Главная · Освещение · Температурная погрешность для датчиков давления. Датчик давления. Правила выбора датчиков давления. Параметры окружающей среды

Температурная погрешность для датчиков давления. Датчик давления. Правила выбора датчиков давления. Параметры окружающей среды

Температурная погрешность датчика

Эта погрешность в паспорте датчика не указана, так как у самого датчика она отсутствует. Она может быть исключена изменением схемы включения датчика (заменой питающего датчик стабилизатора напряжения на стабилизатор тока и переходом с трехпроводной линии на четырехпроводную). Но если этого не сделано, то возникающая погрешность, хотя бы приближенно должна быть учтена при расчете результирующей погрешности канала.

Изменения показаний вследствие отклонения условий эксплуатации от нормальных, т.е. дополнительные погрешности, нормируются указанием коэффициентов влияния изменения отдельных влияющих величин на изменение показаний в виде. Хотя фактически эти функции влияния влияющих факторов, как правило, нелинейны, для простоты вычислений их приближенно считают линейными и возникающие дополнительные погрешности определяют как

где - отклонение от нормальных условий.

Максимальное значение температурной погрешности при = 3К:

Для перехода от вычисленного максимального значения этой погрешности, возникающего при предельных отклонениях температуры до 5 или 35 єC, к СКО необходимо знать закон распределения температуры в цехе. Какие-либо данные об этом у нас отсутствуют. Примем совершенно эвристическое предположение, что температура распределена нормально и 8 дней в году достигает критических значений, а остальные 365 - 8 = 357 дней, т.е. 357/365 = 0,98 случаев, не выходит за пределы. По таблице нормального распределения находим, что вероятности Р=0,98 соответствуют границы в ± 2,3у. Отсюда:

Параметры нормального распределения k = 2.066, ч = 0.577, е = 3

Температурная погрешность является мультипликативной, т.е. получаемой путем умножения (погрешность чувствительности). Ширина полосы погрешности возрастает пропорционально росту входной величины х, а при х=0 также равна 0.

Погрешность датчика от колебаний напряжения питания

Эта погрешность является чисто мультипликативной и распределена по тому же закону, что и отклонения напряжения сети от своего номинального значения 220В. Распределение напряжения сети близко к треугольному с принятыми выше пределами ± 15 %. Стабилизатор снимает размах колебаний напряжения в К=25 раз, т.е. на выходе стабилизатора распределение также треугольное, но с размахом 15%/25=0.6%. Максимальное значение этой погрешности: гUД=15%. Среднеквадратическое отклонение для треугольного распределения.

1. Особенности применения датчиков давления

Области применения датчиков давления (преобразователей давления) довольно широки, но, как правило, в каждом конкретном применении есть своя специфика, которая должна быть учтена в конструкции датчиков.

В целом все применения преобразователей давления можно разделить на две основные группы:

  • Измерение собственно давления (или разряжения) какой-либо среды в трубопроводе или технологической установке;
  • Измерение уровня жидкостей в емкостях (танках) посредством измерения давления столба жидкости (гидростатический датчик уровня).

При подборе датчиков давления обоих групп, необходимо уточнять следующие особенности применения:

  • Требования по гигиене: пищевая и фармацевтическая промышленность предъявляют высокие требования к датчикам давления по санитарности как в месте контакта с продуктом, так и снаружи (как правило, исполнение полностью из нержавеющей стали). В ассортименте ООО «КИП-Сервис» представлены датчики давления KLAY-INSTRUMENTS , которые специально разработаны для применения в молочной, пивоваренной и пищевой промышленности .
  • Наличие сертификатов: зачастую, для различных применений, помимо обычного сертификата соответствия ГОСТ Р (или декларации соответствия), требуются дополнительные сертификаты. Например, для систем учета необходим сертификат об утверждении типа средств измерения; для применений датчиков давления в пищевой промышленности требуется заключение СЭС, для применений на опасных производствах требуется разрешение Ростехнадзора и т. д.
  • Требования по взрывозащите: на взрывоопасных производствах (например, нефтегазовая, химическая, спиртовая промышленности) используются датчики давления во взрывобезопасном исполнении. Наибольшее распространение для датчиков получили 2 вида взрывозащиты - искробезопасные цепи Ex ia и взрывонепронициаемая оболочка Ex d, выбор которого обуславливается спецификой применения.
  • Тип измеряемой среды: если измеряемая среда является вязкой, агрессивной, слаботекучей или обладает какими-либо другими специфичными свойствами (например, наличие частиц грязи), эти особенности также необходимо учесть. Возможно для данного применения необходимо использование мембранных датчиков давления (оборудованных разделительной мембраной), которые обеспечивают защиту чувствительного элемента датчика от воздействия агрессивных сред.
  • Наличие внешних воздействий: наличие вибрации, электромагнитных полей или других механических или электрических воздействий.

