м 3 , то расход воздуха L i должен быть не менее 30м 3 на каждого работающего. Если V пр i = 20 … 40м 3 , то L i ≥ 20м 3 / ч. В помещениях с V пр i > 40м 3 и при наличии естественной вентиляции воздухообмен не рассчитывают. При отсутствии естественной вентиляции расход воздуха на одного работающего должен быть не менее 60м 3 / ч.

Для качественной оценки эффективности воздухообмена принимают понятие кратности воздухообмена К – отношение объёма воздуха, поступающего в помещение в единицу времени L (м 3 /ч), к свободному объёму вентилируемого помещения V с (м 3). При правильной организации вентиляции кратность воздухообмена должна быть значительно больше единицы.

Необходимый воздухообмен для всего производственного помещения в целом:

L пп = n · L i ; (1)

Где n – число работающих в данном помещении.

В данной практической работе рассчитаем потребную кратность воздухообмена для случаев отвода избыточного тепла и удаления вредных газов.

а. Необходимый воздухообмен для отвода избыточного тепла .

Где L 1 – воздухообмен, необходимый для отвода избыточного тепла (м 2 / ч);

Q – избыточное количество тепла, (кДж / ч);

с – теплоёмкость воздуха, (Дж / (кг · 0 С), с = 1кДж/кг·К;

ρ – плотность воздуха, (кг / м 3);

(3)

Где t пр – температура приточного воздуха, (0 С); Она зависит от географического расположения завода. Для Москвы – принимается равной 22,3 0 С.

T ух – температура воздуха, уходящего из помещения, принимается равной температуре воздуха в рабочей зоне, (0 С), которая принимается на 3 – 5 0 С выше расчётной температуры наружного воздуха.

Избыточное количество тепла, подлежащего удалению из производственного помещения, определяется по тепловому балансу:

Q = Σ Q пр – Σ Q расх; (4)

Где Σ Q пр – тепло, поступающее в помещение от различных источников, (кДж / ч);

Σ Q расх – тепло, расходуемое стенами здания и уходящие с нагретыми материалами, (кДж / ч), рассчитывается согласно методики, изложенной в СниП 2.04.05 – 86.

Так как перепад температур воздуха внутри здания и снаружи в тёплый период года небольшой (3 – 5), то при расчёте воздухообмена по избытку тепловыделений, потери тепла через конструкции зданий можно не учитывать. А несколько увеличившийся воздухообмен благоприятно повлияет на микроклимат рабочего помещения в наиболее жаркие дни.

Основными источниками тепловыделения в производственных помещениях являются:

    Горячие поверхности (печи, сушильные камеры, системы отопления и т.д.);

    Остывшие массы (металл, масла, вода и т.д.);

    Оборудование с приводом от электродвигателей;

    Солнечная радиация;

    Персонал работающий в помещении.

Для упрощения расчётов в данной практической работе избыточное количество тепла определяется только с учётом тепловыделений электрооборудования и работающего персонала.

Таким образом: Q = ΣQ пр; (5)

ΣQ пр = Q э.о. + Q р; (6)

Где Q э.о. – тепло, выделяемое при работе оборудования с приводом от электродвигателей, (кДж / ч);

Q р – тепло, выделяемое работающим персоналом, (кДж / ч).

(7)

Где β – коэффициент, учитывающий загрузку оборудования, одновременность его работы, режим работы. Принимается равным 0,25 … 0,35;

N – общая установочная мощность электродвигателей, (кВт);

Q р – определяется по формуле: Q р = n · q р (8)

300 кДж / ч – при лёгкой работе;

400 кДж /ч – при работе ср. тяжести;

500 кДж / ч – при тяжёлой работе.

Где n – число работающего персонала, (чел);

q р – тепло, выделяемое одним

человеком, (кДж / ч);

б. Необходимый воздухообмен для поддержания концентрации вредных веществ в заданных пределах.

При работе вентиляции, когда существует равенство масс приточного и удаляемого воздуха можно принять, что вредные вещества не накапливаются в производственном помещении. Следовательно, концентрация вредных веществ в удаляемом из помещения воздухе q уд не должна превышать ПДК.

