Главная · Освещение · Сколько во Вселенной черных дыр? Черные дыры во вселенной

Сколько во Вселенной черных дыр? Черные дыры во вселенной

Дата публикации: 27.09.2012

Большинство людей смутно или неправильно представляют себе, что такое чёрные дыры. Между тем, это настолько глобальные и мощные объекты Вселенной, по сравнению с которыми наша Планета и вся наша жизнь - ничто.

Сущность

Это космический объект, обладающий настолько огромной гравитацией, что поглощает всё, что попадёт в его пределы. По сути, чёрная дыра - это объект, который не выпускает даже свет и искривляет пространство-время. Даже время возле чёрных дыр течёт медленнее.

На самом деле, существование чёрных дыр - это только теория (и немного практики). У учёных есть предположения и практические наработки, но плотно изучить чёрные дыры пока не удалось. А потому чёрными дырами называют условно все объекты, подходящие под данное описание. Чёрные дыры мало изучены, а потому очень много вопросов остаются нерешёнными.

У любой чёрной дыры есть горизонт событий - та граница, после которой ничто уже не сможет выбраться. Более того, чем ближе объект находится к чёрной дыре, тем он медленнее движется.

Образование

Существует несколько видов и способов образования чёрных дыр:
- образование чёрных дыр в результате образования Вселенной. Такие чёрные дыры появились сразу после Большого Взрыва.
- умирающие звёзды. Когда звезда теряет свою энергию и термоядерные реакции прекращаются - звезда начинает сжиматься. В зависимости от степени сжатия, выделяют нейтронные звёзды, белые карлики и, собственно, чёрные дыры.
- получение с помощью эксперимента. Например, в коллайдере можно создать квантовую чёрную дыру.

Версии

Многие учёные склонны к мнению, что чёрные дыры всю поглощённую материю выбрасывают в другом месте. Т.е. должны существовать «белые дыры», которые действуют по иному принципу. Если в чёрную дыру можно попасть, но нельзя выбраться, то в белую дыру, наоборот, не попасть. Главный аргумент учёных - это зафиксированные в космосе резкие и мощные выплески энергии.

Сторонники теории струн вообще создали свою модель чёрной дыры, которая не уничтожает информацию. Их теория называется «Fuzzball» - она позволяет ответить на вопросы, связанные с сингулярностью и исчезновением информации.

Что такое сингулярность и исчезновение информации? Сингулярность - это такая точка в пространстве, характеризующаяся бесконечным давлением и плотностью. Многих смущает факт сингулярности, ведь физики не могут работать с бесконечными числами. Многие уверены, что сингулярность в чёрной дыре есть, но её свойства описываются весьма поверхностно.

Если говорить простым языком, то все проблемы и недопонимание выходит из соотношения квантовой механики и гравитации. Пока учёные не могут создать теорию, объединяющую их. А потому и возникают проблемы с чёрной дырой. Ведь чёрная дыра вроде как уничтожает информацию, но при этом нарушаются основы квантовой механики. Хотя совсем недавно С.Хокинг, вроде бы, решил данный вопрос, заявив что информация в чёрных дырах всё-таки не уничтожается.

Стереотипы

Во-первых, чёрные дыры не могут существовать бесконечно долго. А всё благодаря испарению Хокинга. А потому не нужно думать, что чёрные дыры рано или поздно поглотят Вселенную.

Во-вторых, наше Солнце не станет чёрной дырой. Так как массы нашей звезды будет недостаточно. Наше солнце скорее превратится в белого карлика (и то не факт).

В-третьих, Большой Адронный Коллайдер не уничтожит нашу Землю, создав чёрную дыру. Даже если они специально создадут чёрную дыру и «выпустят» её, то из-за её малых размеров, она будет поглощать нашу планету очень и очень долго.

В-четвёртых, не нужно думать, что чёрная дыра - это «дыра» в космосе. Чёрная дыра - это сферический объект. Отсюда большинство мнений, что чёрные дыры ведут в параллельную Вселенную. Однако этот факт пока ещё не удалось доказать.

В-пятых, чёрная дыра не имеет цвета. Её обнаруживают либо по рентгеновскому излучению, либо на фоне других галактик и звёзд (эффект линзы).

Из-за того, что люди часто путают чёрные дыры с червоточинами (которые на самом деле существуют), то среди обычных людей данные понятия не различаются. Червоточина и вправду позволяет перемещаться в пространстве и времени, но пока только в теории.