При подборе датчиков давления для применений I-й группы при измерении давления более 1 бар, также нужно учитывать:

  • Наличие гидроударов в системе: если в системе возможно наличие гидроударов, датчик давления необходимо подобрать с достаточным запасом по перегрузке (пиковому давлению) или принять меры для компенсации гидроударов (глушители, специальные датчики и т. п.) на объекте;
  • Дополнительное оборудование: как правило, при измерении давления датчики монтируются при помощи 3-ходовых кранов, кроме того, при измерении давления пара датчики давления рекомендуется подключать через специальное устройство - трубку Перкинса , которая обеспечивает уменьшение температуры среды, действующей на датчик давления.

При подборе датчиков давления для применения в качестве гидростатических датчиков уровня, необходимо учитывать тот факт, что значение давления при одной и той же высоте столба жидкости может меняться с изменением плотности измеряемой среды.

2. Диапазон измерений

Диапазон измерений датчика давления - диапазон значений давления, при подаче которого датчик будет осуществлять измерения и линейное преобразование измеренного значения в унифицированный выходной сигнал.

Диапазон измерений определяется нижним и верхним пределами измерений, которые соответствуют минимальному и максимальному значениям измеряемого давления. Примеры диапазонов измерений: 0…1 бар, 0…2,5 МПа, –100…100 КПа.

При подборе датчиков давления необходимо учитывать, что датчики бывают как с фиксированным диапазоном измерений (например, преобразователи давления ПД100), так и с настраиваемым диапазоном измерений (например, датчики давления KLAY-INSTRUMENTS). У датчиков давления с фиксированным диапазоном измерений значения выходного сигнала жестко привязаны к пределам измерений. Например, датчик давления PTE5000 при давлении 0 МПа будет выдавать 4 мА на выходе, а при давлении 0,6 МПа будет выдавать 20 мА, так как он жестко настроен на диапазон 0…0,6 МПа. В свою очередь, датчик давления KLAY 8000-E-S имеет настраиваемый диапазон 0-1…4 бар, это значит, что при давлении 0 бар датчик будет аналогично выдавать 4 мА, а 20 мА датчик выдаст при любом значении из диапазона 1…4 бар, которое настраивается пользователем при помощи специального потенциометра «SPAN».

3. Температура процесса

Температура измеряемой среды - очень важный параметр при выборе датчиков давления. При подборе датчика, необходимо чтобы температура процесса не выходила за пределы допустимого рабочего температурного диапазона.

В пищевой промышленности происходят кратковременные (от 20 до 40 минут) процессы CIP и SIP-мойки (санитарной обработки), при которых температура среды может достигать 145 °C. Для таких применений следует использовать датчики, устойчивые к такому временному воздействию высоких температур, например датчики давления KLAY-INSTRUMENTS в исполнении SAN - 8000-SAN и 2000-SAN .

Показания всех датчиков давления, использующих тензорезистивный принцип преобразования, сильно зависят от температуры измеряемой среды, так как с изменением температуры изменяется и сопротивление резисторов, составляющих измерительную схему сенсора давления.

Для датчиков давления вводится понятие «температурной ошибки», которая представляет собой дополнительную погрешность измерений на каждые 10 °C изменения температуры измеряемой среды относительно базовой температуры (как правило 20 °C). Таким образом, температуру процесса необходимо знать для определения полной погрешности измерений датчика давления.

Для снижения влияния температуры в измерителях давления используют различные схемы температурной компенсации.

По использованию термокомпенсации все датчики давления можно разделить на три группы:

  • Бюджетные датчики давления, не использующие схемы термокомпенсации;
  • Датчики среднего ценового диапазона, использующие пассивные схемы термокомпенсации;
  • Датчики давления высокого уровня, для систем требовательных к точности измерения, которые используют схемы активной температурной компенсации.

Для измерения давления сред постоянной температурой более 100 °C используются специальные высокотемпературные датчики давления, позволяющие измерять давление сред с температурой вплоть до 250 °C. Как правило такие датчики оборудованы радиатором охлаждения и/или имеют специальный конструктив, позволяющий вынести часть датчика с электроникой в зону с допустимой рабочей температурой.

4. Тип соединения датчика с процессом

Тип соединения датчика с процессом - тип механического включения датчика давления в процесс, для осуществления измерений.

Наиболее популярными соединениями для преобразователей давления общепромышленного исполнения являются резьбовые соединения G1/2″ DIN 16288 и M20x1,5 .

При подборе датчика тип соединения необходимо уточнять для обеспечения удобства монтажа в существующую систему без осуществления дополнительных работ (сварка, нарезка другого типа резьбы и т. п.)

Наиболее разнообразными по типам используемых соединений с процессом являются пищевая, целлюлозно-бумажная и химическая промышленности. К примеру, датчики давления KLAY-INSTRUMENTS , которые специально разработаны для этих отраслей, могут быть изготовлены с более чем 50 различными вариантами включения в процесс.

