Главная · Монтаж · Умножение многочлена на одночлен задания. Урок "умножение одночлена на многочлен"

Умножение многочлена на одночлен задания. Урок "умножение одночлена на многочлен"

§ 1 Умножение многочлена на одночлен

Когда речь идёт об умножении многочленов, то мы можем иметь дело с операциями двух видов: умножение многочлена на одночлен и умножение многочлена на многочлен. На этом занятии мы узнаем, как умножить многочлен на одночлен.

Основным правилом, которое используют при умножении многочлена на одночлен, является распределительное свойство умножения. Вспомним:

Чтобы сумму умножить на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Это свойство умножения распространяется и на действие вычитания. В буквенной записи распределительное свойство умножения выглядит так:

(а + b) ∙ с = ас + bc

(а - b) ∙ с = ас - bc

Рассмотрим пример: многочлен (5аb - 3а2) умножить на одночлен 2b.

Введём новые переменные и обозначим 5аb - буквой х, 3а2 - буквой у, 2b - буквой с. Тогда наш пример примет вид:

(5аb - 3а2) ∙ 2b = (х - у) ∙с

Согласно распределительному закону это равно хс - ус. Теперь вернёмся к первоначальному значению новых переменных. Получим:

5аb∙2b - 3а2∙2b

Теперь приведём получившийся многочлен к стандартному виду. Получим выражение:

Таким образом, можно сформулировать правило:

Чтобы умножить многочлен на одночлен, надо каждый член многочлена умножить на этот одночлен и полученные произведения сложить.

Это же правило действует и при умножении одночлена на многочлен.

§ 2 Примеры по теме урока

При умножении многочленов на практике во избежание путаницы с определением получающихся знаков рекомендуют сначала определять и сразу записывать знак произведения, а уж потом находить и записывать произведение чисел и переменных. Вот как это выглядит на конкретных примерах.

Пример 1. (4а2b - 2а) ∙ (-5аb).

Здесь одночлен - 5аb надо умножить на два одночлена, составляющих многочлен, 4а2b и - 2а. Первое произведение будет со знаком «-», а второе - со знаком «+». Поэтому решение будет выглядеть так:

(4а2b - 2а) ∙ (-5аb) = - 4а2b ∙ 5аb + 2а ∙ 5аb = -20а3b2 + 10а2b

Пример 2. -ху(2х - 3у +5).

Здесь нам придётся выполнить три действия умножения, причём знак первого произведения будет «-», знак второго «+», знак третьего «-». Решение выглядит так:

Ху(2х - 3у + 5) = -ху∙2х + ху∙3у - ху∙5 = -2х2у + 3ху2 - 5ху.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

При умножении многочлена на одночлен мы будем пользоваться одним из законов умножения. Он получил в математике название распределительного закона умножения. Распределительный закон умножения :

1. (a + b)*c = a*c + b*c

2. (a - b)*c = a*c - b*c

Для того чтобы произвести умножение одночлена на многочлен, достаточно каждый из членов многочлена умножить на одночлен. После этого полученные произведения сложить. На следующем рисунке представлена схема умножения одночлена на многочлен.

Порядок умножения неважен, если, например, надо умножить многочлен на одночлен, то поступать нужно точно таким же образом. Таким образом, нет разницы между записями 4*x * (5*x^2*y - 4*x*y) и (5*x^2*y - 4*x*y)* 4*x.

Произведем умножение многочлена и одночлена, записанных выше. И покажем на конкретном примере, как это правильно делать:

4*x * (5*x^2*y - 4*x*y)

Используя распределительный закон умножения, составим произведение:

4*x*5*x^2*y - 4*x*4*x*y.

В полученной сумме приведем каждый из одночленов к стандартному виду и получим:

20*x^3*y - 16*x^2*y.

Это и будет произведением одночлена на многочлен: (4*x) * (5*x^2*y - 4*x*y) = 20*x^3*y - 16*x^2*y.

Примеры:

1. Умножим одночлен 4*x^2 на многочлен (5*x^2+4*х+3). Используя распределительный закон умножения, составим произведение. Имеем
(4*x^2*5*x^2) +(4*x^2* 4*х) +(4*x^2*3).

