Главная · Бытовая техника · Обработка сигналов. Телевизионные стандарты и форматы

Обработка сигналов. Телевизионные стандарты и форматы

Оба дополнительных сигнала цветности в стандарте PAL передаются одновременно в квадратурной модуляции (разновидность ), типичная частота поднесущей - 4433618,75 Гц (4,43 МГц). При этом «красный» цветоразностный сигнал повторяют в следующей строке с поворотом фазы на 180 градусов. Для устранения фазовой ошибки декодер PAL складывает текущую строку и предыдущую из памяти, благодаря чему полностью устраняет фазовые ошибки (типичные для системы NTSC). При сложении двух сигналов взаимно уничтожаются «красные» цветоразностные компоненты, ведь их знак изменился. При вычитании двух сигналов взаимно уничтожаются «синие». Таким образом, на выходах сумматора-вычитателя получаются разделённые сигналы U и V, являющиеся масштабно изменёнными R-Y и B-Y.

В аналоговых телевизионных приемниках для запоминания цветоразностного сигнала от предыдущей строки используется ультразвуковая линия задержки, в цифровых - оперативная память на строку.

Таким образом, в отличие от NTSC, в стандарте PAL при использовании стандартного аналогового декодера цветовое разрешение по вертикали вдвое ниже, чем разрешение монохромного изображения (из-за суммирования двух соседних строк по полю). С этим вполне можно смириться, так как разрешение по горизонтали в цвете также меньше из-за уменьшения полосы пропускания. Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. При этом надо понимать, что в передаваемом сигнале цветовое разрешение по вертикали - полное, ухудшение разрешения происходит лишь в аналоговых декодерах PAL.

Применение цифровой обработки сигнала позволяет восстанавливать как полное цветовое разрешение по вертикали, так и улучшать разделение яркость/цветность за счет использования гребенчатой (или еще более сложной - так называемой 3D) фильтрации поднесущей.

Применение квадратурной модуляции является отличительной особенностью PAL от стандарта SECAM , поворот фазы «красного» сигнала по строкам отличает его от NTSC, цветовая модель YUV отличает от всех аналоговых систем.

География распространения

Система PAL является основной системой цветного телевидения в Европе (кроме Франции, России, Белоруссии), Азии , Австралии и ряде стран Африки и Южной Америки :

Острые дискуссии по выбору системы цветного телевидения в ведущих странах Западной Европы закончились в пользу системы РАL - за ней стоял пятнадцатилетний опыт вещания и производства аппаратуры и телевизоров в США, Японии, Канаде и других странах по системе NTSC. Конечно, и тут не обошлось без политики (эту систему в шутку называли «системой НАТО») - когда несколько позже к выбору системы цветного телевидения готовилась Италия, правящий в то время президент Франции Ж. Помпиду специально приезжал в Рим и выступал в парламенте с призывом «проявить романскую солидарность и принять французскую систему». Однако Италия такой солидарности не проявила и склонилась к системе РАL.

См. также

  • PALplus

Система цветного телевидения NTSC была разработана в США в 1950–1953 гг. Национальным Комитетом Телевизионных Систем (National Television System Committee) и утверждена в стране как национальный стандарт. Позднее система NTSC была принята в качестве стандарта в Канаде, в большинстве стран американского континента, в Японии, Корее, Тайване и некоторых других странах.

В качестве сигналов в системе NTSC передаются яркостный и два цветоразностных сигнала. Передача цветоразностных сигналов осуществляется в спектре яркостного на одной цветовой поднесущей частоте f S (рисунок 5.8).

Рис. 5.8. Спектр сигнала изображения системы NTSC

Напряжение поднесущей частоты, промодулированное цветораз­ностными сигналами, называется сигналом цветности . Сумма сигналов яркости и сигнала цветности U S образует полный цветовой сигнал U п . Для того, чтобы модулировать двумя цветоразностными сигналами одну поднесущую частоту, применён метод квадратурной амплитудной модуляции . Сущность его заключается в суммировании двух напряжений поднесущей частоты , промодулированных каждым из цветоразностных сигналов, в отдельных амплитудных модуляторах (рисунок 5.9). Поднесущая частота на модуляторы поступает в квадратуре, т.е. с фазовым сдвигом 90°. Полученный в результате сложения сигнал цветности оказывается промодулированным не только по амплитуде, но и по фазе.

Рис. 5.9. Упрощенная структурная схема кодирующего устройства

Действительно, амплитуда сигнала цветности:

(5.1)

а фазовый сдвиг φ вектора U S относительно одного из колебаний

, (5.2)

где в свою очередь определяются модулирующими цветоразностными сигналами .

В системе NTSC используются не обычные амплитудные модуляторы, а балансные , которые, подавляя саму поднесущую, оставляют только боковые составляющие спектра. Балансная модуляция имеет определённые преимущества перед обычной амплитудной модуляцией (рисунок 5.10). При одном и том же по сравнению с обычной модуляцией размахе модулирующих сигналов балансная модуляция формирует, как минимум, в два раза меньший по амплитуде сигнал цветности, что снижает её заметность на экране чёрно-белого телевизора, для которого сигнал цветности следует рассматривать как помеху. Таким образом, улучшается совместимость систем чёрно-белого и цветного телевидения. В свою очередь, качество совместимости ещё больше повышается при передаче неокрашенных или слабо окрашенных деталей изображения. В этих случаях цветоразностные (модулирующие) сигналы равны нулю или невелики по амплитуде и на выходе балансных модуляторов сигнал также устремляется к нулю.