Выбор типа соединения наиболее актуален для пищевой промышленности, т. к. наряду с удобством, соединение в первую очередь должно обеспечивать «санитарность» и отсутствие «мертвых зон» для процесса санитарной обработки. Для датчиков давления, предназначенных для работы в контакте с пищевыми продуктами, существуют специальные сертификаты, подтверждающие их «санитарность» - Европейский сертификат EHEDG (European Hygienic Equipment Design Group) и Американский сертификат 3A Sanitary Standards. В России для датчиков, контактирующих с пищевыми средами, необходимо наличие Санитарно- эпидемиологического заключения. В ассортименте ООО «КИП-Сервис» требованиям данных сертификатов удовлетворяют датчики серий 8000-SAN и 2000-SAN компании KLAY-INSTRUMENTS .

5. Параметры окружающей среды

При подборе преобразователей давления следует учитывать следующие параметры окружающей среды:

  • Температура окружающей среды;
  • Влажность окружающей среды;
  • Наличие агрессивных сред;

Все параметры окружающей среды должны находиться в допустимых пределах для выбираемого датчика давления.

В случае наличия в окружающей среде агрессивных веществ, многие производители датчиков давления (в том числе KLAY-INSTRUMENTS BV) предлагают специальные исполнения, устойчивые к химическим воздействиям.

При работе в условиях повышенной влажности при частых перепадах температуры датчики давления многих производителей сталкиваются с проблемой коррозии сенсора давления. Основная причина коррозии сенсора датчиков давления - образование конденсата.

Датчикам избыточного давления, для измерения относительного давления, необходима связь сенсора с атмосферой. У недорогих датчиков сенсор связан с атмосферой за счет не герметичности корпуса (коннектор IP65); влажный воздух, при такой конструкции, после попадания внутрь датчика конденсируется при понижении температуры, тем самым постепенно вызывая коррозию измерительного элемента.

Для применения в процессах, где обычные датчики давления выходят из строя из-за коррозии сенсора, идеально подходят промышленные датчики давления KLAY-INSTRUMENTS . У преобразователей давления KLAY связь сенсора с атмосферой осуществляется через специальную «дышащую» мембрану из материала Gore-Tex , которая препятствует проникновению влаги внутрь датчика.

Кроме того, контакты сенсора всех датчиков KLAY по умолчанию залиты специальным синтетическим компаундом для дополнительной защиты датчика от коррозии.

6. Тип выходного сигнала датчика давления

Самым распространенным аналоговым выходным сигналом для датчиков давления является унифицированный токовый сигнал 4…20 мА.

Практически всегда 4 мА соответствуют нижнему значению диапазона измерений, а 20 мА - верхнему, но иногда встречается реверсивный сигнал (как правило на вакуумных диапазонах). Также в промышленности встречаются датчики давления с другими типами аналогового выходного сигнала, например: 0…1 В, 0…10 В, 0…20 мА, 0…5 мА, 0…5 В.

В номенклатуре датчиков давления, складируемых ООО «КИП-Сервис» , присутствуют только датчики с выходным сигналом 4…20 мА. Для получения другого типа выходного сигнала из 4…20 мА можно использовать универсальный преобразователь сигналов Seneca Z109 REG2 , который осуществляет взаимное преобразование практически всех типов унифицированных сигналов по току и напряжению, при этом обеспечивая гальваническую развязку.

Интеллектуальные датчики давления, помимо основного сигнала 4…20 мА, могут быть изготовлены в исполнении с поддержкой протокола HART , который может использоваться для настройки или получения информации о состоянии датчика и дополнительной информации.

Помимо аналогового выходного сигнала, интеллектуальные датчики давления также бывают с цифровым выходным сигналом. Это датчики с выходом по протоколу Profibus PA , который использует в своих устройствах компания SIEMENS.

7. Требуемая точность измерений

При расчете погрешности измерений датчиков давления, необходимо учитывать, что помимо основной погрешности существует дополнительная погрешность.

Основная погрешность - значение погрешности датчика давления относительно диапазона измерений, заявленная заводом изготовителем для нормальных условий эксплуатации. Как правило, под нормальными условиями эксплуатации понимают следующие условия:

  • Температура окружающей и рабочей среды - 20 °C;
  • Давление рабочей среды - в пределах диапазона измерений датчика;
  • Нормальное атмосферное давление;
  • Отстуствие турбулентности потока или других явлений, в месте установки датчика, способных повлиять на показания.

Дополнительная погрешность - значение погрешности, вызванное отклонением условий эксплуатации от нормальных, ввиду особенностей данного конкретного применения. Одной из основных составляющих дополнительной погрешности является температурная погрешность, которая указывается в технической документации к датчикам давления и может быть рассчитана для конкретного значения температуры рабочей среды.

Также дополнительную погрешность может вызывать турбулентность потока измеряемой среды, изменение плотности среды при гидростатическом измерении уровня, динамические нагрузки на оборудование во время перемещения в пространстве (судна, транспорт и т. д.) и другие возможные факторы.

