Главная · Электробезопасность · Силикатные материалы и изделия автоклавного твердения. Силикатные изделия автоклавного твердения Силикатные материалы и изделия силикатный кирпич

Силикатные материалы и изделия автоклавного твердения. Силикатные изделия автоклавного твердения Силикатные материалы и изделия силикатный кирпич

Производство силикатных строительных материалов базируется на гидротермальном синтезе гидросиликатов кальция, который осу­ществляется в реакторе-автоклаве в среде насыщенного водяного пара давлением 0,8-1,3 МПа и температурой 175-200 °С. Для гидро­термального синтеза можно использовать при надлежащем обосно­вании иные параметры автоклавизации, применять обработку не только паром, но и паровоздушной или парогазовой смесью, водой.

Силикатные автоклавные материалы - это бесцементные мате­риалы и изделия (силикатные бетоны, силикатный кирпич, камни, блоки), приготовленные из сырьевой смеси, содержащей известь (гашеную или молотую негашеную), кварцевый песок и воду, кото­рые образуют в процессе автоклавной обработки гидросиликаты кальция:

Са(ОН)2 + Si02 + mH20 = Ca0Si02/iH20.

В условиях автоклавной обработки можно получить различные гидросиликаты кальция в зависимости от состава исходной смеси: тоберморит 5Ca0 6Si02 5H20, слабо закристаллизованные гидроси­ликаты: (0,8-1,5) Ca0 Si02 H20 - и (1,5-2) Ca0 Si02 H20. В высо­коизвестковых смесях синтезируется гиллебрандит 2Ca0Si02H20.

Автоклав представля­ет собой горизонтально расположенный стальной цилиндр с герметически закрывающимися с торцов крышками (рис. 9.3).

Диаметр автоклава - 2,6-3,6 м, длина - 21- 30 м. Автоклав снабжен манометром, показываю­щим давление пара, и Рис. 9.3. Загрузка в автоклав предохранительным кла-
паном, автоматически открывающимся при повышении давления выше предельного. В нижней части автоклава уложены рельсы, по которым передвигаются загруженные в автоклав вагонетки с изде­лиями. Автоклав оборудован устройствами для автоматического контроля и управления режимом автоклавной обработки. Для уменьшения теплопотерь автоклав покрыт слоем теплоизоляции.

После загрузки автоклав закрывают и в него постепенно впус­кают насыщенный пар. Высокая температура при наличии в бетоне воды в капельно-жидком состоянии создает благоприятные условия для химического взаимодействия между гидроксидом кальция и кремнеземом.

Прочность автоклавных материалов формируется в результате взаимодействия двух процессов: структурообразования, обусловлен­ного синтезом гидросиликатов кальция, и деструкции, обусловлен­ной внутренними напряжениями.

Для снижения внутренних напряжений автоклавную обработку проводят по определенному режиму, включающему постепенный подъем давления пара в течение 1,5-2 ч, изотермическую выдержку изделий в автоклаве при температуре 175-200 °С и давлении 0,8- 1,3 МПа в течение 4-8 ч и снижение давления пара в течение 2-4 ч. После автоклавной обработки продолжительностью 8-14 ч получают силикатные изделия.

Силикатные бетоны

Силикатные бетоны, как и цементные, могут быть тяжелыми (заполнитель - песок и щебень или песок и песчано-гравийная смесь), легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит и др.) и ячеистыми.

В силикатном бетоне применяют известково-кремнеземистое вяжущее, в состав которого входят воздушная известь и тонкомоло­тый кварцевый песок (взамен песка применяют золу, молотый до­менный шлак). Прочность известково-кремнеземистого вяжущего зависит от активности извести, соотношения CaO/SiC>2, тонкости из­мельчения песка и параметров автоклавной обработки (температуры и давления насыщенного пара, длительности автоклавного тверде­ния). Оптимальным будет такое соотношение CaO/Si02 и такая тон­кость помола песка, при которых вся СаО будет связана в низкоос­новные гидросиликаты кальция (рис. 9.4).

Изготовление бетонных и железо бетонных изделий вклю­чает приготовление известково­кремнеземистого вяжущего, при­готовление и гомогенизацию си­ликатнобетонной смеси, формо­вание изделий, автоклавную об­работку. В процессе автоклави - зации между всеми компонента­ми бетона имеют место химиче­ские взаимодействия.

Заполнитель (в особенности кварцевый песок) участвует в синтезе новообразований, подвер­гаясь изменениям на глубину до 15 мкм.

Тяжелый силикатный бетон плотностью 1800-2500 кг/м3, с прочностью 15-80 МПа приме­няют для изготовления сборных бетонных и железобетонных конструкций, в том числе предваритель­но напряженных.

Силикатный кирпич

Силикатный кирпич изготовляется из жесткой смеси кварцевого песка (92-94%), извести (6-8%, считая на активную СаО) и воды (7- 9%) путем прессования под давлением (15-20 МПа) и последующего твердения в автоклаве.