Сложные вещи простым языком

Сложно описывать такой феномен как чёрная дыра простым языком. Если вы считаете себя технарём, разбирающимся в точных науках, то советую почитать труды учёных непосредственно. Если же вы хотите узнать об этом феномене больше, то почитайте труды Стивена Хокинга. Он многое сделал для науки, и особенно в сфере чёрных дыр. Именно в честь него названо испарение чёрных дыр. Он является сторонником педагогического подхода, а потому все его труды будут понятны даже обычному человек.

Книги:
- «Чёрные дыры и молодые Вселенные» 1993 года.
- «Мир в ореховой скорлупке 2001» года.
- «Кратчайшая история Вселенной 2005» года.

Особенно хочу порекомендовать его научно-популярные фильмы, которые расскажут вам понятным языком не только о чёрных дырах, но и о Вселенной вообще:
- «Вселенная Стивена Хокинга» - сериал из 6 эпизодов.
- «Вглубь Вселенной со Стивеном Хокингом» - сериал из 3 эпизодов.
Все эти фильмы переведены на русский язык, их часто показываются на каналах Discovery.

Спасибо за внимание!


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Черные дыры, темная материя, темное вещество… Это, несомненно, самые странные и загадочные объекты в космосе. Их причудливые свойства могут бросить вызов законам физики Вселенной и даже природе существующей действительности. Чтобы понять, что же такое черные дыры, ученые предлагают “сменить ориентиры”, научиться думать нестандартно и применить немного фантазии. Черные дыры образуются из ядер супер массивных звёзд, которые можно охарактеризовать как область пространства, где огромная масса сосредоточенна в пустоте, и ничего, даже свет не может там избежать гравитационного притяжения. Это та область, где вторая космическая скорость превышает скорость света: И чем более массивен объект движения, тем быстрее он должен двигаться для того, чтобы избавиться от силы своей тяжести. Это известно как вторая космическая скорость.

Энциклопедия Кольера называет черными дырами область в пространстве, возникшую в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют “горизонтом событий”.

История открытия

Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Новые открытия и изучение может принципиально изменить наши представления о пространстве и времени, проливая свет на миллиарды космических тайн.

Образование черных дыр

Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет “битву с гравитацией”: ее гравитационный коллапс будет остановлен давлением “вырожденного” вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой.

Черная дыра – дырка от бублика?

То, что не излучает свет, заметить непросто. Одним из способов поиска черной дыры является поиск областей в открытом космосе, которые обладают большой массой и находятся в темном пространстве. При поиске подобных типов объектов астрономы обнаружили их в двух основных областях: в центрах галактик и в двойных звездных системах нашей Галактики. Всего же, как предполагают учёные, существует десятки миллионов таких объектов.

В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с

Черные дыры – это одни из самых могущественных и загадочных объектов во Вселенной. Они формируются после разрушения звезды.

Nasa составили ряд поразительных снимков предполагаемых черных дыр в просторах космоса.

Перед вами фото ближайшей галактики Центавр А, сделанный Chandra X-Ray Observatory. Здесь показано влияние сверхмассивной черной дыры в пределах галактики.

Недавно Nasa было объявлено, что в соседней галактике из взорвавшейся звезды зарождается черная дыра. По сообщению Discovery News эта дыра располагается в галактике M-100, находящейся на расстоянии в 50 миллионов лет от Земли.

Вот еще один очень интересный фотоснимок от Chandra Observatory, показывающий галактику M82. Nasa полагает, что изображенное может быть отправными точками для двух сверхмассивных черных дыр. Исследователи предполагают, что образование черных дыр начнется, когда звезды исчерпают свои ресурсы и сгорят. Они будут раздавлены собственным гравитационным весом.

Ученые связывают существование черных дыр с теорией относительности Эйнштейна. Специалисты используют Эйнштейновское понимание гравитации для определения громадной силы притяжения черной дыры. На представленной фотографии информация от Chandra X-Ray Observatory совпадает со снимками, полученными с космического телескопа Hubble. Nasa считает, что эти две черные дыры движутся по спирали навстречу друг другу на протяжении 30 лет, а со временем они могут стать одной большой черной дырой.

Это мощнейшая черная дыра в космической галактике M87. Субатомные частицы, движущиеся практически со скоростью света, указывают на то, что в центре этой галактики находится сверхмассивная черная дыра. Считают, что она «поглотила» материю, равную 2-м миллионам наших солнц.