При расчете погрешности измерительной системы в целом нужно также учитывать класс точности измерительного прибора - индикатора.

В качестве примера, рассчитаем полную погрешность измерений для следующей системы:

Дано:

  • Датчик давления KLAY-Instruments 8000-SAN-F-M(25) установлен на трубопроводе с продуктом;
  • Максимальное давление продукта - 4 бар, таким образом датчик настроен на диапазон 0…4 бар;
  • Максимальная температура продукта - 60 °C;
  • Турбулентность потока и другие факторы на точность не влияют.

Решение:

  • По паспортным данным, находим, что основная погрешность датчика 8000-SAN-F-(M25) составляет 0,2 %
  • Температурная погрешность по паспорту равна 0,015 %/°C, таким образом температурная ошибка при 60 °C равна 0,015 %/°C х (60 °C – 20 °C) = 0,6 %
  • 0,2% + 0,6% + 0,25% = 1,05% - полная относительная погрешность;
  • 1,05% х 4 бар = 0,042 бар - абсолютная погрешность измерений данной системы.

Основной качественной характеристикой любого датчика КИП является погрешность измерения контролируемого параметра. Погрешность измерения прибора это величина расхождения между тем, что показал (измерил) датчик КИП и тем, что есть на самом деле. Погрешность измерения для каждого конкретного типа датчика указывается в сопроводительной документации (паспорт, инструкция по эксплуатации, методика поверки), которая поставляется вместе с данным датчиком.

По форме представления погрешности делятся на абсолютную , относительную и приведенную погрешности.

Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).

Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.


Нормирующее значение Хn зависит от типа шкалы датчика КИП:

  1. Если шкала датчика односторонняя и нижний предел измерения равен нулю (например, шкала датчика от 0 до 150 м3/ч), то Хn принимается равным верхнему пределу измерения (в нашем случае Хn = 150 м3/ч).
  2. Если шкала датчика односторонняя, но нижний предел измерения не равен нулю (например, шкала датчика от 30 до 150 м3/ч), то Хn принимается равным разности верхнего и нижнего пределов измерения (в нашем случае Хn = 150-30 = 120 м3/ч).
  3. Если шкала датчика двухсторонняя (например, от -50 до +150 ˚С), то Хn равно ширине диапазона измерения датчика (в нашем случае Хn = 50+150 = 200 ˚С).

Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

У некоторых приборов в паспортах вместо погрешности измерения указывают класс точности. К таким приборам относятся механические манометры, показывающие биметаллические термометры, термостаты, указатели расхода, стрелочные амперметры и вольтметры для щитового монтажа и т.п. Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. При этом класс точности не является непосредственной характеристикой точности измерений, выполняемых этим прибором, он лишь указывает на возможную инструментальную составляющую погрешности измерения. Класс точности прибора наноситься на его шкалу или корпус по ГОСТ 8.401-80.

При присвоении прибору класса точности он выбирается из ряда 1·10 n ; 1,5·10 n ; (1,6·10 n); 2·10 n ; 2,5·10 n ; (3·10 n); 4·10 n ; 5·10 n ; 6·10 n ; (где n =1, 0, -1, -2, и т. д.). Значения классов точности, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

Определение погрешности измерения датчиков выполняют, например, при их периодической поверке и калибровке. С помощью различных задатчиков и калибраторов с высокой точностью генерируют определенные значения той или иной физической величины и сличают показания поверяемого датчика с показаниями образцового средства измерения, на которое подается то же самое значение физической величины. Причем погрешность измерения датчика контролируется как при прямом ходе (увеличение измеряемой физической величины от минимума до максимума шкалы), так и при обратном ходе (уменьшение измеряемой величины от максимума до минимума шкалы). Это связано с тем, что из-за упругих свойств чувствительного элемента датчика (мембрана датчика давления), различной интенсивности протекания химических реакций (электрохимический сенсор), тепловой инерции и т.п. показания датчика будут различны в зависимости от того, как меняется воздействующая на датчик физическая величина: уменьшается или увеличивается.

Довольно часто в соответствии с методикой поверки отсчет показаний датчика при поверке нужно выполнять не по его дисплею или шкале, а по величине выходного сигнала, например, по величине выходного тока токового выхода 4…20 мА.