Цвет силикатного кирпича светло-серый, но он может быть любо­го цвета путем введения в состав смеси щелочестойких пигментов. Выпускают кирпич двух видов: одинарный 250x120x65 мм и модуль­ный 250x120x88 мм. Модульный кирпич изготовляют с пустотами, чтобы масса одного кирпича не превышала 4,3 кг.

В зависимости от предела прочности при сжатии и изгибе сили­катный кирпич имеет марки: 100, 125, 150, 200 и 250.

Плотность силикатного кирпича (без пустот) - около 1800-
1900 кг/м3, т. е. он немного тяжелее обыкновенного глиняного кир­пича, теплопроводность - 0,70-0,75 Вт/(м °С), водопоглощение лицевого силикатного кирпича не превышает 14%, а рядового - 16%. Марки по морозостойкости для лицевого кирпича: 25, 35, 50; для рядового - 15.

Силикатный кирпич, как и глиняный, применяют для несущих стен зданий. Не рекомендуется его применять для цоколей зданий из-за недостаточной водостойкости. Для кладки труб и печей сили­катный кирпич не используют, так как при высокой температуре де­гидратируется Са(ОН)2, разлагаются СаС03 и гидросиликаты каль­ция, а зерна кварцевого песка при 600 °С расширяются и вызывают растрескивание кирпича.

На производство силикатного кирпича расходуется меньше теп­ла, поскольку не требуются сушка и высокотемпературный обжиг, поэтому он на 30-40% дешевле глиняного кирпича.

Схема производства силикатного кирпича показана на рис. 9.5.

Комовую известь-кипелку, поступающую из известеобжига­тельной печи, сортируют, чтобы удалить недожог и пережог, затем дробят и размалывают в тонкий порошок. При этом воздушным се­паратором отделяются наиболее тонкие частицы. Повышение тонко­сти помола извести также сокращает ее расход.

Гасить известь в смеси с песком можно в силосах в течение 8- 9 ч (первый способ) или, что гораздо быстрее и интенсивнее, в гасильных барабанах (второй способ). Последний представляет собой металлический цилиндр, по концам имеющий форму усе­ченных конусов, который вращается вокруг горизонтальной оси. При помощи дозирующего аппарата песок дозируют по объему, а известь - по весу, а затем засыпают через герметически закры­вающийся люк в гасильный барабан. После загрузки барабан вра­щают, впускают пар и гасят известь под давлением 0,3-0,5 МПа. Перед прессованием известково-песчаную смесь перемешивают в лопастной мешалке или на бегунах и дополнительно увлажняют (до 7%).

Прессуют кирпич на прессах под давлением до 150-200 кг/см2. Применяемые на заводах прессы имеют периодически вращающийся стол с устроенными в нем формами. Прессование производится снизу

вверх при помощи рычажного механизма. Спрессованный кирпич - сырец получает высокую плотность, что способствует более полно­му прохождению реакции между известью и кварцевым песком. Производительность различных типов прессов, зависящая от их кон­струкции, колеблется в пределах 2200-3000 кирпичей в 1 ч.

Отформованные кирпичи снимают со стола пресса, осторожно укладывают на вагонетки и отправляют в автоклавы для твердения.

Прочность силикатного кирпича продолжает повышаться и по­сле запаривания его в автоклаве. Это объясняется тем, что часть из­вести, не вступившей в химическое взаимодействие с кремнеземом, реагирует с углекислотой воздуха, т. е. происходит карбонизация: Са(ОН)2 + С02 = СаС03+ Н20.

Прочность, водостойкость и морозостойкость силикатного кир­пича увеличиваются также при его высыхании.

Известково-шлаковый и известково-зольный кирпич

Известково-шлаковый кирпич изготовляют из смеси извести и гранулированного доменного шлака. Извести берут 3-12% по объ­ему, шлака - 88-97%.

При замене шлака золой получается известково-зольный кир­пич. Состав смеси: 20-25% извести и 80-75% золы. Так же как и шлак, зола является дешевым сырьем, образующимся в больших ко­личествах после сжигания топлива (каменного угля, бурого угля и др.) в котельных ТЭЦ, ГРЭС и др.

В процессе сгорания пылевидного топлива часть очаговых ос­татков оседает в топке (зола-шлак), а самые мелкие частицы золы уносятся в дымоходы, где задерживаются золоуловителями, а затем их транспортируют за пределы котельной - в золоотвалы. Наиболее тонкодисперсные золы называют золами-уносами.

При смешивании с водой золы не твердеют, однако при добав­ках извести или портландцемента они активизируются, а запарива­ние смеси в автоклавах дает возможность получать из них изделия достаточной прочности.