Расход приточного воздуха, м 3 ч, необходимый для поддержания концентрации вредных веществ в заданных пределах рассчитывается по формуле:
,(9)

где G – количество выделяемых вредных веществ, мг/ч, q уд – концентрация вредных веществ в удаляемом воздухе, которая не должна превышать предельно допустимую, мг/м 3 , т.е. q уд q пдк ; q пр – концентрация вредных веществ в приточном воздухе, мг/м 3 . Концентрация вредных веществ в приточном воздухе не должна превышать 30% ПДК, т.е. q пр  0,3q уд.

в. Определение потребной кратности воздухообмена.

Величина, показывающая во сколько раз потребный воздухообмен больше объёма воздуха, находящегося в производственном помещении (определяющая кратность смены воздуха), называется потребной кратностью воздухообмена. Она вычисляется по формуле:

К = L / V с; (10)

Где К – потребная кратность воздухообмена;

L – потребный воздухообмен, (м 3 /ч). Определяется сравнением величин L 1 и L 2 и выбором наибольшей из них;

V с – внутренний свободный объём помещения, (м 3). Он определяется, как разность между объёмом помещения и объёмом, занимаемым производственным оборудованием. Если свободный объём помещения определить невозможно, то его допускается принимать условно равным 80% геометрического объёма помещения.

Кратность воздухообмена производственных помещений обычно составляет от 1 до 10 (большие значения для помещений со значительными выделениями теплоты, вредных веществ или небольших по объему). Для цехов литейных, кузнечно-прессовых, термических, сварочных, химических производств кратность воздухообмена составляет 2-10, для цехов машиностроения и приборостроения – 1-3.

Вентиляция -- организованный воздухообмен, в процессе которого запыленный, загрязненный газами или сильно нагретый воздух удаляется из помещения и взамен него подается свежий, чистый.

Система вентиляции -- это комплекс архитектурных, конструктивных и специальных инженерных решений, который при правильной эксплуатации обеспечивает необходимый воздухообмен в помещении.

Вентиляционная система -- это инженерная конструкция, которая имеет определенное функциональное назначение (приток, вытяжка, местный отсос и т. п.) и является элементом системы вентиляции.

Системы вентиляции создают условия для обеспечения технологического процесса или поддержания в помещении заданных климатических условий для высокопродуктивной работы человека. В первом случае система вентиляции будет называться технологической, а во втором -- комфортной.

Технологическая вентиляция обеспечивает в помещении заданный состав воздуха, его температуру, влажность, подвижность в соответствии с требованиями технологического процесса. Особенно высоки эти требования в цехах таких производств, как радиотехническая, электровакуумная, текстильная, химико-фармацевтическая промышленность, хранилища сельскохозяйственной продукции, архивы, помещения, в которых хранятся исторические ценности.

Комфортная вентиляция должна обеспечить благоприятные санитарно гигиенические условия для работающих в этих помещениях людей.

Требуемые метеорологические условия в помещениях должны быть, обеспечены в рабочей зоне помещения или на рабочих местах. За рабочую зону помещения принимают пространство высотой 2м от уровня пола или площадки, на которой находится рабочее место. Расчетные параметры воздуха -- температуру, относительную влажность и подвижность воздуха--для различных цехов и производственных помещений в зависимости от категории работы человека и условий технологического процесса.

Задачей вентиляции помещений является поддержание в них благоприятного для человека состояния воздушной среды в соответствии с нормируемыми ее характеристиками.

Химический состав воздуха помещений зависит от длительности пребывания в них людей, работы технологического газовыделяющего оборудования. Предельно допустимое содержание (концентрация) различных вредных газов и паров (ПДК) установленное исследованиями, приводится в ГОСТ 12.1 005 76.

В зависимости от выбранного способа, определяющем принцип действия систем и их конструктивное оформление, paзличают вентиляцию: общеобменную, местную и локализующую.

При общеобменной вентиляции происходит разбавление вредностей во всем объеме помещения за счет притока свежего воздуха, который, проходя по помещению, ассимилирует выделяющиеся вредности и затем выбрасывается наружу.