У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.
Во-первых, необходимо вычислить каким должен быть выходной ток датчика Iвых.т при давлении Рт = 125 mbar.
Iвых.т = Iш.вых.мин + ((Iш.вых.макс – Iш.вых.мин)/(Рш.макс – Рш.мин))*Рт
где Iвых.т – выходной ток датчика при заданном давлении 125 mbar, мА.
Iш.вых.мин – минимальный выходной ток датчика, мА. Для датчика с выходом 4…20 мА Iш.вых.мин = 4 мА, для датчика с выходом 0…5 или 0…20 мА Iш.вых.мин = 0.
Iш.вых.макс - максимальный выходной ток датчика, мА. Для датчика с выходом 0…20 или 4…20 мА Iш.вых.макс = 20 мА, для датчика с выходом 0…5 мА Iш.вых.макс = 5 мА.
Рш.макс – максимум шкалы датчика давления, mbar. Рш.макс = 250 mbar.
Рш.мин – минимум шкалы датчика давления, mbar. Рш.мин = 0 mbar.
Рт – поданное с калибратора на датчик давление, mbar. Рт = 125 mbar.
Подставив известные значения получим:
Iвых.т = 4 + ((20-4)/(250-0))*125 = 12 мА
То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе должно быть 12 мА. Считаем, в каких пределах может изменяться расчетное значение выходного тока, учитывая, что основная относительная погрешность измерения равна ± 5%.
ΔIвых.т =12 ± (12*5%)/100% = (12 ± 0,6) мА
То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе выходной сигнал должен быть в пределах от 11,40 до 12,60 мА. По условию задачи мы имеем выходной сигнал 12,62 мА, значит наш датчик не уложился в определенную производителем погрешность измерения и требует настройки.
Основная относительная погрешность измерения нашего датчика равна:
δ = ((12,62 – 12,00)/12,00)*100% = 5,17%

Поверка и калибровка приборов КИП должна выполнятся при нормальных условиях окружающей среды по атмосферному давлению, влажности и температуре и при номинальном напряжении питания датчика, так как более высокие или низкие температура и напряжение питания могут привезти к появлению дополнительной погрешности измерения. Условия проведения поверки указываются в методике поверки. Приборы, погрешность измерения которых не уложилась в установленные методикой поверки рамки либо заново регулируют и настраивают, после чего они повторно проходят поверку, либо, если настройка не принесла результатов, например, из-за старения или чрезмерной деформации сенсора, ремонтируются. Если ремонт невозможен то приборы бракуются и выводятся из эксплуатации.

Если все же приборы удалось отремонтировать то они подвергаются уже не периодической, а первичной поверке с выполнением всех изложенных в методике поверки пунктов для данного вида поверки. В некоторых случаях прибор специально подвергают незначительному ремонту () так как по методике поверки выполнить первичную поверку оказывается существенно легче и дешевле чем периодическую, из-за различий в наборе образцовых средств измерения, которые используются при периодической и первичной поверках.

Для закрепления и проверки полученных знаний рекомендую выполнить .

Конструирование и производство датчиков, приборов и систем

УДК 681.586"326:621.3.088.228

О НОРМИРОВАНИИ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ ТЕНЗОРЕЗИСТОРНЫХ ПОЛУПРОВОДНИКОВЫХ ДАТЧИКОВ

В. М. Стучебников

Для тензорезисторных датчиков механических величин, работающих в широком интервале температур, нормирование дополнительной температурной погрешности с помощью линейного температурного коэффициента приводит к значительному искажению резул ьтатов измерения. В стат ье показано, что более правильным является нормирование зоны температурной по грешности в интервале температур, в котором произво дится термокомпенсация датчиков. Это особенно важно для полупроводниковых тензорезисторных датчиков с нелинейной температурной зависимостью выходного сигнала.

Дополнительная температурная погрешность является важной характеристикой датчиков механических величин, определяющей погрешность их измерения. Поэтому она всегда указывается в числе основных параметров этих датчиков. Большинство производителей нормирует дополнительную температурную погрешность с помощью линейного температурного коэффициента, т. е. в процентах от диапазона изменения выходного сигнала датчика на один или десять градусов Цельсия (или Фаренгейта в англоязычных странах). При этом, как правило, предполагается, что знак температурной погрешности может быть любым, так что обычно она указывается как ± у %/°С (или ±у %/10 °С). Так рекомендуют нормировать температурную погрешность и нормативные документы МЭК (например, ), а вслед за ними российские стандарты (например, ).

В настоящей статье рассмотрены недостатки такого метода нормирования дополнительной температурной погрешности датчиков механических величин, особенно явно проявляющиеся в тензорезисторных полупроводниковых датчиках, которые сегодня составляют большинство используемых датчиков давления, силы, параметров движения и т.д. В конкретных примерах используются тензорезисторные датчики давления на основе гетероэпитаксиальных структур "кремний на сапфире" (КНС) , широко распространенные в России.

Совершенно очевидно, во-первых, что указанное нормирование имеет смысл только при линейной зависимости выходного сигнала датчика от температуры. Однако линейная аппроксимация температурной зависимости выходного сигнала тензорезисторного датчика с приемлемой степенью точности может быть использована лишь для датчиков с металлическими тензоре-зисторами и/или в сравнительно небольшом интервале температур. Поскольку для полупроводников характерна сильная и нелинейная зависимость параметров от температуры, то и выходной сигнал полупроводниковых тензорезисторных датчиков, как правило, сущест-

венно нелинейно зависит от температуры, что особенно заметно при работе в широком диапазоне температур.