При сжигании некоторых горючих сланцев (например, средне волжских) образуются золы, содержащие окиси кальция 15% и более, которые имеют способность твердеть без добавок извести. Кирпич из этих зол называют сланце-золъным.

Использование шлаков и зол очень выгодно, так как при этом снижается стоимость строительных материалов.

Известково-шлаковый и известково-зольный кирпичи формуют на тех же прессах, которые применяют при производстве силикатно­го кирпича, и запаривают в автоклавах.

Плотность шлакового и зольного кирпичей - 1400-1600 кг/м3, теплопроводность - 0,5-0,6 Вт/(м °С). По пределу прочности при сжатии шлаковый и зольный кирпичи разделяют на три марки: 75, 50 и 25. Морозостойкость известково-шлакового кирпича такая же, как и силикатного, а известково-зольного - ниже.

Известково-шлаковый и известково-зольный кирпичи применя­ют для возведения стен зданий высотой не более трех этажей и для кладки верхних этажей многоэтажных зданий.

Изделия из пеносиликата и других ячеистых материалов

Пеносиликат - это искусственный каменный материал ячеи­стой структуры, который получается в результате затвердевания пластичной известково-песчаной смеси, смешанной с технической пеной.

Материал, полученный смешиванием того же раствора с газооб - разователем (алюминиевой пудрой, пергидролем и др.), называют газосиликатом.

Для производства пеносиликата рекомендуется применять моло­тую известь-кипелку, содержащую активный СаО не менее 70%. Чем выше активность извести и тоньше помол, тем меньше ее требуется для приготовления пеносиликата. Обычно извести берут 15-20% от веса сухой смеси. Кроме кварцевого песка, в качестве заполнителей можно использовать доменный гранулированный шлак, золу элек­тростанций, маршалит, трепел, диатомит и другие заполнители, со­держащие большое количество кремнезема.

В процессе производства пеносиликата известь и заполнитель подвергают совместному или раздельному помолу. При раздельном помоле компонентов известь и заполнитель измельчают в трубных, шаровых мельницах, а при совместном помоле - в дезинтеграторах. Песок сначала измельчают в них с гашеной известью, которой берут 25-30% от общего количества вводимой извести, а остальную часть извести добавляют в виде молотой извести-кипелки.

Дальнейший этап производства пеносиликатных изделий заклю­чается в приготовлении ячеистой смеси. Ячеистую смесь приготов­ляют путем смешивания известково-песчаного раствора с устойчи­вой пеной в пенобетономешалках.

Готовую ячеистую смесь выливают из смесительного барабана пенобетономешалки в бункер, а затем разливают в формы, соответ­ствующие профилю и размерам будущего изделия. После 6-8 часо­вой выдержки (частичного отвердения) формы с полузатвердевшей смесью транспортируют в автоклавы для запаривания.

Пеносиликатные изделия изготовляют плотностью от 300 до 1200 кг/м3 и прочностью в пределах 0,4-20 МПа.

Из теплоизоляционного пеносиликата изготовляют термовкла­дыши, которые используют для утепления стен; плиты, скорлупы и короба - для ограждения теплопроводов и другие теплоизоляцион­ные изделия. Для кладки несущих стен одно-, двухэтажных зданий применяют мелкие офактуренные неармированные блоки плотно­стью 600-700 кг/м3.

Для защиты блоков от атмосферных воздействий в процессе экс­плуатации наружная поверхность изделий покрывается облицовоч­ным слоем из цементно-песчаного раствора толщиной 2-3 см, кото­рый укладывается на дно формы перед заливкой ячеистой смеси.

Конструктивно-теплоизоляционный пено - и газосиликат приме­няют теперь также для изготовления крупноразмерных изделий для наружных и внутренних стен, покрытий промышленных сооруже­ний, междуэтажных и чердачных перекрытий жилых зданий, перего­родок и др.

Для покрытий промышленных зданий изготовляют армопеноси - ликатные и армогазосиликатные прямоугольные плиты.

Армопеносиликатные плиты по сравнению с обычными железо­бетонными не требуется теплоизолировать и в то же время они дос­таточно прочны и долговечны. Укладывают их по железобетонным или металлическим прогонам, а сверху покрывают гидроизоляцион­ными рулонными материалами.

Плотность пеносиликата 900-1100 кг/м3, предел прочности его при сжатии 6-10 МПа (гл. X, § 8).

Технология пр-ва силикатных изделий автоклавного твердения

При смешивании возд извести с кварцевым песком и водой получают стр-ный р-р, который твердеет при обычных условиях очень медленно. Так как песок в обычных условиях химически инертен.

Силикатные бетоны , как и цементные, могут быть тяжелыми (заполнители плотные - песок и щебень или песчано-гравийная смесь), легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит и др.) и ячеистыми (заполнителем служат пузырьки воздуха, равномерно распределенные в объеме изде­лия).