а)

б)

Рис. 5.10. а) амплитудная модуляция

б) балансная модуляция

В цветном приёмнике системы NTSC из принятого сигнала цветности U S должны быть выделены его квадратурные составляющие для получения исходных цветоразностных сигналов . Поскольку то разделение сигналов можно представить как операции проецирования вектора U S на две ортогональные оси, совпадающие с осями модуляции.

Задачу в таком представлении можно решить с помощьюсинхронного детектора . При синхронном детектировании осуществляется перемножение двух сигналов, подаваемых на вход детектора. Если одним из этих сигналов будет принятый телевизионным приёмником сигнал цветности U S , а другим – так называемое опорное напряжение U оп, представляющее колебание поднесущей частоты f S с начальной фазой φ=0, то напряжение на выходе детектора U вых будет равно:

где U оп –амплитуда указанного выше опорного напряжения.

Используя известное тригонометрическое соотношение

получаем

Полагая амплитуду опорного напряжения постоянной и поставив на выходе синхронного детектора фильтр нижних частот, исключающий второй член в правой части равенства, убедимся, что задача выделения одной их квадратурных составляющих решена:

,

где k–коэффициент пропорциональности.

Если же в качестве опорного напряжения на синхронный детектор подать напряжение , то

,

т.е. будет выделена вторая квадратурная составляющая.

Таким образом, устройство для разделения квадратурных составляющих должно состоять из двух синхронных детекторов и генератора опорной поднесущей частоты, синхронизированного по частоте и фазе с передающим генератором. Однако такой информации не содержится в принимаемом ТВ сигнале, так как при балансной модуляции сама поднесущая подавлена, а боковые частоты являются продуктом модуляции, зависящим от передаваемого цвета (а значит, с фазовыми сдвигами, отличающимися от немодулированного значения f S ).

Чтобы генератор опорной поднесущей f S в приёмнике мог работать с заданной на телецентре фазой, его синхронизируют специальным сигналом, называемым сигналом цветовой синхронизации . Он передаётся в интервале обратного хода строчной развёртки на площадке строчного гасящего импульса (СГИ) за строчным синхронизирующим импульсом (ССИ) и представляет собой пакет колебаний цветовой поднесущей из 8…10 периодов (рисунок 5.11). Этот пакет называется также цветовой вспышкой. Частота колебаний вспышки равна f S , фаза равна 180° (вектор колебаний пакета совпадает с отрицательным направлением оси B–Y ). Пакет передаётся во всех строках развёртки, кроме интервала длительностью 9Н (Н – длительность одной строки), в котором передаются уравнивающие импульсы и кадровые синхроимпульсы (на кадровом гасящем импульсе). Интервалы между вспышками равны H.

Рис. 5.11. Сигнал вспышка

Таким образом, при квадратурной модуляции амплитуда результирующего цветового сигнала характеризует насыщенность цвета, а фаза –цветовой тон. Векторы цветности могут быть наглядно представлены графически на диаграмме цветов в полярной системе координат (рисунок 5.12)

Рис. 5.12. Диаграмма цветов в полярной системе координат

При выборе частоты цветовой поднесущей f S необходимо выполнять следующие условия.

1. Для снижения заметности на изображении в чёрно-белом телевизоре помехи от сигнала цветности U S частота цветовой поднесущей f S должна быть по возможности высокой, так как в этом случае структура рисунка от помехи будет мельче, а, следовательно, и менее заметной. С другой стороны, значение f S должна быть существенно меньше максимальной частоты f max в спектре яркостного сигнала , чтобы выполнялось требование профессиональной совместимости систем, т.е. чтобы полный цветовой сигнал размещался в полосе стандартного цветового сигнала. Разность (f max –f S) определяет максимальную ширину боковой полосы сигнала цветности, а значит, и максимально возможную ширину спектра цветоразностных сигналов. Как показала практика, эта величина не может быть меньше 0,6 МГц, так как иначе на цветном изображении в приёмнике появятся заметные цветные окантовки на вертикальных границах между различными цветами. Поскольку в американском стандарте f max =4,18 МГц, то f S должна быть не менее 3,58 МГц.

2. С той же целью уменьшения заметности рисунка на экране чёрно-белого телевизора, получаемого от воздействия на него поднесущей, её частота f S жёстко связывается с частотой развёртки изображения. При этом данная связь подчиняется соотношению:

, (5.4)

где n – целое число, – частота строк. Тогда на интервале одной, например первой, строки укладывается целое число периодов цветовой поднесущей и ещё половина периода. Поэтому в следующей нечётной строке фаза сигнала изменится на противоположную, и так далее от строки к строке. В результате яркостной модуляции под действием цветовой поднесущей на экране телевизора возникнет сетка тёмных и светлых штрихов, расположенных в шахматном порядке.

Поскольку в кадре содержится нечётное число строк, при передаче следующего кадра полярность сигнала в соответствующих строках изменится на противоположную. Глаз вследствие инерционности зрительного аппарата будет усреднять эту картину. Таким образом, за счёт компенсации от строки к строке и от кадра к кадру сигнал цветовой поднесущей на экране телевизора будет мало заметен, причём тем меньше, чем мельче структура сетки.

Так как спектр сигнала яркости дискретный и периодический, то в промежутки между его гармониками можно разместить гармоники сигнала цветности, который также является дискретным и периодическим. При выполнении условия (5.4) спектральные составляющие сигнала цветности располагаются точно посередине. Происходит так называемое перемежение (переплетение) частотных спектров сигналов яркости и цветности (рисунок 5.13), что в принципе даёт возможность с большой точностью разделять эти два сигнала в приёмном устройстве.