20*x^4 +16*x^3 +12*x^2.

Это и будем произведением одночлена на многочлен: (4*x^2)*(5*x^2+4*х+3)= 20*x^4 +16*x^3 +12*x^2.

2. Умножить одночлен (-3*x^2) на многочлен (2*x^3-5*x+7).

Использую распределительный закон умножения, составим произведение. Имеем:

(-3*x^2 * 2*x^3) +(-3*x^2 * -5*x) +(-3*x^2 *7).

В полученной сумме каждый из одночленов приведем к его стандартному виду. Получим:

6*x^5 +15*x^3 -21*x^2.

Это и будем произведением одночлена на многочлен: (-3*x^2) * (2*x^3-5*x+7)= -6*x^5 +15*x^3 -21*x^2.

>>Математика: Умножение многочлена на одночлен

Умножение многочлена на одночлен

Вы, наверное, заметили, что до сих пор глава 4 строилась по тому же плану, что и глава 3. В обеих главах сначала вводились основные понятия: в главе 3 это были одночлен, стандартный вид одночлена, коэффициент одночлена; в главе 4 - многочлен , стандартный вид многочлена. Затем в главе 3 мы рассматривали сложение и вычитание одночленов; аналогично, в главе 4 - сложение и вычитание многочленов.

Что было в главе 3 дальше? Дальше мы говорили об умножении одночленов. Значит, по аналогии, о чем нам следует поговорить теперь? Об умножении многочленов. Но здесь придется действовать не спеша: сначала (в этом параграфе) рассмотрим умножение многочлена на одночлен (или одночлена на многочлен, это все равно), а потом (в следующем параграфе) - умножение любых многочленов. Когда вы в младших классах учились перемножать числа, вы ведь тоже действовали постепенно: сначала учились умножать многозначное число на однозначное и только потом умножали многозначное число на многозначное.

(a + b)с =ас + bс.

Пример 1. Выполнить умножение 2а 2 - Заb) (-5а).

Решение. Введем новые переменные:

х = 2а 2 , у= Заb, z = - 5а.

Тогда данное произведение перепишется в виде (х + у)z, что по распределительному закону равно хr + уz. Теперь вернемся к старым переменным:

хz + уz - 2а 2 (- 5а) + (- Заb) (- 5а).
Нам остается лишь найти произведения одночленов. Получим:

- 10a 3 + 15a 2 b

Приведем краткую запись решения (так мы и будем записывать в дальнейшем, не вводя новых переменных):

(2а 2 - Заb) (- 5а) = 2а 2 (- 5а) + (- Заb) (- 5а) = -10а 3 +15а 2 b.

Теперь мы можем сформулировать соответствующее правило умножения многочлена на одночлен.

Это же правило действует и при умножении одночлена на многочлен:

- 5а(2а 2 - Заb) = (- 5а) 2а 2 + (- 5а) (- Заb) = 10а 3 + 15а 2 b

(мы взяли пример 1, но поменяли местами множители).

Пример 2. Представить многочлен в виде произведения многочлена и одночлена, если:

a) p1(x, y) - 2х 2 у + 4а:;

б) р 2 (х, у) = х 2 + Зу 2 .

Р е ш е н и е.

а) Заметим, что 2х 2 у = 2х ху, а 4а: = 2х 2. Значит,

2x 2 y + 4х = xу 2х + 2 2x = (ху + 2) 2x

б) В примере а) нам удалось в составе каждого члена много члена p 1 (х, у) = 2х 2 у + 4а: выделить одинаковую часть (одинаковый множитель) 2х. Здесь же такой общей части нет. Значит, многочлен р 2 (х, у) = х 2 + Зу 2 нельзя представить в виде произведения многочлена и одночлена.

На самом деле и многочлен р 2 (х, у) можно представить в виде произведения, например, так:

x 2 + 3y 2 = (2x 2 + 6y 2) 0,5
или так:

x 2 + 3y 2 = (x 2 + 3y 2) 1
- произведение числа на многочлен, но это искусственное преобразование и без большой необходимости не используется.