Вяжущим в силикатном бетоне является тонкомолотая известково-кремнеземистая смесь - известково-кремнеземистое вя­жущее, способное при затворении водой в процессе тепловлаж-ностной обработки в автоклаве образовывать высокопрочный искусственный камень.

В качестве кремнеземистого компонента применяют молотый кварцевый песок, металлургические (главным образом домен­ные) шлаки, золы ТЭЦ. Кремнеземистый компонент (тонкомо­лотый песок) оказывает большое влияние на формирование свойств силикатных бетонов. Так, с возрастанием дисперсности частиц молотого песка повышаются прочность, морозостойкость и другие свойства силикатных материалов.

С увеличением тонкости помола песка повышается относи­тельное содержание СаО в смеси вяжущего до тех пор, пока содержание активной СаО обеспечивает возможность связыва­ния ее во время автоклавной обработки имеющимся песком в ннзкооснбвные гидросиликаты кальция.

Автоклавная обработка - последняя и самая важная стад Ия производства силикатных изделий. В автоклаве происходи сложные процессы превращения исходной, уложенной и уплот­ненной силикатобетонной смеси в прочные изделия разной плот­ности,- формы и назначения. В настоящее время выпускаются автоклавы диаметром 2,6 и 3,6 м, длиной 20...30 и 40 м. Как изложено выше, автоклав представляет собой цилиндрический горизонтальный сварной сосуд (котел) с герметически закры­вающимися с торцов сферическими крышками. Котел имеет манометр, показывающий давление пара, и предохранительный клапан, автоматически открывающийся при повышении в котле давления выше предельного. В нижней части автоклава уложены рельсы, по которым передвигаются загружаемые в автоклав вагонетки с изделиями. Автоклавы оборудованы траверсными путями с передаточными тележками - электромостами для за­грузки и выгрузки вагонеток и устройствами для автоматиче­ского контроля и управления режимом автоклавной обработки. Для уменьшения теплопотерь в окружающее пространство по­верхность автоклава и всех паропроводов покрывают слоем теплоизоляции. Применяют тупиковые или проходные автоклавы. Автоклавы оборудованы магистралями для выпуска насыщенно­го пара, перепуска отработавшего пара в другой автоклав, в атмосферу, утилизатор и для конденсатоотвода.

После загрузки автоклава крышку закрывают и в него медлен­но и равномерно впускают насыщенный пар. Автоклавная обра­ботка является наиболее эффективным средством ускорения твердения бетона. Высокие температуры при наличии в обраба­тываемом бетоне воды в капельно-жидком состоянии создают благоприятные условия для химического взаимодействия между гидратом оксида кальция и кремнеземом с образованием основ­ного цементирующего вещества - гидросиликатов кальция.

Весь цикл автоклавной обработки (по данным проф. П. И. Бо-женова) условно делится на пять этапов: 1 -от начала впуска пара до установления в автоклаве температуры 100 °С; 2 - по­вышение температуры среды и давления пара до назначенного минимума; 3 - изотермическая выдержка при максимальном давлении и температуре; 4 - снижение давления до атмосфер­ного, температуры до 100 °С; 5 - период постепенного остыва­ния изделий от 100 до 18...20 °С либо в автоклаве, либо после выгрузки их из автоклава.

Прочность силикатного бетона при сжатии, изгибе и растяже­нии, деформативные свойства, сцепление с арматурой обеспечи­вают одинаковую несущую способность конструкций из силикат­ного и цементного бетона при одинаковых их размерах и степени армирования. Поэтому силикатный бетон можно использовать для армированных и предварительно напряженных конструкций, что ставит его в один ряд с цементным бетоном.

Из плотных силикатных бетонов изготовляют несущие конст­рукции для жилищного, промышленного и сельского строитель­ства: панели внутренних стен и перекрытий, лестничные марши и площадки, балки, прогоны и колонны, карнизные плиты и т. д. В последнее время тяжелые силикатные бетоны применяют для изготовления таких высокопрочных изделий, как прессованный безасбестовый шифер, напряженно-армированные силикатобе-тонные железнодорожные шпалы, армированные силикатобетон-ные тюбинги для отделки туннелей метро и для шахтного строи­тельства (бетон прочностью 60 МПа и более).

Коррозия арматуры в силикатном бетоне зависит от плот­ности бетона и условий службы конструкций; при нормальном режиме эксплуатации сооружений арматура в плотном силикат­ном бетоне не корродирует. При влажном и переменном режимах эксплуатации в конструкциях из плотного силикатного бетона арматуру необходимо защищать антикоррозионными обмазками.