Рис. 5.13.Частотный спектр сигналов яркости и цветности

3. Помехи на изображении из-за присутствия в спектре полного ТВ-сигнала поднесущей частоты могут возникнуть также из-за биений между поднесущей частотой сигнала цветности и второй промежуточной частотой звукового сопровождения. Для уменьшения заметности помех её частоту, равную разности частот поднесущей f S и второй промежуточной частоты звука по тем же соображениям, что были изложены в предыдущем пункте, также делают равной нечётной гармонике полустрочной частоты:

, (5.5)

где k – целое число. Из (5.3) и (5.4) следует, что

.

Заменив f S его значением из (5.4), получим:

. (5.6)

Таким образом, требование (1.5) обязательно влечёт за собой требование (1.6). Но в любой вещательной системе телевидения определяется разносом несущих частот изображения и звука, и (1.6) можно записать как

, (5.7)

где m – целое число.

В стандарте США на чёрно-белое телевидение, в отличие от любого из европейских стандартов, это условие не выполнялось. В США в чёрно-белом телевидении =4,5 МГц; =15750 Гц. Таким образом, их соотношение составляло величину 285,714. Для выполнения условия (5.7) это соотношение необходимо было округлить до ближайшего целого числа, т.е. до 286, что заставило разработчиков системы NTSC изменить частоты развёрток соответственно на 0,1%: =15734,27 Гц, =59,94 Гц (вместо 60 Гц). Такое незначительное, но принципиальное изменение частот развёрток в цветной системе не потребовало переделывать генераторы развёрток чёрно-белых телевизоров, поскольку указанные новые значения частот развёрток заведомо находятся в полосе захвата синхронизируемых ими генераторов развёрток телевизора.

4. Множитель (2n+1 ) в (5.4) должен состоять из сомножителей, по возможности малых, чтобы облегчить достижение устойчивого деления частоты при получении в синхрогенераторе частоты строк из частоты задающего генератора, вырабатывающего частоту f S . Оптимальным оказалось число (2n+1) =455 (13x7x5), что и обусловило выбор частоты поднесущей МГц. Стандартом предусмотрена допустимая нестабильность этого значения не более 0,0003%, т.е. не хуже 10 Гц.

Цветоразностные сигналы E I и E Q

В системе NTSC в её окончательном варианте были применены в качестве сигналов цветности не сигналы , а производные от них – сигналы и . Целесообразность перехода к этим сигналам объясняется тем, что для мелких предметов наше зрение дихроматично (двухцветно). Дихроматизм при нормальном зрении имеет место для предметов, которые при наблюдении имеют размер 12–20 угловых минут. При наблюдении предметов таких размеров зрительная система человека не различает разницы между синим и зелёным, красным и пурпурным цветами. Все цветовые оттенки воспринимаются как смесь оранжевого и голубого цветов. По мере дальнейшего уменьшения деталей глаз перестаёт различать цвет, и мы видим мелкие детали как чёрно-белые. Если на нерезкую границу перехода от одного цвета к другому наложить резкий перепад яркости, то глаз увидит чёткий переход от одного цвета к другому.

Применительно к телевидению из этого вытекают следующие выводы. Детали телевизионного изображения с размером 10–22 угловых минут, можно передавать в ограниченной цветовой гамме, соответствующей смеси оранжевых и голубых цветов. Исключение из передачи мелких цветных деталей не должно заметно отразиться на резкости цветовых переходов, если яркостные переходы воспроизводятся ТВ-системой резко.

Проведённые эксперименты показали, что все три сигнала должны передаваться ТВ-системой в полосе частот до 0,5 МГц. В полосе частот от 0,5 МГц до 1,5 МГц необходимо передавать цветовые сигналы, соответствующие смеси оранжевого и голубого цветов. В полосе частот от 1,5 МГц до максимальной частоты спектра можно передавать один бесцветный яркостный сигнал.

Применение новых квадратурных составляющих позволяет осуществить передачу цветного изображения следующим образом. Сигнал яркости передаётся в полной полосе частот. Сигнал цветности передаётся в полосе частот до 1,5 МГц, а сигнал в полосе до 0,5 МГц. В промежутке частот от 0,5 до 1,5 МГц передаются только два сигнала и обеспечивающие воспроизведение оранжево-красных и сине-зелёных цветовых оттенков. Переход от сигналов к сигналам позволяет несколько улучшить параметры системы, поскольку уменьшаются помехи со стороны сигналов цветности в яркостном канале и появляется возможность несколько повысить частоту поднесущей.

Применение сигналов E I и E Q , занимающих меньшую полосу частот в спектре яркостного сигнала, вместо обычных цветоразностных сигналов оказалось целесообразным, так как ширина видеоканала в стандарте США составляет всего 4,2 МГц и размещение цветовой информации в спектре яркостного сигнала представляет определённые трудности. В европейском варианте NTSC, использованном для сравнения различных систем цветного телевидения с шириной видеоканала 6 МГц, применялись сигналы .