Во-вторых, указанное нормирование фактически дезориентирует потребителя, заставляя его удваивать реальную погрешность измерений. Дело в том, что у конкретных датчиков с линейной температурной зависимостью выходного сигнала наклон этой зависимости имеет вполне определенный знак, так что сигнал может только либо убывать, либо возрастать с температурой. Выражая нормирование температурной погрешности в %/°С с указанием определенной величины и знака, потребитель может реально оценить и учесть погрешность измерения, например, давления, при определенной температуре; однако, если знак не определен, то и неопределенность измерения сильно возрастает.

Сказанное поясняется рис. 1. На рис. 1, а показан случай, когда измеряемое давление (пропорциональное выходному сигналу датчика) линейно падает с ростом температуры. В этом случае при известной температуре "изм потребитель может учесть температурную погрешность и привести измеряемое датчиком давление ризм к фактическому давлению рн, которое нормируется при "нормальной" температуре "н:

Рн = Ризм - У ("изм - "нХ (1)

где у - наклон зависимости р (") (у < 0). Конечно, при этом, как минимум, сохраняется неопределенность фактического давления, определяемая основной погрешностью датчика (полоса, ограниченная штриховыми прямыми на рис. 1, а).

Совершенно по-другому обстоит дело, когда знак температурной погрешности не определен (см. рис. 1, б). В этом случае даже при известной температуре измерения неопределенность измеряемого давления составляет Др = (рн1 - рн2) даже без учета основной погрешности датчика.

Конечно, если температура измерения неизвестна даже приблизительно, и о ней известно лишь, что она

Рис. 1. Температурная погрешность измерения давления при линейной зависимости выходного сигнала датчика от температуры в случае отрицательного (а) и неопределенного (б) знака линейного температурного коэффициента у

лежит в пределах ("макс - "мин) рабочего интервала температур, то результирующая неопределенность измерения давления составляет

"Рм = (Р2 - Р1) = IУI ("макс - "мин) (2)

вне зависимости от того, известен знак коэффициента наклона прямой р(") или нет.

Рассмотрим случай нелинейной температурной зависимости выходного сигнала тензорезисторного преобразователя (ТП). Например, для ТП давления на основе структур КНС, температурный дрейф которых компенсируется схемой с термонезависимыми резисторами, зависимость выходного сигнала от температуры близка к параболической . Аналогичную зависимость имеют кремниевые ТП с диффузионными или имплантированными тензорезисторами. Соответственно, измеряемое датчиком с таким ТП давление (пропорциональное выходному сигналу датчика) также не-

линейно зависит от температуры (рис. 2), если не принимать специальные меры для его дополнительной корректировки в электронной схеме, например, с помощью микропроцессора. В этом случае в соответствии с буквой нормативных документов , если нормировать температурную погрешность линейным коэффициентом, то необходимо указывать максимальное (по абсолютной величине) значение наклона + умакс касательной к параболе (тонкие прямые на рис. 2). В результате нормативную суммарную температурную погрешность в рабочем интервале температур "макс... "мин следует определять по выражению (2):

"Рн = (Р2 - Р1) = 1 Умакс _ ("макс - "мин). (3)

Очевидно, что эта величина намного превосходит фактическую суммарную температурную погрешность (см. рис. 2)

"Рф = (Рн - Рмин). (4)

Отсюда следует, что при нелинейной температурной зависимости выходного сигнала датчика использовать для нормирования дополнительной температурной погрешности измерения линейный температурный коэффициент у бессмысленно, поскольку в пределах рабочего интервала температур он изменяется по величине и по знаку (в том числе проходя через ноль), а по существующим правилам в руководстве по эксплуатации необходимо указывать максимальное (по абсолютной величине) значение У.

Именно по этой причине в датчиках давления МИДА-13П в качестве меры дополнительной температурной погрешности нормируется зона темпеРатуРной погРешности в рабочем интервале температур "Рф, которая и указывается в паспорте датчика. Статистические данные по величине зоны температурной погрешности датчиков МИДА-13П приведены в статье . Надо сказать, что Госстандарт вполне согласен с таким подходом и все нормативные документы датчиков МИДА признаны Госреестром РФ. Использование для нормирования дополнительной температурной по-

Рис. 2. Определение зоны температурной погрешности измерения давления для датчика с нелинейной температурной зависимостью выходного сигнала:

"Рф - фактическая зона температурной по грешности; "Рн - нормативная зона температурной по грешности при нормировании температурной по грешности линейным коэффи циен-том температурной зависимости

ЗепБОГБ & Sysfems № 9.2004

Рис. 3. Типичная температурная зависимость дополнительной температурной погрешности измерения давления датчиком МИДА-13П, термокомпенсированным в 120-тиградусном интервале температур (-40...+80 °С)

"Нормальная" температура "н = (20 ± 5) °С. При термокомпенсации в другом интервале температур такой же ширины (например, 200...320 °С) температурная зависимост ь погрешности имеет аналогичный вид (но в этом случае для приведенного примера "нормальная" температура должна быть Тн = (260 ± 5) °С)

грешности измерений зоны температурной погрешности (наряду с линейным температурным коэффициентом) допускается и некоторыми зарубежными стандартами .