Силикатный бетон на пористых заполнителях - новый вид легкого бетона. Твердение его происходит в автоклавах. Вяжу-Щие для этих бетонов применяют те же, что и для плотных силикатных бетонов, а заполнителями служат пористые заполни­тели: керамзит, вспученный перлит, аглопорит, шлаковая пемза

Силикатный кирпич

Силикатный кирпич по своей форме, размерам и основному назначению не отличается от керамического кирпича (см. гл. 3). Материалами для изготовления силикатного кирпича являются воздушная известь и кварцевый песок. Известь применяют в ви­де молотой негашеной, частично загашенной или гашеной гид-ратной. Известь должна характеризоваться быстрым гашением и не должна содержать более 5% MgO. Пережог замедляет скорость гашения извести и даже вызывает появление в изделиях трещин, вспучиваний и других дефектов, поэтому для производ­ства автоклавных силикатных изделий известь не должна содер­жать пережога

Кварцевый песок в производстве силикатных из­делий применяют немолотый или в виде смеси немолотого и тон­комолотого, а также грубомолотого с содержанием кремнезема не менее 70%. Наличие примесей в песке отрицательно влияет на качество изделий: слюда понижает прочность, и ее содержа­ние в песке не должно превышать 0,5%; органические примеси вызывают вспучивание и также понижают прочность; содержа­ние в песке сернистых примесей ограничивается до 1 % в пере­счете на SO 3 . Равномерно распределенные глинистые примеси допускаются в количестве не более 10%; они даже несколько повышают удобоукладываемость смеси. Крупные включения гли­ны в песке не допускаются, так как снижают качество изделий. Состав известково-песчаной-смеси для изготовления силикатного Кирпича следующий: 92...95% чистого кварцевого песка, 5...8% воздушной извести и примерно 7% воды.

Производство силикатного кирпича ведут двумя способами: барабанным и силосным, - отличающимися приготовлением из­вестково-песчаной смеси.

При барабанном способе (рис. 8. 6) песок и тонкомолотая Негашеная известь, получаемая измельчением в шаровой мельни­це комовой извести, поступают в отдельные бункера над гасиль­ным барабаном. Из бункеров песок, дозируемый по объему, а известь - по массе, периодически загружаются в гасильный ба­рабан. Последний герметически закрывают и в течение 3...5 мин производят перемешивание сухих материалов. При подаче остро­го пара под давлением 0,15...0,2 МПа происходит гашение извести при непрерывно вращающемся барабане. Процесс гашения извести длится до 40 мин.

При силосном способе предварительно перемешанную и ув­лажненную массу направляют для гашения в силосы. Гашение в силосах происходит 7...12 ч, т.е. в 10...15 раз больше, чем в барабанах, что является существенным недостатком силосного способа. Хорошо загашенную в барабане или силосе известково-песчаную массу подают в лопастный смеситель или на бегуны для дополнительного увлажнения и перемешивания и далее на прессование. Прессование кирпича производят на механических прессах под давлением до 15...20 МПа, обеспечивающим получе­ние плотного и прочного кирпича. Отформованный сырец укла­дывают на вагонетку, которую направляют в автоклав для твер­дения.

Автоклав представляет собой стальной цилиндр диаметром 2 м и более, длиной до 20 м, с торцов герметически закрываю­щийся крышками (рис. 8. 7). С повышением температуры уско­ряется реакция между известью и песком, и при температуре 174 °С она протекает в течение 8... 10 ч. Быстрое твердение про­исходит не только при высокой температуре, до и высокой влаж­ности, для этого в автоклав пускают пар давлением до 0,8 МПа и это давление выдерживают 6...8 ч. Давление пара поднимают и снижают в течение 1,5 ч. Цикл запаривания продолжает* 10... 14 ч. Я

Под действием высокой температуры и влажности происходи химическая реакция между известью и кремнеземом. Образующиеся в результате реакции гидросиликаты срастаются с зернами песка в прочный камень. Однако твердение силикатного кип. пича на этом не прекращается, а продолжается после запарива­ния. Часть извести, вступившей в химическое взаимодействие с кремнеземом песка, реагирует с углекислотой воздуха, образуя прочный углекислый кальций по уравнению

Са (ОН) 2 + СО 2 = СаСОз + Н 2 О

Силикатный кирпич выпускают размером 250 X 120Х 65 мм, марок 75, 100, 125, 150, 200, 250 и 300, водопоглощением 8... 16%," теплопроводностью 0,70...0,75 Вт/(м-°С), плотностью свыше 1650 кг/м 3 - несколько выше, чем плотность керамического кир­пича; морозостойкостью F15. Теплоизоляционные качества стен из силикатного кирпича и керамического практически равны.

Применяют силикатный кирпич так же, где и керамический, но с некоторыми ограничениями. Нельзя применять силикатный кирпич для кладки фундаментов и цоколей, так как ои менее водостоек, а также для кладки печей и дымовый труб, так как при длительном воздействии высокой температуры происходит дегидратация гидросиликата кальция и гидрата оксида, кальция, которые связывают зерна песка, и кирпич разрушается.