На рисунке 5.14 представлена упрощённая структурная схема кодирующего устройства в системе NTSC. Исходными сигналами являются сигналы . Штрихи в обозначениях сигналов означают, что сигналы были предварительно подвергнуты гамма-коррекции. На выходе матрицирующей схемы M сформирован яркостный сигнал и цветоразностные сигналы . В сигнал яркости вводится сигнал синхронизации приёмника ССП. Фильтрами нижних частот ФНЧ1 и ФНЧ2 ограничиваются полосы частот сигналов соответственно до 1,3 и 0,6 МГц. Генератором поднесущей частоты вырабатывается синусоидальный сигнал с частотой 3,579545 МГц и фазой 180°, соответствующей отрицательному направлению оси B–Y . На балансный модулятор БМ сигнала поднесущая частота поступает от генератора с задержкой на 57°, которая создаётся фазовращателем ФВ1 . На балансный модулятор БМ сигнала колебание поднесущей частоты поступает с дополнительной задержкой на 90°, получаемой в ФВ2 , тем самым обеспечивая условия квадратурной модуляции одной поднесущей сигналами . С выходов балансных модуляторов квадратурные составляющие U I и U Q подаются на сумматор , в котором образуется сигнал цветности U S . В сумматоре сигнал цветности U S складывается с яркостным сигналом. На выходе этого сумматора общая полоса частот определяется ФНЧ в границах от 0 до 4,18 МГц. В результате такого ограничения квадратурная составляющая U Q – ЛЗ1 примерно на 0,7 мкс, а в канале – ЛЗ2 на 0,5 мкс. Погрешность совмещения во времени всех трёх сигналов должна быть не больше половины длительности развёртки чёрно-белого элемента изображения (0,05 мкс). Иначе в цветном изображении может быть заметно рассовмещение окрашенных участков и деталей, к которым эти участки принадлежат.

Сигнал цветовой синхронизации U ЦВ формируется в клапанном устройстве K с помощью стробирующих импульсов, временное положение которых соответствует положению цветовой вспышки на задней площадке строчного гасящего импульса (см. рисунок 5.11). В сумматоре сигнал цветовой синхронизации складывается с сигналами яркости и цветности.

Для выполнения условия (5.1) строчные синхронизирующие импульсы получают путём многократного деления частоты поднесущей f S в делителе частоты ДЧ .


Рис. 5.14. Структурная схема кодирующего устройства системы NTSC

Структурная схема декодирующего устройства

Композитный сигнал U П, содержащий сигналы яркости и цветности, а также вспышки цветовой синхронизации и сигнал синхронизации приёмника, поступает на усилитель сигнала яркости и полосовой фильтр ПФ сигнала цветности (рисунок 5.15). В канале яркостного сигнала с помощью режекторного фильтра РФ , настроенного на частоту поднесущей, подавляется сигнал цветности, устраняя помеху от него в виде рассмотренного выше рисунка шахматной фигуры. Полосовой фильтр в канале цветоразностных сигналов выделяет из полного сигнала U П сигнал цветности и сигнал цветовой синхронизации. При этом также уделяется внимание максимальному подавлению в сигнале второй промежуточной частоты звукового сопровождения (4,5 МГц), которая может вызывать нежелательные биения с цветовой поднесущей. Сигнал цветности U ЛЗ1 и ЛЗ2 .

Сигнал цветовой синхронизации отделяется от сигнала цветности клапанным устройством K , которое пропускает на свой выход цветовые вспышки при поступлении стробирующих импульсов, создаваемых в устройстве ФСИ . В свою очередь, формирующее устройство управляется строчными синхронизирующими импульсами, выделяемыми из полного сигнала в селекторе синхроимпульсов.

Цветовые вспышки предназначены для синхронизации генератора цветовой поднесущей f S , который для обеспечения точности работы имеет кварцевую стабилизацию.


Рис. 5.15. Структурная схема декодирующего устройства системы NTSC

Синхронизация является параметрической, управляющее напряжение вырабатывается фазовым детектором ФД , в котором сравниваются по частоте и фазе колебания от генератора и цветовых вспышек. Фазовая автоподстройка схемотехнически наиболее просто осуществляется к значению 90° по отношению к фазе вспышек, т.е. к оси R–Y . Таким образом, чтобы обеспечить детектирование на ось I (в синхронном детекторе СДI ), необходимо колебаниям автогенератора создать в фазовращателе ФВ1 опережение на 33°. Дополнительная задержка в ФВ2 на 90° обеспечит детектирование в СДQ на ось Q .

В усилителе сигнала цветности с помощью стробирующих импульсов подавляются колебания цветовых вспышек, чтобы устранить их огибающую на выходе синхронных детекторов. В противном случае на краю изображения эта огибающая может создать цветную вертикальную полоску, соответствующую положению вспышки на площадке строчного гасящего импульса.

Канал сигнала цветности необходимо запирать также, когда производится приём чёрно-белого изображения, поскольку иначе на экране цветного кинескопа возникли бы цветные крупноструктурные муары. Последние являются продуктом биений в синхронных детекторах высокочастотных составляющих сигнала яркости с колебаниями автономно работающего генератора поднесущей. Выключатель цветности ВЦ получает управляющее напряжение на запирание канала с фазового детектора. При вещании цветной программы, т.е. при наличии цветовых вспышек, с фазового детектора на ВЦ поступает постоянное напряжение одного знака, при чёрно-белом вещании это напряжение меняет свой знак.

Если из рассмотренной структурной схемы исключить фазовращатель ФВ1 на 33°, то синхронное детектирование будет осуществляться на оси R–Y и B–Y , а следовательно, на выходах детекторов будут получены сигналы . Но в этом случае из-за разнополосности составляющих U I и U Q могут возникнуть перекрёстные искажения между сигналами .

Для предотвращения этих искажений оба ФНЧ на выходе детекторов должны быть узкополосными: 0…0,6 МГц, что заметным образом ухудшит цветовую чёткость. Поэтому такой вариант декодирующего устройства распространён меньше.