Nasa полагает, что на этом снимке засвидетельствовано то, как две сверхмассивные черные дыры, столкнувшись между собой, формируют систему. Или же это так называемый «эффект рогатки», в результате чего система формируется из 3-х черных дыр. Когда звезды суперновые, они обладают способностью разрушаться и опять возникать, в результате чего формируются черные дыры.

Эта художественная визуализация показывает черную дыру, вытягивающую газ от соседней звезды. Черная дыра имеет такой цвет, так как ее гравитационное поле настолько плотное, что оно поглощает свет. Черные дыры невидимые, поэтому ученые только предполагают их наличие. Их величина может быть равной размеру всего 1 атома или же миллиарда солнц.

На этой художественной визуализации показан квазар, который является сверхмассивной черной дырой, окруженной вращающимися частицами. Этот квазар расположен в центре галактики. Квазары находятся на ранней стадии зарождения черной дыры, тем не менее, они могут существовать миллиарды лет. Все-таки считается, что они были сформированы в древние эпохи Вселенной. Предполагают, что все «новые» квазары просто были скрыты от нашего взора.

Телескопы Spitzer и Hubble зафиксировали ложные цветные струи частиц, выстреливающих из гигантской мощной черной дыры. Полагают, что эти струи простираются сквозь 100 000 световых лет пространства, такого же большого, как Млечный Путь нашей галактики. Разные цвета появляются от различных световых волн. В нашей галактике есть мощная черная дыра Sagittarius A. Nasa считает, что ее масса равна 4 миллиона наших солнц.

На этом изображении представлен микроквазар, считающийся уменьшенной черной дырой с такой же массой, как и у звезды. Если бы вы попали в черную дыру, вы бы пересекли временной горизонт на ее границе. Даже если вас не раздавит сила тяжести, обратно из черной дыры вам уже не вернуться. Вас невозможно будет увидеть в темном пространстве. Каждый путешественник в черную дыру будет разорван в результате воздействия силы гравитации.

Спасибо что рассказали о нас друзьям!

Черные дыры - это одно из самых странных явлений во Вселенной. Во всяком случае, на данном этапе развития человечества. Это объект с бесконечной массой и плотностью, а значит и притяжением, за пределы которого не может вырваться даже свет - поэтому дыра черная. Сверхмассивная черная дыра может втянуть в себя целую галактику и не подавиться, а за пределами горизонта событий привычная нам физика начинает визжать и скручиваться в узел. С другой стороны, черные дыры могут стать потенциальными переходными «норами» из одного узла пространства в другой. Вопрос в том, как близко мы сможем приблизиться к черной дыре, и не будет ли это чревато последствиями?

Сверхмассивная черная дыра Стрелец A*, находящаяся в центре нашей галактики, не только всасывает находящиеся поблизости объекты, но и выбрасывает мощное радиоизлучение. Ученые давно пытались разглядеть эти лучи, но им мешал рассеянный свет, окружающий дыру. Наконец, они смогли пробиться сквозь световой шум при помощи 13 телескопов, которые объединились в единую мощную систему. Впоследствии ими были открыты интересные сведения о ранее таинственных лучах.

Несколько дней назад, 14 марта, этот мир покинул один из самых выдающихся физиков современности,

Черные дыры во Вселенной

В научно-популярной литературе, статьях о Вселенной часто можно встретить термин «черная дыра». У читателя, впервые прочитавшего это словосочетание, сразу возникает образ, скажем, отверстия в стене, отгораживающей темную комнату, иначе, обыкновенная дырка. Упоминание о дырах во Вселенной, первоначально также ассоциируется с неким отверстием в небесах. Последнее суждение отчасти верно, но физическая сущность черной дыры гораздо сложнее, чем может показаться на первый взгляд. Так что же такое черная дыра? В современной науке черной дырой принято называть область пространства-времени, в которой гравитационное поле (тяготение) столь сильно, что ни один объект (даже излучение) не может вырваться из нее. Название же «черная дыра» ввел в обиход в 1968 году американский физик Джон Уилер (John A. Wheeler) в своей статье об этих удивительных небесных объектах. Новый термин сразу стал популярен, заменив собой использовавшиеся до того названия «коллапсар» и «застывшая звезда». Значит, эти небесные объекты попросту подобие звезды (черные шары?), но с очень сильным полем тяготения? Но это будет слишком простым (и не совсем верным) описанием, пожалуй, самых таинственных объектов во Вселенной. Чтобы глубже понять, что же это такое, вернемся ненадолго во времена великого физика Исаака Ньютона, открывшего закон всемирного тяготения. Легенда о яблоке, упавшем на голову Ньютона, может носить спорный характер, но, как бы там ни было, гениальная догадка ученого позволила вывести закон об универсальной силе, действию которой подвержено абсолютно все! Поле тяготения действует не только на объемные тела, которые притягиваются друг к другу, но на микрочастицы и даже на свет. Это очень важный момент, самым кардинальным образом связанный с изучением свойств черных дыр. Первым, кто допустил существование невидимых звезд, был ученый 18-19 веков Пьер Симон Лаплас (1749 – 1827), знаменитый тем, что создал теорию образования планет Солнечной системы из разряженной материи (облака). О невидимых звездах Лаплас впервые написал в 1795 году. Руководствуясь законом всемирного тяготения, он пришел к выводу, что звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми.