Кстати, требование представить заданный многочлен в виде произведения одночлена и многочлена встречается в математике довольно часто, поэтому указанной процедуре присвоено специальное название: вынесение общего множителя за скобки.

Задание вынести общий множитель за скобки может быть корректным (как в примере 2а), а может быть и не совсем корректным (как в примере 26). В следующей главе мы специально рассмотрим этот вопрос.

В заключение параграфа решим задачи, которые покажут, как на практике для работы с математическими моделями реальных ситуаций приходится и составлять алгебраическую сумму многочленов, и умножать многочлен на одночлен. Так что эти операции мы изучаем не зря.

Пример 3. Пункты А, В и С расположены на шоссе так, как показано на рисунке 3. Расстояние между А и В равно 16 км. Из В по направлению к С вышел пешеход. Через 2 ч после этого из А по направлению к С выехал велосипедист, скорость которого на 6 км/ч больше скорости пешехода. Через 4 ч после своего выезда велосипедист догнал пешехода в пункте С. Чему равно расстояние от В до С?


Решение.
Первый этап. Составление математической модели. Пусть х км/ч - скорость пешехода, тогда (x + 6) км/ч - скорость велосипедиста.

Расстояние от А до С велосипедист проехал за 4 ч, значит, это расстояние выражается формулой 4 (x + 6) км; иными словами, АС = 4 (х + 6).

Расстояние от В до С пешеход прошел за 6 ч (ведь до выезда велосипедиста он уже был в пути 2 ч), следовательно, это расстояние выражается формулой 6x км; иными словами, ВС = 6x

А теперь обратите внимание на рисунок 3: АС - ВС = АВ, т. е. АС - ВС = 16. Это - основа для составления математической модели задачи. Напомним, что АС = 4 (x + 6), ВС = 6x:; следовательно,

4 (х + 6) -6x = 16.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если числа обозначены различными буквами, то можно лишь обозначить из произведение; пусть, напр., надо число a умножить на число b, – мы можем это обозначить или a ∙ b или ab, но не может быть и речи о том, чтобы как-нибудь выполнить это умножение. Однако, когда имеем дело с одночленами, то, благодаря 1) присутствию коэффициентов и 2) тому обстоятельству, что в состав этих одночленов могут входить множители, обозначенные одинаковыми буквами, является возможность говорить о выполнении умножения одночленов; еще шире такая возможность при многочленах. Разберем ряд случаев, где возможно выполнять умножение, начиная с простейшего.

1. Умножение степеней с одинаковыми основаниями . Пусть, напр., требуется a 3 ∙ a 5 . Напишем, зная смысл возведения в степень, то же самое подробнее:

a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a

Рассматривая эту подробную запись, мы видим, что у нас написано a множителем 8 раз, или, короче, a 8 . Итак, a 3 ∙ a 5 = a 8 .

Пусть требуется b 42 ∙ b 28 . Пришлось бы написать сначала множитель b 42 раза, а затем опять множитель b 28 раз – в общем, получили бы, что b берется множителем 70 раз. т. е. b 70 . Итак, b 42 ∙ b 28 = b 70 . Отсюда уже ясно, что при умножении степеней с одинаковыми основаниями основание степени остается без перемены, а показатели степеней складываются. Если имеем a 8 ∙ a, то придется иметь в виду, что у множителя a подразумевается показатель степени 1 («a в первой степени»), – следовательно, a 8 ∙ a = a 9 .

Примеры: x ∙ x 3 ∙ x 5 = x 9 ; a 11 ∙ a 22 ∙ a 33 = a 66 ; 3 5 ∙ 3 6 ∙ 3 = 3 12 ; (a + b) 3 ∙ (a + b) 4 = (a + b) 7 ; (3x – 1) 4 ∙ (3x – 1) = (3x – 1) 5 и т. д.

Иногда приходится иметь дело со степенями, показатели которых обозначены буквами, напр., xn (x в степени n). С такими выражениями надо привыкнуть обращаться. Вот примеры:

Поясним некоторые из этих примеров: b n – 3 ∙ b 5 надо основание b оставить без перемены, а показатели сложить, т. е. (n – 3) + (+5) = n – 3 + 5 = n + 2. Конечно, подобные сложения должно научиться выполнять быстро в уме.