По технико-экономическим показателям силикатный кирпич превосходит керамический. На его производство требуется в 2 раза меньше топлива, в 3 раза меньше электроэнергии, в 2,5 раза меньше трудоемкости производства; в конечном итоге себестоимость силикатного кирпича оказывается на 25...35% ниже, чем керамического.

Силикатными материалами и изделиями называются необожженные материалы и изделия на основе минеральных вяжущих - асбестоцементные, гипсовые и гипсобетонные, силикатные (на основе извести) и магнезиальные с заполнителями (кварцевым песком, шлаком, золой, пемзой, опилками и т. д.). Области применения их чрезвычайно обширны - от несущих и ограждающих конструкций до отделки зданий и сооружений.

Силикатные изделия получают в результате формования и последующей автоклавной обработки смеси извести или других вяжущих веществ на ее основе, тонкодисперсных кремнеземистых добавок, песка и воды.

Силикатный кирпич - искусственный каменный материал, изготовляемый из смеси кварцевого песка и извести путем прессования под большим давлением и последующего твердения в автоклаве. Исходными материалами являются воздушная известь - 6-8% в расчете на СаО, кварцевый песок - 92-94% и вода - 7-8% по массе сухой смеси.

Существуют две схемы производства силикатного кирпича: силосная и барабанная. По силосной схеме известь, совместно с песком, гасят в силосах в течение 4-8 ч. По барабанной схеме известь, совместно с песком, гасят во вращающихся барабанах с подводом пара под избыточным давлением до 0,5 МПа благодаря чему процесс гашения длится 30-40 мин.

Погашенная смесь извести и песка увлажняется, перемешивается и прессуется под давлением 15-20 МПа, в результате получается сырец, который укладывают на вагонетки и направляют в автоклавы на 10-14 ч для запаривания под давлением насыщенного пара 0,8 МПа (изб.) при температуре около 175 о С. Прочность силикатного кирпича растет в течение некоторого времени и после выгрузки из автоклава (на воздухе).

Силикатный кирпич выпускают двух видов: одинарный (размером 250х120х65 мм) и модульный (размером 250х120х88 мм). Модульный кирпич изготавливают с технологическими пустотами, замкнутыми с одной стороны. Цвет кирпича светло-серый, но он может быть и цветным за счет введения в состав смеси щелочестойких минеральных пигментов.

Благодаря прессованию под большим давлением и отсутствию усадочных явлений размеры силикатного кирпича выдержаны более точно, чем у глиняного. Плотность его несколько выше, чем у керамического кирпича - 1800-1900 кг/м 3 , теплопроводность - 0,82 - 0,87 Вт/(м о С). В зависимости от предела прочности при сжатии и изгибе силикатный кирпич изготавливают шести марок: 75, 100, 125, 150, 200 и 250. Морозостойкость силикатного кирпича не ниже М рз 15, водопоглощение 8-16% по массе.

Области применения силикатного кирпича такие же, как и керамического кирпича. Однако он не рекомендуется для кладки фундаментов и стен в условиях высокой влажности, так как воздействие грунтовых и сточных вод вызывает его разрушение. Нельзя использовать силикатный кирпич в конструкциях, подверженных действию высоких температур (в печах, дымовых трубах и т. п.).

Силикатными бетонами называют большую группу бетонов автоклавного твердения, получаемых на основе известково-песчаного, известково-зольного или других известково-кремнеземистых вяжущих. Кроме того, в качестве вяжущего могут использовать молотые доменные шлаки.

Плотный мелкозернистый силикатный бетон, в отличие от тяжелого бетона, в своем составе не содержит крупного заполнителя (гравия или щебня). Структура силикатного бетона более однородна, а стоимость значительно ниже.

Прочность его при сжатии колеблется в довольно широких пределах (15-60 МПа) и зависит от состава смеси, режима автоклавной обработки и других факторов. Водостойкость силикатного бетона удовлетворительная. При полном водонасыщении снижение их прочности не превышает 25%. Морозостойкость - 25-50 циклов, а при добавке портландцемента она повышается до 100 циклов.

Из плотного силикатного бетона выполняют крупные стеновые блоки наружных стен с щелевыми пустотами и внутренних несущих стен, панели и плиты перекрытий, колонны, балки и прогоны, лестничные площадки и марши, цокольные блоки и другие армированные изделия.

В легких силикатных бетонах в качестве заполнителей используют керамзит, гранулированный шлак, шлаковую пемзу и другие пористые материалы в виде гравия и щебня. Из легких силикатных бетонов на пористых заполнителях изготовляют блоки и панели наружных стен жилых зданий.

Ячеистые силикатные бетоны, в зависимости от способа образования пористой структуры, разделяют на пено- и газосиликаты. Их получают при автоклавной обработке известково-песчаной пластичной смеси, в состав которой вводят устойчивую пену (пеносиликат) или алюминиевую пудру и другие газообразователи (газосиликат).