Необходимо сделать еще несколько замечаний. Во-первых, в датчиках с температурной зависимостью выходного сигнала, близкой к параболической, (а именно такова она в датчиках давления МИДА) зона температурной погрешности минимальна, когда "нормальная" температура "н, при которой происходит калибровка датчика и определяется его основная погрешность, находится в середине рабочего интервала температур (в котором проводится температурная компенсация выходного сигнала). В датчиках МИДА-13П это выполняется автоматически (рабочий интервал температур от -40 до +80 °С, нормирование при 20 + 5 °С - см. рис. 3). В высокотемпературных датчиках МИДА-12П, в которых температура измеряемой среды может достигать 350 °С, ситуация несколько сложнее и более подробно будет рассмотрена ниже.

Во-вторых, если в случае линейной температурной зависимости при сокращении рабочего интервала температур суммарная температурная погрешность уменьшается линейно, то при параболической зависимости это уменьшение квадратично - например, при симметричном сокращении рабочего интервала температур вдвое (например, от -40...+80 °С до -10...+50 °С) зона температурной погрешности уменьшается вчетверо. Это позволяет создавать высокоточные датчики давления, работающие в ограниченном интервале температур, без использования сложной электроники. Так, в диапазоне 0...40 °С типичная зона температурной погрешности датчиков давления МИДА-13П с резистив-ной схемой термокомпенсации не превышает 0,2 % (см. рис. 3).

В-третьих, если "нормальная" температура, при которой определяется основная погрешность датчика (обычно это комнатная температура), находится не в центре диапазона термокомпенсации, то игнорирование нелинейности температурной зависимости погреш-

  • ДАТЧИКИ ДАВЛЕНИЯ МИДА ДЛЯ СИСТЕМ КОММЕРЧЕСКОГО УЧЕТА ЭНЕРГОНОСИТЕЛЕЙ

    СТУЧЕБНИКОВ ВЛАДИМИР МИХАЙЛОВИЧ - 2009 г.

  • Построение наблюдающего устройства в классе однопараметрических структурно-устойчивых отображений

    ДАУТБАЕВА А.О., СКАКОВА А.Ж. - 2010 г.

  • Пружинным манометрам свойственны следующие инструмен­тальные погрешности.

    1. Погрешности характеристики (шкаловые погрешности), вызываемые неполной взаимной компенса­цией нелинейности характеристик чувствительного элемента и передаточно-множительного механизма, а в датчиках - и электрического преобразователя. Этипогрешности минимизируют путем индивидуальной регулировки механизма в изготовленных образцах приборов и датчиков.

    Существуют специальные механизмы, позволяющие свести к нулю погрешности во многих точках характеристики. Примером такого механизма служит механический корректор шкаловых погрешностей, в котором ролик скользит по ку­лачку, выполненному из гибкой ленты; кривизна кулачка может плавно изменяться за счет местного изгиба ленты с помощью регулировочных винтов (рис. 6.15.). Ролик укреплен на рычаге, который при своем повороте сообщает выходной оси дополнительное угловое перемещение того или иного знака. Знак дополнительного перемещения зависит от того, попадает ли ролик на выступ или впадину кулачка.

    2. Погрешности, обусловленные влиянием вредных сил, к чис­лу которых относятся, прежде всего, силы трения в передаточно-множительном механизме и электрическом преобразователе, си­лы от неуравновешенности подвижных частей, электромагнитные или электростатические силы от взаимного притяжения или от­талкивания подвижных и неподвижных частей электрического преобразователя. Уменьшение этих погрешностей возможно сле­дующими путями:

    а) снижением вредных сил за счет улучшения качества опор, тщательной балансировки механизма и т. п. Повышение точно­сти балансировки позволяет ослабить натяги пружин, выбираю­щих люфты, что в свою очередь способствует уменьшению сил трения;

    б) увеличением эффективной площади чувствительного эле­мента;

    в) применением дифференциальных электрических преобразо­вателей, у которых в начальном положении силы притяжения взаимно скомпенсированы;

    г) применением следящих систем, разгружающих чувстви­тельный элемент от сил трения.

    3. Температурные погрешности манометров, вызываемые влиянием температуры окружающей среды на физические пара­метры материалов и геометрические размеры деталей.

    Наиболее существенно температура влияет на модуль упруго­сти чувствительного элемента.

    Линеаризованная зависимость модуля упругости от темпера­туры имеет вид

    н/м 2 ,

    где Е о - начальное значение Е (при 6 = 9о) в н/м 2 ;

    - температурный коэффициент Е;

    Характеристика чувствительного элемента дифференциально­го манометра связана с модулем упругости соотношением

    Относительная величина температурной погрешности


    Влияние температуры на геометрические размеры чувстви­тельного элемента и передаточно-множительного механизма вы­ражается зависимостью

    м,

    где - геометрический размер;

    Коэффициент линейного расширения.