Посмотрите также изображения черных дыр (период - февраль2004*февраль2005) с сервера наших коллег Вселенная сегодня

В наше время доказать это может любой школьник, знающий основы физики. Действительно, чем больше космическое тело, тем большую скорость нужно набрать, чтобы навсегда покинуть его. Эта скорость называется второй космической, и для Земли равна 11 км/сек. Но вторая космическая скорость тем больше, чем больше масса и чем меньше радиус небесного тела, т.к. с увеличением массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает. На Солнце 2-я космическая скорость равна 620 км/сек, но на его поверхности. Если же представить, что Солнце сжали до радиуса 10 километров, оставив при этом массу прежней, то 2-я космическая скорость увеличится до половины скорости света или 150 тысяч километров в секунду! Значит, если радиус Солнца уменьшать еще дальше (оставляя массу неизменной), то наступит такой момент, когда вторая космическая скорость достигнет световой или 300 000 км/сек! Лаплас, конечно, не брал в расчет сжатие небесных тел, что играет самую важную роль в образовании черных дыр, но он позволил понять главное: небесное тело, на поверхности которого вторая космическая скорость превышает скорость света, становится невидимой для внешнего наблюдателя! Иначе, свет пытается вырваться в пространство, но гравитация не позволяет ему этого сделать, и со стороны мы можем видеть лишь черное пятно в космосе, проще говоря, некую дыру! Подобные выводы были сделаны современником Лапласа английским геологом Дж. Мичеллом в 1783 году, но его труды менее известны.

Итак, мы убедились, что могут существовать невидимые небесные тела, которые в реальности существуют, но не могут быть наблюдаемы с Земли в виду отсутствия излучения от них. Все это казалось убедительным до того, как научный мир не познакомился в начале 20 века с теорией еще одного великого физика – Альберта Эйнштейна. Но убедительность Лапласа и Митчела все же была шаткой по той простой причине, что в их времена еще не знали, что скорости выше скорости света в природе просто не существует. Общая теория относительности позволила сделать большой шаг к определению черной дыры в современном ее понимании. Чтобы понять суть различия между тяготением по Ньютону и тяготением по Эйнштейну, вернемся к опыту со сжатием Солнца. Закон Ньютона гласит, что при сжатии вдвое гравитация возрастает вчетверо, но Эйнштейну удалось блестяще доказать, что гравитация будет расти быстрее, и чем дальше мы сжимаем тело, тем быстрее будет расти гравитация. Если следовать ньютоновскому тяготению, то гравитация станет бесконечно большой, если радиус станет равным 0. Эйнштейн же нашел, что тяготение становится бесконечным при так называемом гравитационном радиусе небесного тела. Сфера описываемся таким радиусом, называется также сферой Шварцшильда. Иначе, тело не сожмется в точку, оно будет иметь определенные размеры, но гравитацию, стремящуюся к бесконечности. Гравитационный радиус напрямую зависит от массы небесного тела. Например, гравитационный радиус Земли равен 10мм (при настоящем – 6400км), а для Солнца 3000м (700000 км). Итак, теория гласит о том, что любое небесное тело (звезда, планета) сжавшееся до гравитационного радиуса, перестает быть источником излучения, т.к. свет или любое другое излучение не может покинуть данное тело по причине того, что 2-я космическая скорость от гравитационного радиуса и меньше будет выше скорости света. Остается один вопрос: что и каким образом может сжать звезду до гравитационного радиуса. Ответ: сама звезда! Пока звезда «живет» внутри ее происходят термоядерные реакции создающие потоки излучения к поверхности газового шара. Но вещество (водород) для реакций ограничено, и за время от нескольких десятков миллионов до миллиардов лет иссякает.