С точки зрения применяемого способа модуляции цветовой поднесущей видеосигналами цветности система NTSC имеет следующие основные особенности:

Хорошее использование канала передачи (большой объём передаваемой информации при высокой помехозащищённости);

Высокое качество цветного изображения при отсутствии в передающем тракте недопустимых искажений (в частности, высокая цветовая чёткость по горизонтали и вертикали);

Отсутствие в изображении на экранах приёмников цветного и чёрно-белого телевидения муаров и мерцаний яркости при движении объекта передачи;

Хорошая совместимость (малая заметность помех от сигнала цветности);

Правильность и простота формы сигнала цветности при передаче испытательного сигнала цветных полос, что облегчает контроль работы аппаратуры и её настройку;

Высокая помехозащищённость видеосигналов цветности в приёмнике от флуктуационных шумов. При этом заметность на цветном изображении шумов возрастает при уменьшении отношения сигнал/шум плавно, и шумы на изображении имеют структуру, близкую к таковой на чёрно-белом телевидении, хотя крупноструктурные шумы несколько более заметны за счёт шумов из канала сигнала цветности;

Высокая помехозащищённость схемы цветовой синхронизации от флуктуационных шумов;

Простота микширования полных видеосигналов U П =+U ЦВ от различных камер, ничем не отличающегося от микширования сигналов в чёрно-белом телевидении.

У системы NTSC имеются следующие недостатки , из-за которых она не была принята в качестве стандарта в Европе для развёртки на 625 строк:

Требования к отсутствию искажений амплитуды и фазы сигнала цветности на поднесущей частоте и к неискажённой передаче необходимой полосы частот являются очень жёсткими, и выполнение их при создании и эксплуатации аппаратуры, а также каналов связи, связано со значительными трудностями;

При многолучевом приёме (например, в горных условиях) и при наличии отражённых сигналов возникают искажения амплитуды и фазы сигнала цветности, снижающие качество цветного изображения;

При записи полного сигнала U П на магнитную ленту и его воспроизведении необходимо обеспечить строгое постоянство скорости движения магнитной ленты относительно магнитных головок, что особенно важно при многократной перезаписи. Для выполнения этого требования видеомагнитофон должен иметь высококачественные механизмы и специальные блоки для электрической коррекции непостоянства скоростей механизмов.

PAL (Phase Alternating Line) — стандарт телевизионного сигнала, разработанный инженером компании «Telefunken» Вальтером Брухом в Германии в 1963 году.

Как и все аналоговые телевизионные стандарты, PAL является адаптированным и совместимым с более старым монохромным (чёрно-белым) телевещанием. В адаптированных аналоговых стандартах цветного телевещания дополнительный сигнал цветности передается в конце спектра монохромного телесигнала.

Известно, что любой цвет, воспринимаемый зрением человека, можно составить из основных цветов: красного (R), зелёного (G) и синего (B). Эту цветовую модель обозначают аббревиатурой RGB. Из-за преобладания в среднестатистической телевизионной картинке зеленой составляющей цвета и для избежания избыточного кодирования, в качестве дополнительных сигналов цветности используют разности R-Y и B-Y (где Y — общая яркость монохромного телесигнала). В системе PAL используют цветовую модель YUV.

Оба дополнительных сигнала цветности в стандарте PAL передаются одновременно в квадратурной модуляции (разновидность амплитудной модуляции — представляет собой сумму двух несущих колебаний одной частоты, но сдвинутых по фазе относительно друг друга на 90 градусов, каждая из которых модулирована по амплитуде своим модулирующим сигналом), типичная частота поднесущей — 4433618,75 Гц (4,43 МГц). При этом «красный» цветоразностный сигнал повторяют в следующей строке с поворотом фазы на 180 градусов. Для устранения фазовой ошибки декодер PAL складывает текущую строку и предыдущую из памяти, благодаря чему полностью устраняет фазовые ошибки (типичные для системы NTSC). При сложении двух сигналов взаимно уничтожаются «красные» цветоразностные компоненты, ведь их знак изменился. При вычитании двух сигналов взаимно уничтожаются «синие». Таким образом, на выходах сумматора-вычитателя получаются разделённые сигналы U и V, являющиеся масштабно изменёнными R-Y и B-Y.

В аналоговых телевизионных приемниках для запоминания цветоразностного сигнала от предыдущей строки используется ультразвуковая линия задержки, в цифровых — оперативная память на строку.

Таким образом, в отличие от NTSC, в стандарте PAL при использовании стандартного аналогового декодера цветовое разрешение по вертикали несколько ниже, чем разрешение монохромного изображения (из-за суммирования двух соседних строк по полю). С этим вполне можно смириться, так как разрешение по горизонтали в цвете также меньше из-за уменьшения полосы пропускания. Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. При этом надо понимать, что в передаваемом сигнале цветовое разрешение по вертикали — полное, ухудшение разрешения происходит лишь в аналоговых декодерах PAL.

Применение цифровой обработки сигнала позволяет восстанавливать как полное цветовое разрешение по вертикали, так и улучшать разделение яркость/цветность за счет использования гребенчатой (или еще более сложной — так называемой 3D) фильтрации поднесущей.

Применение квадратурной модуляции является отличительной особенностью PAL от стандарта SECAM, поворот фазы «красного» сигнала по строкам отличает его от , цветовая модель YUV отличает от всех аналоговых систем.

Телевизионный кадр стандарта PAL состоит из 576 строк (общее количество 625, часть из которых — служебные), каждая строка состоит из 720 фрагментов, т.е. представляет собой матрицу 720*576.

Каждый кадр состоит из «полей» — чередующихся четных и нечетных строк, чередование четных и нечетных полей позволяет уменьшить мерцание картинки.