По назначению легкие и ячеистые силикатные бетоны делят на: теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давле­нии.

Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке, вторым основным компонентом сырьевой смеси является кварцевый песок или минеральные вещества, содер­жащие кремнезем. Чтобы химическое взаимодействие происходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели пе­рекрытий и стеновые, колонны, балки и прочее.

Легкие заполнители позволяют понизить массу стеновых панелей и дру­гих элементов.

Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами.

7.6.1. Силикатный кирпич

Силикатный известково-песчаный кирпич по форме, размерам и основ­ному назначению не отличается от глиняного кирпича.

Кирпич прессуется из увлажненной известково-песчаной смеси: чистый кварцевый песок 92-95 %, воздушная известь 6-8 %, вода - примерно 7 %.

Формование кирпича производится на прессах под давлением 15-20 МПа.

Для твердения кирпич сырец отправляют в автоклав для пропаривания. Автоклав представляет собой стальной цилиндр, с торцов его герметически за­крывают крышками. Твердение происходит не только при высокой температу­ре, но и при высокой влажности, для чего в автоклав подают пар под давлени­ем. Давление пара постепенно повышают. Цикл запаривания продолжается в течение 10-14 часов.

Запаривание сырца в автоклаве условно состоит из пяти этапов:

От начала пуска пара до установления в автоклаве температуры 100 °С;
от начала подъема давления пара до установления максимально задан­
ного;

Выдержка изделия при постоянной температуре и давлении;

С момента снижения давления и температуры до 100 °С;

Остывание изделий до температуры 18-20 °С.

Силикатный кирпич выпускают размером 250><120 х 65 мм как пустоте­лым, так и сплошным. По механической прочности различают марки кирпича 75, 100, 150. Водопоглощение кирпича составляет 8-16 %; значение теплопро­водности 0,71-0,75 Вт/(м-°С); объемная масса 1800-1900 кг/м 3 , т. е. больше, чем у глиняного кирпича, морозостойкость F15. Теплоизоляционные качества стен из силикатного и глиняного кирпича практически равны.

Себестоимость силикатного кирпича ниже на 25-35 %, чем глиняного, так как в два раза меньше расход топлива, в три - электроэнергии, ниже трудоем­кость производства.

Применяют силикатный кирпич так же, как и глиняный, для кладки не­сущих стен жилых, промышленных и гражданских зданий, для столбов, опор и т. д. Его нельзя использовать для кладки фундаментов и цоколей и в изделиях и


конструкциях, подверженных длительному воздействию температур свыше 500 °С.

Известково-шлаковый и известково-зольный кирпич является разновид­ностью силикатного кирпича, отличается меньшей объемной массой и лучши­ми теплоизоляционными свойствами, так как в них кварцевый песок заменен пористым легким шлаком в известково-шлаковом и золой - в известково-зольном кирпиче.

Размеры, физико-механические свойства и способ изготовления анало­гичны силикатному кирпичу.

Применяют известково-зольный и известково-шлаковый кирпич для кладки стен домов малой этажности, а также для кладки стен верхних этажей многоэтажных зданий.

7.6.2. Силикатный бетон

Силикатный бетон относится к тяжелым бетонам.

Из силикатного бетона не ниже марки 150 с применением тепловой обра­ботки в автоклаве изготавливают крупные стеновые блоки внутренних несущих стен, панели перекрытий и несущих перегородок, ступени, плиты, балки.

Элементы, работающие на изгиб, армируют стальными стержнями и сет­ками.

Крупноразмерные силикатные изделия имеют прочность при сжатии 15-40 МПа, объемную массу 1800-2100 кг/м 3 , морозостойкость 50 циклов и более.

Ячеистые силикатные изделия отличаются малой объемной массой и низкой теплопроводностью. Различают изделия пеносиликатные и газосили­катные.

Пеносиликатные изделия изготавливают из смеси извести (до 25 %) и мо­лотого песка, пенообразователя. В газосиликатные добавляют смесь алюминие­вой пудры.

Твердеют ячеистые силикатные изделия в автоклавах.

Изготавливают как армированные, так и неармированные.

В армированных стальная арматура и закладные детали больше подвер­жены коррозии, поэтому стальную арматуру покрывают защитными составами.



Силикатные изделия из ячеистого бетона подразделяют на:

Теплоизоляционные;

Конструктивно-теплоизоляционные;

Конструктивные.

Значение теплопроводности 0,1-0,2 Вт/(м-°С), они довольно морозостой­ки.

Применяют для наружных стен зданий, перегородок, для покрытий про­мышленных зданий, при этом эффективно используются несущие и теплоизо­ляционные качества ячеистых бетонов.