Еще пример: x n + 2 ∙ x n – 2 , – основание x надо оставить без перемены, а показатель сложить, т. е. (n + 2) + (n – 2) = n + 2 + n – 2 = 2n.

Можно выше найденный порядок, как выполнять умножение степеней с одинаковыми основаниями, выразить теперь равенством:

a m ∙ a n = a m + n

2. Умножение одночлена на одночлен. Пусть, напр., требуется 3a²b³c ∙ 4ab²d². Мы видим, что здесь обозначено точкою одно умножение, но мы знаем, что этот же знак умножения подразумевается между 3 и a², между a² и b³, между b³ и c, между 4 и a, между a и b², между b² и d². Поэтому мы можем здесь видеть произведение 8 множителей и можем перемножить их любыми группами в любом порядке. Переставим их так, чтобы коэффициенты и степени с одинаковыми основаниями оказались рядом, т. е.

3 ∙ 4 ∙ a² ∙ a ∙ b³ ∙ b² ∙ c ∙ d².

Тогда мы сможем перемножить 1) коэффициенты и 2) степени с одинаковыми основаниями и получим 12a³b5cd².

Итак, при умножении одночлена на одночлен мы можем перемножить коэффициенты и степени с одинаковыми основаниями, а остальные множители приходится переписывать без изменения.

Еще примеры:

3. Умножение многочлена на одночлен. Пусть надо сначала какой-нибудь многочлен, напр., a – b – c + d умножить на положительное целое число, напр., +3. Так как положительные числа считаются совпадающими с арифметическими, то это все равно, что (a – b – c + d) ∙ 3, т. е. a – b – c + d взять 3 раза слагаемым, или

(a – b – c + d) ∙ (+3) = a – b – c + d + a – b – c + d + a – b – c + d = 3a – 3b – 3c + 3d,

т. е. в результате пришлось каждый член многочлена умножить на 3 (или на +3).

Отсюда вытекает:

(a – b – c + d) ÷ (+3) = a – b – c + d,

т. е. пришлось каждый член многочлена разделить на (+3). Также, обобщая, получим:

и т. п.

Пусть теперь надо (a – b – c + d) умножить на положительную дробь, напр., на +. Это все равно, что умножить на арифметическую дробь , что значит взять части от (a – b – c + d). Взять одну пятую часть от этого многочлена легко: надо (a – b – c + d) разделить на 5, а это уже умеем делать, – получим . Остается повторить полученный результат 3 раза или умножить на 3, т. е.

В результате мы видим, что пришлось каждый член многочлена умножить на или на +.

Пусть теперь надо (a – b – c + d) умножить на отрицательное число, целое или дробное,

т. е. и в этом случае пришлось каждый член многочлена умножить на –.

Таким образом, какое бы ни было число m, всегда (a – b – c + d) ∙ m = am – bm – cm + dm.

Так как каждый одночлен представляет собою число, то здесь мы видим указание, как умножать многочлен на одночлен – надо каждый член многочлена умножить на этот одночлен.

4. Умножение многочлена на многочлен . Пусть надо (a + b + c) ∙ (d + e). Так как d и e означают числа, то и (d + e) выражает какое-либо одно число.

(a + b + c) ∙ (d + e) = a(d + e) + b(d + e) + c(d + e)

(мы можем объяснить это и так: мы вправе d + e временно принять за одночлен).

Ad + ae + bd + be + cd + ce

В этом результате можно изменить порядок членов.

(a + b + c) ∙ (d + e) = ad + bd + ed + ae + be + ce,

т. е. для умножения многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Удобно (для этого и был выше изменен порядок полученных членов) умножить каждый член первого многочлена сперва на первый член второго (на +d), затем на второй член второго (на +e), затем, если бы он был, на третий и т. д.; после этого следует сделать приведение подобных членов.