    Это влияние сказывается на показаниях прибора значительно слабее благодаря тому, что температурные коэффициенты линейного расширения металлов на порядок меньше, чем темпера­турные коэффициенты модуля упругости.

    Температура влияет также на величину остаточного давления р ост внутри анероидов (чувствительных вакуумированных эле­ментов), применяемых в манометрах абсолютного давления. При изменении температуры на величину возникает погрешность

    . Наконец, при изменении температуры может изменяться выходной параметр R, L, М или С электрического пре­образователя.

    Уменьшение температурных погрешностей достигается следу­ющими способами:

    а) изготовлением чувствительных элементов из сплава типа элинвар, обладающих весьма малым температурным коэффици­ентом модуля упругости;

    б) снижением остаточного давления внутри анероидов путем более тщательного вакуумирования их;

    в) введением в конструкцию прибора специальных биметал­лических компенсаторов, которые вызывают в зависимости от температуры приращение показания прибора, равное по вели­чине и противоположное по знаку температурной погрешности прибора.

    Различают биметаллические компенсаторы 1 и 2-го рода.

    Действие компенсаторов 1-го рода (рис. 6.16, а) основано на введении последовательно с упругим чувствительным элементом кинематического звена, выполненного в виде консольно закреп­ленной биметаллической пластины, линейное перемещение сво­бодного конца которой , пропорциональное приращению тем­пературы, складывается с прогибом s упругого чувствительного элемента (или вычитается из него). Расчет величины для би­металлического компенсатора пластинчатого типа (см. рис. 6.19, а) производится по формуле (см. в гл. II):

    м,

    где - толщина биметаллической пластины в м;

    - коэффициенты линейного расширения компонент

    биметалла;

    Длина пластины в м;

    - приращение температуры °С.

    Компенсатор 1-го рода компенсирует только аддитивную тем­пературную погрешность.

    Действие компенсаторов 2-го рода (см. рис. 6.16,6) основано на введении в кривошип кинематического звена, выполненного в виде биметаллической пластины, перемещение свободного конца которой, пропорциональное приращению температуры, вызывает увеличение или уменьшение плеча кривошипа на величину , которая определяется так же, как и величина As для компенса­тора 1-го рода, по формуле (6.16). Характер влияния компенса­тора 2-го рода на приращение показаний прибора зависит от на­чального угла установки кривошипа (см. рис. 6.16, а). Если этот угол близок к нулю, т. е. если при s = 0 кривошип примерно перпендикулярен шатуну, то приращение плеча кривошипа почти не вызывает начального поворота кривошипа, а лишь из­меняет передаточное отношение механизма. Поэтому при = 0 вводимая компенсатором 2-го рода поправка носит чисто муль­типликативный характер.

    г) применением дифференциальных электрических преобразо­вателей, выдающих два переменных параметра z 1 и z 2 и вклю­ченных по схеме делителя напряжений; при работе на высокоомную нагрузку дифференциальный преобразователь не имеет тем­пературной погрешности, так как величина снимаемого напряже­ния от величины параметров z 1 и z 2 не зависит, а определяется соотношением z 1 / z 2 важно обеспечить лишь равенство темпера­турных коэффициентов параметров z 1 и z 2 ,

    д) применением электрических компенсаторов, выполненных в виде проволочного или полупроводникового термосопротивлений и включаемых во внешнюю электрическую цепь так, чтобы ском­пенсировать температурные погрешности, вносимые всеми остальными элементами датчика. Варианты таких схем рассмат­риваются в гл. VII.

    4. Погрешности от люфтов в опорах, шарнирах и направля­ющих передаточно-множительного механизма. Для устранения погрешностей от люфтов на выходной оси передаточно-множи­тельного механизма устанавливается спиральная пружина (во­лосок), которой дается начальный натяг. Величина натяга вы­бирается из тех соображений, чтобы во всем диапазоне углов поворота выходной оси момент, создаваемый пружиной вокруг своей оси, несколько превышал приведенный момент небаланса, умноженный на максимальную величину вибрационной перегруз­ки или перегрузки от линейных ускорений. Слишком большой натяг пружины нежелателен, так как он приводит к увеличению погрешностей от трения.

    5. Погрешности от гистерезиса и упругого последействия. Сни­жение этих погрешностей достигается выбором материалов с хо­рошими упругими свойствами и улучшением режимов их терми­ческой обработки. Наименьшими погрешностями от гистерезиса и упругого последействия обладают чувствительные элементы, изготовленные из сплавов типа 47ХНМ и бериллиевой бронзы.

    6. Погрешности от влияния давления окружающей среды. Эти погрешности возникают в манометрах со сдвоенными чувстви­тельными элементами (см. рис. 3.6 и 6.8) в случае неравенства их эффективных площадей. Для уменьшения погрешностей подби­рают чувствительные элементы с возможно более близкими эф­фективными площадями.