IfnuTnnnkttki» nnnnnru

К атегория: Материалы для строительства

Силикатные материалы и изделия

Силикатные изделия представляют собой искусственный каменный материал, изготовленный из смеси извести, песка и воды, отформованный путем прессования под большим давлением и прошедший автоклавную обработку.

В строительстве широкое распространение получили силикатный кирпич; силикатный плотный бетон и изделия из него; ячеистые силикатные бетоны и изделия; силикатный бетон с пористыми заполнителями.

Силикатный кирпич прессуют из известково-песчаной смеси следующего состава (%): чистый кварцевый песок 92-94; воздушная известь 6-8 и вода 7-8. Подготовленную в смесителях известково-песчаную массу формуют на прессах под давлением 15-20 МПа и запаривают в автоклавах при давлении насыщенного пара 0,8 МПа и температуре примерно 175 °С.

При запаривании известь, песок и вода вступают в реакцию, в результате которой образуется гидросиликат кальция, цементирующий массу и придающий ей высокую прочность. Продолжительность цикла автоклавной обработки 10-14 ч, а всего процесса изготовления силикатного кирпича 16-18 ч, в то время как процесс изготовления обычного глиняного кирпича длится 5-6 сут.

Силикатный кирпич выпускается двух видов: одинарный размером 250 X 120 X 65 мм и модульный размером 250 X 120 X 88 мм. Объемная масса силикатного кирпича 1800-1900 кг/м3, морозостойкость не ниже Мрз 15, водопоглощение 8-16% по массе. По прочности при сжатии силикатный кирпич делится на пять марок: 75, 100, ’25, 150 и 200. По теплопроводности силикатный кирпич незначительно отличается от обычного- глиняного и вполне заменяет последний при кладке стен любых зданий, кроме стен, маледящнхея в условиях высокой влажности или подвергающихся воздействию высоких температур (печи, дымовые трубы). По цвету силикатный кирпич светло-серый, но может быть и цветным, окрашенным в массе введением в нее минеральных пигментов.

Изделия из плотного силикатного бетона. Мелкозернистый плотный силикатный бетон - бесцементный бетон автоклавного твердения на основе известково-кремнеземистых или известково-зольных вяжущих - получают по следующей технологической схеме: часть кварцевого песка (8-15%) смешивается с негашеной известью (6-10%) и подвергается тонкому помолу в шаровых мельницах, затем измельченное известково-песчаное вяжущее и обычный песок (75-85%) затворяют водой (7-8%), перемешивают в бетономешалках и затем смесь поступает на формовочный стенд. Отформованные изделия запаривают в автоклавах при температуре 175-190° С и давлении пара 0,8 и 1,2 МПа.

Изделия из плотного силикатного бетона имеют объемную массу 1800-2200 кг/м3, морозостойкость 25-50 циклов, прочность при сжатии 10-60 МПа.

Из плотного силикатного бетона изготовляют крупные полнотелые стеновые блоки, армированные плиты перекрытий, колонны, балки, фундаментные и цокольные блоки, конструкции лестниц и перегородок.

Силикатные блоки для наружных стен и стен во влажных помещениях должны иметь марку не ниже 250.

Изделия из ячеистого силикатного бетона. По способу образования пористой структуры ячеистые силикатные бетоны бывают пеносиликатные и газосиликатные.

Основным вяжущим для приготовления этих бетонов является молотая известь. В качестве кремнеземистых компонентов вяжущего и мелких заполнителей используют молотые пески, вулканический туф, пемзу, золу-унос, трепел, диатомит, трас, шлаки.

При изготовлении ячеистых силикатных изделий пластичную известково-песчаную массу смешивают с устойчивой пеной, прчго- товленной из препарата ГК, мыльного корня и др., или с газооб- разователями - алюминиевой пудрой, а затем смесь заливают в формы и подвергают автоклавной обработке.
Объемная масса пеносиликатных изделий и газосиликатных изделий 300-1200 кг/м3, прочность при сжатии 1-20 МПа.

По назначению ячеистые силикатные изделия делятся на теплоизоляционные объемной массой до 500 кг/м3 и конструктивно-теплоизоляционные объемной массой более 500 кг/м3.

Теплоизоляционные ячеистые силикаты находят применение в качестве утеплителей, а из конструктивно-теплоизоляционных силикатов изготовляют наружные стеновые блоки и панели, а также комплексные плиты покрытий здания.

Изделия из силикатного бетона на пористых заполнителях. В качестве вяжущего силикатного бетона на пористых заполнителях используют тонкомолотые известково-кремнеземистые смеси, а крупными заполнителями служат керамзит, пемза, поризованные шлаки и другие пористые легкие природные и искусственные материалы в виде гравия и щебня. После автоклавной обработки такие бетоны приобретают прочность при сжатии от 3,5 до 20 МПа при объемной массе от 500 до 1800 кг/м3 и из них в основном изготовляют блоки и панели наружных стен жилых и общественных зданий.



- Силикатные материалы и изделия