В этих примерах двучлен умножается на двучлен; в каждом двучлене члены расположены по нисходящим степеням буквы, общей для обоих двучленов. Подобные умножения легко выполнять в уме и сразу писать окончательный результат.

От умножения старшего члена первого двучлена на старший член второго, т. е. 4x² на 3x, получим 12x³ старший член произведения – ему подобных, очевидно, не будет. Далее мы ищем, от перемножения каких членов получатся члены с меньшею на 1 степенью буквы x, т. е. с x². Легко видим, что такие члены получатся от умножения 2-го члена первого множителя на 1-й член второго и от умножения 1-го члена первого множителя на 2-ой член второго (скобки внизу примера это указывают). Выполнить эти умножения в уме и выполнить также приведение этих двух подобных членов (после чего получим член –19x²) – дело нетрудное. Затем замечаем, что следующий член, содержащий букву x в степени еще на 1 меньшей, т. е. x в 1-ой степени, получится только от умножения второго члена на второй, и ему подобных не будет.

Еще пример: (x² + 3x)(2x – 7) = 2x³ – x² – 21x.

Также в уме легко выполнять примеры, вроде следующего:

Старший член получается от умножения старшего члена на старший, ему подобных членов не будет, и он = 2a³. Затем ищем, от каких умножений получатся члены с a² – от умножения 1-го члена (a²) на 2-ой (–5) и от умножения второго члена (–3a) на 1-ый (2a) – это указано внизу скобками; выполнив эти умножения и соединив полученные члены в один, получим –11a². Затем ищем, от каких умножений получатся члены с a в первой степени – эти умножения отмечены скобками сверху. Выполнив их и соединив полученные члены в один, получим +11a. Наконец, замечаем, что младший член произведения (+10), вовсе не содержащий a, получается от перемножения младшего члена (–2) одного многочлена на младший член (–5) другого.

Еще пример: (4a 3 + 3a 2 – 2a) ∙ (3a 2 – 5a) = 12a 5 – 11a 4 – 21a 3 + 10a 2 .

Из всех предыдущих примеров мы также получим общий результат: старший член произведения получается всегда от перемножения старших членов множителей, и подобных ему членов быть не может; также младший член произведения получается от перемножения младших членов множителей, и подобных ему членов также быть не может.

Остальным членам, получаемым при умножении многочлена на многочлен, могут быть подобные, и может даже случиться, что все эти члены взаимно уничтожатся, а останутся лишь старший и младший.

Вот примеры:

(a² + ab + b²) (a – b) = a³ + a²b + ab² – a²b – ab² – b³ = a³ – b³
(a² – ab + b²) (a – b) = a³ – a²b + ab² + a²b – ab² + b³ = a³ + b³
(a³ + a²b + ab² + b³) (a – b) = a 4 – b 4 (пишем только результат)
(x 4 – x³ + x² – x + 1) (x + 1) = x 5 + 1 и т. п.

Эти результаты достойны внимания и их полезно запомнить.

Особенно важен следующий случай умножения:

(a + b) (a – b) = a² + ab – ab – b² = a² – b²
или (x + y) (x – y) = x² + xy – xy – y² = x² – y²
или (x + 3) (x – 3) = x² + 3x – 3x – 9 = x² – 9 и т. п.

Во всех этих примерах, применяясь к арифметике, мы имеем произведение суммы двух чисел на их разность, а в результате получается разность квадратов этих чисел.

Если мы увидим подобный случай, то уже нет нужды выполнять умножение подробно, как это делалось выше, а можно сразу написать результат.

Напр., (3a + 1) ∙ (3a – 1). Здесь первый множитель, с точки зрения арифметики, есть сумма двух чисел: первое число есть 3a и второе 1, а второй множитель есть разность тех же чисел; потому в результате должно получиться: квадрат первого числа (т. е. 3a ∙ 3a = 9a²) минус квадрат второго числа (1 ∙ 1 = 1), т. е.

(3a + 1) ∙ (3a – 1) = 9a² – 1.

Также

(ab – 5) ∙ (ab + 5) = a²b² – 25 и т. п.