После того, как водородное топливо будет израсходовано, внутреннее давление создаваемое ранее реакциями исчезнет, и звезда начнет сжиматься под действием собственной гравитации примерно так, как мы сжимает руками большой кусок ваты. Некоторые звезды сжимаются очень быстро – катастрофически. Происходит так называемый гравитационный коллапс. Разрешив вопрос о сжатии звезд, мы подошли к самому главному – вопросу существования черных дыр. Мы выяснили, что теоретически такие объекты могут существовать, но как найти их практически? Ведь, по словам знаменитого философа Конфуция, приходится искать черную кошку в темной комнате, и неизвестно есть ли она там вообще. Поиск таинственных объектов начинался с рентгеновских источников излучения, т.е. тех, которые излучают всем известные лучи Рентгена, широко использующиеся в медицине для съемки костей и внутренних органов человека. У рентгеновских источников есть замечательное свойство: они излучают только при нагревании окружающего газа до сверх высоких температур. Но чтобы нагреть газ до такой температуры, нужно чтобы поле тяготения было очень сильным. Такими полями обладают сжавшиеся звезды (белые карлики, нейтронные звезды и…. черные дыры!). Но если белые карлики можно наблюдать непосредственно, то как вычислить черную дыру? Астрономы разрешили и эту задачу. Выяснилось, что если сжавшаяся звезда имеет массу в два раза превышающую массу Солнца, то самый вероятный кандидат в черные дыры. Измерить же массу небесного тела легче всего если он существует в паре с другим, проще говоря, в двойной системе по его орбитальному движению. Поиск подобных двойных систем, которые к тому же излучают в рентгене увенчался успехом. Астрономы нашли такую систему в созвездии Лебедя, выяснив что, по крайней мере, один из компонентов обладает массой, превышающей критическую, т.е. более двух солнечных масс. Созвездие Лебедя лучше всего наблюдать летом и осенью, когда оно видно прямо над головой. Объект был назван Лебедь Х-1, и является первым объектом – кандидатом в черные дыры. Он расположен на расстоянии 6000 световых лет от Земли и состоит из двух тел: нормальной звезды-гиганта массой около 20 солнц и невидимый объект массой 10 солнц, излучающий в рентгеновском диапазоне. Но позвольте, скажете вы, как же может излучать черная дыра, если мы только что говорили, что ничто не может покинуть ее! Да, это верно, но дело в том, что излучает не сама черная дыра, а лишь вещество, падающее на черную дыру. Именно по излучению падающего вещества мы можем оценивать присутствие черной дыры.

Обладая мощным тяготением, черная дыра забирает у своего компаньона часть вещества, как бы высасывает материю, которая по спирали устремляется к черной дыре. Чем ближе вытягиваемое вещество к черной дыре, тем сильнее оно разогревается и, наконец, начинает излучать в рентгеновском диапазоне, что и фиксируют земные приемники излучения. При достижении окрестностей гравитационного радиуса (откуда еще может вырваться излучение) газ разогревается до 10 миллионов градусов, а рентгеновская светимость этого газа в тысячи раз превосходит светимость Солнца во всех диапазонах! Вспышки излучения видны не менее, чем в 200 километрах от центра черной дыры, а ее действительные размеры составляют около 30 километров. Итак, черные дыры существуют, и в действительности представляют из себя чрезвычайно сжатую область пространства-времени (для простоты – сверхплотный шар), которую не способно покинуть никакое излучение. Следует отметить, что благодаря необычности черных дыр средства массовой информации спекулируют на их свойстве поглощать окружающее вещество. Пройдя около Земли, черная дыра вполне может своим тяготением изменить форму Земли и начать затягивать ее вещество внутрь себя. Но подобное событие крайне маловероятно, тем более, как было сказано, ближайшие из них находятся на расстоянии в несколько тысяч световых лет. Поэтому даже если допустить, что черная дыра вдруг направится к Земле, то достичь она сможет ее только через несколько тысяч лет, и это при том, что двигаться она будет со скоростью света. При этом должно соблюдаться условие точной направленности к Земле, что на таком расстоянии теряет всякий смысл. Поэтому с полной уверенностью можно сказать, что гибель от черной дыры человечеству не грозит…. Ведя рассказ о черных дырах, мы всегда говорили о внешнем наблюдателе, т.е. пытались обнаружить черную дыру извне.