Используется несколько модификаций стандарта PAL, с отличиями в диапазонах вещания, полосой пропускания видеосигнала и несущей звуковой частотой.

Стандарт Диапазон вещания Линии/Поля Общая полоса пропускания, МГц Полоса пропускания видеосигнала, МГц Несущая частота звука, МГц Видимых линий
PAL B VHF 625/50 7 5,0 5,5 576
PAL G,H UHF 625/50 8 5,0 5,5 576
PAL I UHF/VHF 625/50 8 5,5 6,0 582
PAL M UHF/VHF 525/60 6 4,2 4,5 480
PAL D VHF 625/50 8 6,0 6,5 576
PAL N UHF/VHF 625/50 6 5,0 5,5 576
PAL Nc UHF/VHF 625/50 6 4,2 4,5 576

Большинство аналоговых видеокамер для систем видеонаблюдения работает в стандарте PAL D.

Спектр частот телевизионного сигнала PAL I:

Принцип амплитудной и частотной модуляции:

Signal — несущая частота.

AM —амплитудно-модулированный сигнал.

FM — частотно-модулированный сигнал.

Система цветного телевидения PAL

Система PAL была разработана немецкой фирмой Telefunken и принята в качестве стандарта в большинстве стран Западной Европы (Германия, Великобритания, Швеция, Австрия, Норвегия, Бельгия, Дания, Испания, Италия и др.). В настоящее время система PAL является самой распространённой в мире системой цветного телевидения. Её используют, помимо европейских государств, в большинстве стран Африки, Азии, Австралии, в некоторых странах Южной Америки. Название системы представляет собой аббревиатуру из начальных букв английской фразы "Phase Alternation Line" (чередование фазы по строкам).

Система PAL, созданная как альтернатива системе NTSC, тем не менее, может рассматриваться как её удачная модернизация. В ней используются те же сигналы, что и в других системах цветного телевидения, а передача этих сигналов производится так же, как и в NTSC, путём квадратурной балансной амплитудной модуляции поднесущей частоты, расположенной в спектре яркостного сигнала. Отличие от системы NTSC заключается в том, что фаза одной из квадратурных составляющих сигнала цветности меняется от строки к строке на 180°. Это позволило устранить основной недостаток системы NTSC – чувствительность к дифференциально-фазовым искажениям, а также получить ещё ряд важных преимуществ.

На рисунке 5.23 показан способ формирования сигнала цветности в системе PAL. Так же, как и в системе NTSC, он образуется из двух квадратурных составляющих . Но одна из этих составляющих, с началом каждой следующей строки меняет фазу на 180°. Результирующие векторы сигнала цветности оказываются в соседних строках комплексно-сопряжёнными. Чтобы правильно декодировать такую последовательность сигналов в приёмном устройстве, в синхронном детекторе сигнала необходимо с такой же периодичностью, что и на передающем конце, коммутировать на 180° фазу опорного генератора поднесущей частоты. Коммутация фазы эквивалентна обратному превращению векторов в их исходные комплексно-сопряжённые с ними векторы соответственно. Условия работы синхронного детектора сигнала не отличаются от его работы в системе NTSC.


Рис. 5.23. Коммутация фазы поднесущей при передаче сигнала

цветности в системе PAL

Рассмотрим, как при такой процедуре коммутации фазы сказываются дифференциально-фазовые искажения, возникающие в тракте передачи. На рисунке 5.24 на цветовой диаграмме в осях R– Y/B–Y отмечены некоторые характерные цвета и вектор , соответствующий передаче пурпурного цвета. В соответствии с принципом передачи сигналов в системе PAL в (n+1) -ой строке будет передаваться вектор , комплексно-сопряжённый с вектором . Если в тракте возникнут дифференциально-фазовые искажения, то независимо от их причин векторы и изменят своё положение по отношению к исходным на одну и ту же величину Δφ (рисунок 5.24, б ). На рисунке фазовая ошибка сместила оба вектора против часовой стрелки. В приёмном устройстве коммутация фазы опорного генератора поднесущей в канале R–Y превратит вектор в сопряжённый с ним вектор (рисунок 5.24, в ). Для анализа возникших в процессе передачи искажений совместим векторы и на одном графике (рисунок 5.24, г ). Из него видно, что соседние n -ая и (n+1) -ая строки искажены по-разному. Цвет n -ой строки сместился в сторону красного, а цвет (n+1) -ой строки – в сторону синего цвета. Неискажённый цвет соответствует среднему между векторами и положению. Таким образом, усреднение двух этих векторных величин позволило бы скомпенсировать возникшие в процессе передачи фазовые искажения. Наиболее простым способом усреднения является усреднение ощущений самим зрительным аппаратом. Благодаря близости расположения друг к другу n -ой и (n+1) -ой строк работает механизм пространственного сложения цветов. Разные из-за искажений цветовые оттенки двух соседних строк складываются, вызывая ощущение среднего между ними цвета, компенсируя таким образом искажения:

а) цветовая диаграмма;

б) фазовая ошибка при передаче сигнала;

в) сигналы в приёмнике после коммутации фазы опорного колебания;

г) совмещение сигналов двух смежных строк.


Рис. 5.24. Компенсация дифференциально-фазовых искажений

в системе PAL

Рассмотренный способ зрительной компенсации искажений реализуется в так называемом "простом" приёмнике PAL (Simple PAL или PAL S). Изображение оказывается вполне удовлетворительным, если фазовые ошибки Δφ не превышают 25° (в NTSC – не более 5°). При больших значениях ошибки интегрирующего действия глаза уже оказывается недостаточно, появляется заметное различие цветности соседних строк поля, особенно на жёлтом, голубом и синем цветах (эффект "жалюзи"). Нелинейность модуляционных характеристик кинескопа усугубляет этот эффект. Поэтому способ зрительной компенсации фазовых искажений в системе PAL не нашёл распространения.