Итак, запомним

(a + b) (a – b) = a² – b²

т. е. произведение суммы из двух чисел на их разность равно разности квадратов этих чисел.

В представляемом видеоуроке мы подробно рассмотрим вопрос умножения многочлена на какое-либо выражение, отвечающее определению «моном», или одночлен. Мономом может выступать любое свободное числовое значение, представленное натуральным числом (в любой степени, с любым знаком) либо же некая переменная (с подобными атрибутами). При этом стоит помнить, что многочлен представляет собой набор алгебраических элементов, называемых членами полинома. Иногда некоторые члены могут быть приведены с подобностью и сокращены. Настоятельно рекомендуется проводить процедуру приведения подобных слагаемых после операции умножения. Конечным ответом, в таком случае, будет являться стандартизованная форма полинома.

Как следует из нашего видео, процесс умножения одночлена на многочлен можно рассматривать с двух позиций: линейной алгебры и геометрии. Рассмотрим операцию умножения многочлена с каждой стороны - это способствует универсальности применения правил, особенно в случае комплексных задач.

В алгебраическом понимании, умножение полинома на одночлен отвечает стандартному правилу умножения на сумму: каждый элемент суммы должен быть умножен на заданное значение, а полученное значение алгебраически сложено. Стоит понимать, что любой многочлен - это развернутая алгебраическая сумма. После умножения каждого члена полинома на некое значение мы получим новую алгебраическую сумму, которую принято приводить к стандартному виду, если это возможно, конечно.

Рассмотрим умножение многочлена в данном случае:

3а * (2а 2 + 3с - 3)

Легко понять, что тут выражение (2а 2 + 3с - 3) является многочленом, а 3а - свободным множителем. Для решения этого выражения достаточно переумножить каждый из трех членов полинома на 3а:

При этом стоит помнить, что знак является важным атрибутом переменной справа, и его нельзя потерять. Знак «+», как правило, не записывается, если с него начинается выражение. При умножении чисельно-буквенных выражений все коэффициенты при переменных элементарно перемножаются. Одинаковые переменные повышают степень. Разные переменные остаются неизменными, и записываются в одном элементе: а*с = ас. Знание этих простейших правил сложения способствует корректному, и быстрому решению любых подобных упражнений.

Мы получили три значения, которые являются, по сути, членами итогового многочлена, что и есть ответом на пример. Необходимо лишь алгебраически сложить данные значения:

6а 3 + 9ас +(- 9а) = 6а 3 + 9ас - 9а

Скобки раскрываем, сохраняя знаки, так как это алгебраическое сложение, и между мономами по определению стоит знак «плюс». Итоговый стандартный вид многочлена является корректным ответом на представляемый пример.

Геометрический вид умножения многочлена на одночлен представляет собой процесс нахождения площади прямоугольника. Предположим, у нас есть некий прямоугольник со сторонами а и с. Фигура разбита двумя отрезками на три прямоугольника различной площади, так, что сторона с является для всех общей, или одинаковой. А стороны а1, а2 и а3 в сумме дают начальную а. Как известно из аксиоматического определения площади прямоугольника, для нахождения этого параметра необходимо перемножить стороны: S = а*с. Либо же, S = (а1 + а2 + а3) * с. Проведем умножение многочлена (образованного сторонами меньших прямоугольников) на одночлен - главную сторону фигуры, и получим выражение для S: а1*с + а2*с + а3*с. Но если внимательно присмотреться, то можно заметить, что данный многочлен является суммой площадей трех меньших прямоугольников, которые и составляют начальную фигуру. Ведь для первого прямоугольника S = а1с (по аксиоме) и т.д. Алгебраически верность рассуждений при сложении многочлена подтверждается расчетами линейной алгебры. А геометрически - правилами сложения площадей в единой простейшей фигуре.

При проведении манипуляций с умножением многочлена на одночлен следует помнить, что при этом степени монома и полинома (общая) складываются - а полученное значение является степенью нового многочлена (ответа).

Все вышеперечисленные правила вместе с основами алгебраического сложения используются в примерах простейшего упрощения выражений, где проводится приведение подобных слагаемых и умножение элементов для упрощения всего многочлена.