Количество подаваемого вентиляционного воздуха (воздухообмен) рассчитывается на разбавление выделяющихся вредностей до допустимых на рабочих местах концентраций.

Основным показателем для выбора этого способа является расположение мест нахождения людей и возможных источников выделения вредностей по всей или по значительной площади помещений. Недостаток способа -- неодинаковость санитарно-гигиенических условий воздушной среды в разных местах помещений, а также возможность их недопустимого ухудшения вблизи источников выделения вредностей или мест вытяжки воздуха из помещений.

Последнее необходимо учитывать и по возможности устранять соответствующим расположением и назначением необходимого числа устройств для раздачи и вытяжки вентиляционного воздуха.

В жилых и общественных зданиях устраивается общеобменная вентиляция. В помещениях, где выделение теплоты и влаги обусловливает естественный подъем воздуха, вытяжку обычно осуществляют из верхней зоны. вентиляция пожароопасность материал радиационный

Приточный воздух целесообразно подавать так, чтобы он доходил до людей возможно более чистым и свежим, не нарушая комфортных условий.

Классификация вентиляционных систем по назначению

Вентиляционные системы можно по назначению разделить на приточные и вытяжные. Приточные системы служат для подачи в вентилируемые помещения чистого воздуха взамен загрязнённого. При этом в необходимых случаях приточный воздух может подвергаться обработке, например, очистке, нагреванию и увлажнению.

Система приточной вентиляции состоит из воздухоприёмного устройства, приточной камеры, сети воздуховодов и устройств подачи воздуха в помещение.

Рис.

  • 1. Устройство забора.
  • 2. Устройство очистки.
  • 3. Система воздуховодов.
  • 4. Вентилятор.
  • 5. Устройство подачи на раб. место.

К устройствам местной приточной вентиляции относятся воздушные души, воздушные завесы и воздушное отопление.

Воздушный душ - устройство в системе местной приточной вентиляции, обеспечивающее подачу сосредоточенного потока воздуха. Подаваемый воздух создаёт в зоне непосредственного воздействия этого потока на человека условия воздушной среды, соответствующие гигиеническим требованиям.

Воздушные и воздушно-тепловые завесы устраивают для того, чтобы холодный воздух в зимнее время не проникал через открытые двери в общественные здания через открытые двери в общественные здания и через ворота в производственные помещения промышленных сооружений. Воздушная завеса - это плоская струя воздуха, которая подаётся с боков ворот или дверей под некоторым углом навстречу наружному холодному воздуху. Для воздушно-тепловой завесы подаваемый вентилятором воздух дополнительно подогревается.

В системах воздушного отопления воздух нагревается в калориферах до определённой температуры, а затем подаётся в помещение. В калориферах воздух нагревается горячей или перегретой водой, паром или горячими газами.

Вытяжная вентиляция служит для удаления из помещения загрязненного или нагретого отработанного воздуха. К вытяжным вентиляционным системам промышленной вентиляции относят системы аспирации или пневматического транспортирования сыпучих материалов, а также отходов производства - пыли, стружек, опилок и пр. Эти материалы перемещают по трубам и каналам потоком воздуха.


Рис.

  • 1. Устройство для удаления воздуха.
  • 2. Вентилятор.
  • 3. Система воздуховодов.
  • 4. Пыле- и газоулавливающие устройства.
  • 5. Фильтры.
  • 6. Устройство для выброса воздуха.

В системах аспирации применяют специальные вентиляторы, очистные устройства, пылеприёмники и другое оборудование. Системы аспирации широко применяют на деревообрабатывающих предприятиях для удаления стружек и опилок от станков, на элеваторах для погрузки зерна в транспортные средства, на цементных заводах при погрузке цемента, в литейных цехах для транспортирования песка и горелой земли.

В общем случае в помещении предусматриваются как приточные, так и вытяжные системы. Их производительность должна быть сбалансирована с учетом возможности поступления воздуха в смежные помещения или из смежных помещений. В помещениях может быть также предусмотрена только вытяжная или только приточная система. В этом случае воздух поступает в данное помещение снаружи или из смежных помещений через специальные проемы или удаляется из данного помещения наружу, или перетекает в смежные помещения.