Лучшие результаты позволяет получить электрическое сложение векторов цветности и двух соседних строк поля (рисунок 5.25). Геометрическая полусумма этих векторов соответствует на диаграмме положению неискажённого цвета. Скомпенсированными оказываются искажения только цветового тона, поскольку длина результирующего вектора зависит от величины фазовой ошибки Δφ. С увеличением ошибки (Δφ 2 > Δφ 1) длина суммарного вектора уменьшается (<). Это уменьшение пропорционально cos Δφ. Поскольку длина вектора определяет насыщенность передаваемого цвета, можно сделать вывод о том, что в системе PAL искажения цветового тона из-за фазовых ошибок трансформируются в изменения насыщенности, которые менее заметны. Так, если порог заметности по цветовому тону соответствует угловому сдвигу на цветовой диаграмме φ=5…10°, то порог по насыщенности равен примерно 20%, что соответствует углу Δφ=37°.

Механизм компенсации фазовых ошибок в системе PAL устраняет не только дифференциально-фазовые искажения. Также уменьшается влияние на качество изображения точности восстановления поднесущей опорным генератором в приёмнике. Ошибка Δφ в фазе колебаний опорного генератора эквивалентна повороту осей цветового графика относительно передаваемых векторов цветности и на тот же угол Δφ. А это, как было показано, компенсируется путём усреднения этих векторов.

Способ усреднения, основанный на суммировании, предполагает одновременное присутствие сигналов двух последовательно передаваемых строк. Поэтому приёмное устройство PAL должно включать блок задержки сигнала на длительность одной строки. Если на его вход в данный момент поступает сигнал (n+1) -ой строки, то одновременно на его выходе присутствует сигнал предшествующей n -ой строки. Подавая эти сигналы на сумматор, можно получить желаемую компенсацию искажений. Однако в декодере PAL часто используют несколько иную схему (рисунок 5.26), содержащую два сумматора. Такая схема позволяет не только проводить усреднение сигналов двух строк, но и разделять между собой две квадратурные составляющие сигнала цветности. Это разделение оказывается более эффективным, чем разделение в синхронных детекторах (как это делалось в системе NTSC), а значит, возникновение перекрёстных искажений между сигналами менее вероятно.

Рис. 5.25.Компенсация цветовых искажений путём сложения сигналов соседних строк


Рис. 5.26.Блок задержки сигнала в системе PAL

Структурная схема кодирующего устройства

В системе PAL передаются яркостный сигнал и два цветоразностных сигнала U и V . Сигналы U и V равны цветоразностным сигналам , уменьшенным на коэффициенты компрессии:

(5.12)

Формирование сигналов , U и V производится в матрицирующем устройстве (рисунок 5.27). Полосы частот видеосигналов U и V ограничиваются ФНЧ до 1,3 МГц на уровне –2 дБ. В сумматорах 1 и 2 цветоразностные сигналы смешиваются с импульсами, формирующими цветовую вспышку, и поступают на балансные модуляторы , которые работают в квадратуре, т.е. сдвиг между колебаниями поднесущей частоты в обоих модуляторах составляет 90°. Этот сдвиг обеспечивается фазовращателем 90° , включенным в цепь балансного модулятора составляющей U V . Смена фазы этой составляющей через строку осуществляется коммутатором, соединяющим модулятор, или непосредственно с фазовращателем 90° , или с дополнительным инвертором на 180°. Коммутация обеспечивается с помощью генератора коммутирующих импульсов, синхронизируемого с частотой строк.

Квадратурные составляющие U U и U V , складываясь в сумматоре 3, образуют сигнал цветности U S , который вместе с сигналами яркости и синхронизации приёмника представляет собой полный цветовой (композитный) сигнал U V . Линия задержки в тракте яркостного сигнала имеет то же назначение, что и системах NTSC и SECAM.


Рис. 5.27. Структурная схема кодирующего устройства системы PAL

Генератор поднесущей частоты является высокостабильным устройством с кварцевой стабилизацией частоты, значение которой f S =4,43361875 МГц. Так же, как и в системе NTSC, обеспечивается жёсткая связь между частотой поднесущей и частотами развёрток. Однако, выбор самого значения поднесущей в системе PAL имеет свои особенности.

Прежде всего, они связаны с коммутацией сигнала U V (каждую строку на 180°). Такая коммутация делает невозможным выбор поднесущей, равной нечётной гармонике полустрочной частоты. В этом случае нечётность полупериодов поднесущего колебания в строчном интервале плюс коммутация фазы на 180° обусловили бы совпадение по фазе сигнала U V во всех строках изображения. А это привело бы к увеличению заметности поднесущей на изображении в виде вертикальной линейчатой структуры. В свою очередь, нельзя выбрать значение поднесущей, кратной строчной частоте, так как составляющая U U , передаваемая без коммутации фазы, создаёт такую же помеху.

Разработчиками системы было принято компромиссное решение. Частоту поднесущей выбрали равной сумме нечётной гармоники четвертьстрочной частоты f Z и частоты кадров:

. (5.13)

Приближенно эта зависимость может быть выражена как

,

что определяет размещение в строчном интервале 284 периодов поднесущей без одной четверти. Таким образом, в системе PAL реализуют в отличие от системы NTSC не полустрочный сдвиг, а так называемый четвертьстрочный сдвиг гармоник сигнала цветности относительно гармоник строчной частоты. Слагаемые кадровой частоты f кадр обусловливают дополнительную смену полярности поднесущей в каждом поле на 180°. Эксперименты показали, что такой выбор поднесущей обеспечил высокое качество совместимости системы PAL.