А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик – звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый - черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй - сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр - одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения - приблизительно 2000–20 000 электрон-вольт (для сравнения, энергия оптического излучения - около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000–300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» - первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это - серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

ДОПОЛНЕНИЕ

Начат учет черных дыр

Небо в гамма-лучах (точками показаны источники гамма-излучения). Изображение с сайта http://www.esa.int/

Самые большие из черных дыр - супермассивные, которые в миллионы и миллиарды раз превышают массу Солнца, а каждая из них находится в центре большинства галактик. Эти гравитационные монстры обладают огромным «аппетитом». Все больше увеличивая свою массу, они уже поглотили окружающее их вещество на «сумму» в миллионы Солнц, но еще не насытились, продолжая свое формирование дальше. В постоянное меню черной дыры входят: газ, пыль, планеты и звезды, но иногда приверженцы коллапса позволяют себе полакомиться и «деликатесами». На «десерт» черные дыры предпочитают компактные массивные объекты, например, черные дыры звездной массы, нейтронные звезды и белые карлики, ненароком попавшие в поле тяготения сверхмассивного объекта. Именно эти объекты издают самые «громкие крики» во Вселенную в рентгеновском и гамма диапазоне, когда черная дыра «лакомится» ими. Казалось бы, достаточно вывести на орбиту космический телескоп с детекторами гамма-лучей и начать успешные поиски гамма-всплесков от черных дыр, переписав таким образом все подобные объекты. Для этих целей в конце 2002 года на орбиту был выведен спутник «Интеграл» (Integral) космического агентства ESA, способный просматривать небо в гамма-диапазоне. Но и здесь Вселенная заставляет ученых пробираться сквозь тернии.

Поскольку все небо заполнено фоновым гамма-излучением, это мешает находить слабые гамма-всплески от очень далеких источников, занижая, таким образом, действительное количество черных дыр, что сказывается на правильности космологических теорий. Чтобы обойти это препятствие, международная группа, включающая российских ученых Евгения Чуразова и Рашида Сюняева из Института космических исследований, предложила откалибровать приборы «Интеграла» с учетом уровня фонового гамма-излучения. Для этого они решили направить приемники излучения «Интеграла» в сторону Земли, которая «своим телом» закрыла бы общий фон неба. Данное мероприятие было весьма рискованным по причине яркости Земли для устройств «Интрегала», работающих в оптическом диапазоне. Оптика космический обсерватории могла «ослепнуть», т.к. настроена на далекий космос, который на несколько порядков слабее, чем близкая планета. Но ученые провели эксперимент без «потерь», и риск был оправдан. Используя естественный щит от излучений, астрономы замерили уровень приходящего излучения и сравнили полученные записи наблюдений с более ранними. Это позволило найти «нулевую» точку излучений, от которой теперь будет вестись отсчет при анализе новых полученных данных. Таким образом, исключая общий гамма-фон, исследователи смогут более точно выявлять местонахождение черных дыр, уточняя их количество и распределение в пространстве. До запуска «Интеграла» в гамма-диапазоне удалось пронаблюдать всего несколько десятков объектов. К настоящему времени, при помощи этого космического телескопа удалось найти 300 отдельных источников в нашей Галактике и около 100 самых «ярких» черных дыр в других галактиках. Но это только вершина айсберга. Астрономы уверены, что существуют десятки миллионов черных дыр, излучение от которых сливается с фоновым. Все их должен будет обнаружить «Интерграл», что позволит навести идеальный порядок в космологических теориях.

Интересные факты из жизни черных дыр

Поглощение звезды черной дырой в представлении художника. Изображение: NASA/JPL

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.

Мультимедийный видеоролик по теме . Черные дыры, джеты и квазары, movie file (mov, 8,3Mb, 71 сек) Черные дыры так плотны и тяжелы, что ничто - даже свет, не может уйти от нее. Эти объекты очень загадочны. Черные дыры могут поглощать окружающий газ и звезды. Они находятся в центрах галактик и квазаров и могут создавать мощные джеты высокой энергии из закрученных в спираль дисков, которые их окружают. Это видео показывает некоторые наблюдения черных дыр, джетов и квазаров. Схематическое изображение черной дыры (35,2Kb, фото)