Структура спектра цветового сигнала в системе PAL отличается от спектра сигнала в системе NTSC приближением гармоник цветности к гармоникам яркостного сигнала (интервал между ними составляет ¼f Z ). Это несколько усложняет, но не исключает возможности гребенчатой фильтрации при разделении этих сигналов в приёмнике.

В наиболее распространённом европейском стандарте системы PAL полный цветовой сигнал ограничивается по полосе в пределах 0…5 МГц. При указанном значении поднесущей частоты высшие боковые колебания сигнала цветности для обеих квадратурных составляющих U U и U V оказываются несимметрично подавленными. В системе NTSC такое ограничение двух квадратурных сигналов привело бы в приёмном устройстве к перекрёстным искажениям между ними. В системе PAL принцип построчной коммутации сигнала делает эти искажения минимальными, практически не сказываясь на качестве изображения.

Видео стандарты

Так как речь о видео форматах уже поднималась и по ней уже было достаточно много сказано, в том числе и о аналоговых и цифровых форматах видеозаписи, поэтому я решил поговорить непосредственно о таких распространенных видео стандартах как: NTSC , PAL и SECAM . Давайте разберемся, чем они отличаются друг от друга.

Если вы решите приобретать камеру за рубежом, особенно в США и Японии, будьте крайне осторожны. Цены в этих странах чрезвычайно привлекательны, только все видео оборудование рассчитано для работы в NTSC (правда, специально для русских туристов есть магазины, торгующие электроникой в системе PAL , но здесь надо быть вдвойне бдительными).

В этой связи, есть смысл углубиться в понятие таких аббривиатуар, как NTSC , PAL , SECAM .

Что означает «NTSC» ?

NTSC - это сокр. англ. National Television Standards Committee - Национальный комитет по телевизионным стандартам - стандарт аналогового цветного телевидения, разработанная в США. 18 декабря 1953 года впервые в мире было начато цветное телевизионное вещание с применением именно этой системы . NTSC принята в качестве стандарта цветного телевидения (видео ) также в Канаде, Японии и ряде стран американского континента.

Технические особенности NTSC :

  • количество полей - 60 Гц (точнее 59,94005994 Гц);
  • количество строк (разрешение) - 525;
  • частота поднесущей - 3579545,5 Гц.
  • количество кадров в секунду - 30.
  • развертка луча чересстрочная (интерлейсинг).

Что означает «PAL»?

PAL - это сокр. от англ. phase-alternating line - стандарт аналогового цветного телевидения, разработана инженером немецкой компании «Telefunken» Вальтером Брухом и представленная как стандарт телевизионного (видео ) вещания в 1967 году.

Как и все аналоговые телевизионные (видео ) стандарты , PAL является адаптированным и совместимым с более старым монохромным (черно-белым) телевещанием. В адаптированных аналоговых стандартах цветного телевещания дополнительный сигнал цветности передается в конце спектра монохромного телесигнала.

Как известно из природы зрения человека, ощущение цвета складывается из трех составляющих: красного (R), зеленого (G) и синего (B) цветов. Такую цветовую модель обозначают аббревиатурой RGB . Из-за преобладания в среднестатистической телевизионной картинке зеленой составляющей цвета и для избежания избыточного кодирования, в качестве дополнительного сигнала цветности используют разность R-Y и B-Y (Y - общая яркость монохромного телесигнала). В системе PAL используют цветовую модель YUV .

Оба дополнительных сигнала цветности в стандарте PAL передаются одновременно в квадратурной модуляции (разновидность AM), типичная частота поднесущего сигнала - 4433618.75 Гц (4.43 МГц).

При этом каждый цветоразностный сигнал повторяют в следующей строке с поворотом фазы с частотой 15,625 кГц на 180 градусов, благодаря чему декодер PAL полностью устраняет фазовые ошибки (типичные для системы NTSC ). Для устранения фазовой ошибки декодер складывает текущую строку и предыдущую из памяти (в аналоговых телевизионных приемниках используется линия задержки). Таким образом, объективно, цветное телевизионное изображение в видео стандарте PAL имеет в два раза меньшее разрешение по вертикали, чем монохромное изображение.

Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. Применение цифровой обработки сигнала еще больше сглаживает этот недостаток.

Что означает «SECAM»?

SECAM - это сокр. от фр. Séquentiel couleur avec mémoire, позднее Séquentiel couleur à mémoire - последовательный цвет с памятью - стандарт аналогового цветного телевидения, впервые применённая во Франции. Исторически она является первым европейским стандартом цветного телевидения .

Сигнал цветности в стандарте SECAM передается в частотной модуляции (ЧМ), по одной цветовой составляющей в одной телевизионной строке, поочередно. В качестве недостающих строк используют предыдущий сигнал R-Y или B-Y соответственно, получая его из памяти (в аналоговых телевизионных приемниках для этого используется линия задержки). Таким образом, объективно, цветное телевизионное изображение в стандарте SECAM имеет в два раза меньшее разрешение по вертикали, чем монохромное изображение. Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. Применение цифровой обработки сигнала еще больше сглаживает этот недостаток.

В шутку принято расшифровывать аббревиатуру SECAM как «System Essentially Contrary to AMerican» (система, существенно противоположная американской).

Кстати, видеокассеты с маркировкой NTSC по качеству и продолжительности записи не соответствуют стандарту PAL .