Главная · На заметку · Уровень co2 в помещении норма. Продолжаю эксперименты с СO2 в квартире. Реакция организма взрослого человека в зависимости от уровня CO2

Уровень co2 в помещении норма. Продолжаю эксперименты с СO2 в квартире. Реакция организма взрослого человека в зависимости от уровня CO2

Сегодня, особенно в России, люди недооценивают важность контроля и поддержания нормального уровня углекислого газа (CO2) в квартире (офисе, школе, в любом помещении, где мы проводим хотя бы пол часа). В этой статье, я бы хотел подробнее рассказать про качество воздуха в доме:

  • о важности поддержания правильного уровня СО2 в помещениях;
  • о методах измерения уровня СО2;
  • вкратце об организации правильной системы вентиляции воздуха.

Почему важно контролировать уровень углекислого газа в помещениях?

Про важность соблюдения уровня CO2 сказано уже много (советую почитать: , , ветка на форуме iXBT , ). Но вкратце: углекислый газ выделяется при дыхании человека (основной источник, а при плохой вентиляции скапливается в больших концентрациях в помещении. Незначительное повышение концентрации СО2 вызывает у людей ощущение «спертости» воздуха, духоты. При более значительном повышении концентрации симптомы становятся хуже: «тяжелая» голова, головокружение, головные боли и вплоть до необратимых изменений в организме человека. Концентрацию углекислого газа принято измерять в ppm (parts per million - частей на миллион).

Реакция организма взрослого человека в зависимости от уровня CO2

Опасные концентрации СО2

Почему в квартире высокий уровень CO2?

Основных причин — три:

Пластиковые окна без клапанов — источник повышенного уровня СО2 в квартире

Сегодня мы любим устанавливать пластиковые окна и гордиться тем, что они полностью герметизируют квартиру (ведь дома станет тепло!), но не задумываемся о будущих последствиях (особенно если дома есть дети!). Причина в том, что современные окна полностью перекрывают приток воздуха с улицы и тем самым блокируют работу естественной системы вентиляции квартиры, а как следствие — воздух в квартире не обновляется и повышается уровень СО2. Некоторые устанавливают специальные оконные клапаны, через которые проходит воздух с улицы — это хоть какое-то, но решение.

К стати, старые советские окна с немаленькими щелями так проектировались специально, чтобы обеспечить хоть какой-то приток свежего воздуха!

Неработающая вытяжка

Часто люди не обращают внимание на вытяжные вентиляционные отверстия в кухне и сан.узле. Некоторые даже «закладывают» их при ремонте. Иногда сетка на вентиляционных отверстий настолько засорена, что практически останавливает работу вентиляции. Эти факторы способствуют ухудшению качества воздуха в квартире. Представьте, что вы и еще несколько человек находятся в одном небольшом замкнутом пространстве, активно двигаются, готовят кушать и т.д. Через какое-то время, если воздух не обновляется, в этом пространстве становится очень тяжело находиться, в воздухе сконцентрировано много загрязняющих веществ, в том числе углекислого газа. А теперь представьте, что многие из нас так живут годами после установки пластиковых окон! А потом удивляемся откуда у нас/наших детей появляются хронические болезни?

Чтобы проверить качество работы вытяжной вентиляции в вашей квартире лучше обратиться к профессионалам. Как правило достаточно звонка в управляющую компанию с жалобой на плохо работающую вентиляцию. Но, чтобы понять действительно ли вентиляция плохо работает лучше предварительно проверить менее точными, но «подручными» способами. Сделать это можно, поднеся к вентиляционным отверстиям тонкую полоску бумаги, свечу или горящую спичку, а можно попробовать тлеющими ароматическими палочками — от них достаточно умеренный и безопасный дым (Соблюдайте правила пожарной безопасности! ). Бумажка или дым должны «всасываться» потоком воздуха внутрь вентиляционного отверстия. Если этого не происходит или поток воздуха очень слаб, попробуйте открыть окно, чтобы «разгерметизировать» квартиру. Даже если это не помогло — то с вентиляцией проблемы и их нужно обязательно исправлять! В многоквартирных домах ответственность за работу вентиляции несет управляющая компания и в большинстве случаев они должны заниматься восстановлением работы вентиляции, не требуя с вас дополнительной оплаты. Возможно, вас будут убеждать, что сделать ничего уже нельзя (или вымогать оплату), что в вашем доме старая и засоренная система вентиляции — рекомендую быть более настойчивым и в случае отказа УК исправлять работу вентиляции обратиться с заявлением в вышестоящие инстанции.

В Интернете существует несколько отличных форумов, посвященных теме вентиляции в доме, там вы можете найти много полезной информации и задать интересующие вас вопросы профессионалам:

  • ветка на форуме «Город мастеров» http://www.mastercity.ru/forumdisplay.php?f=22

Приточная вентиляция

Если в вашем доме/квартире исправна система вытяжной вентиляции и у вас хорошо утепленные или пластиковые окна, то для создания условий для естественной очистки воздуха в квартире я бы очень рекомендовал устанавливать приточную вентиляцию. Сегодня это не очень дорого и установка не портит ремонт в вашей квартире.

У меня установлены пассивные клапаны Домвент, в ближайшее время напишу про них отдельную статью. Очень много информации по поводу приточной вентиляции можно найти на форуме iXBT в этой ветке .

Несоблюдение санитарных нормативов

Соблюдайте санитарные нормы. Даже самая хорошо работающая вентиляция может не справиться с большим количеством людей в комнате. Существуют некоторые способы расчета необходимого притока свежего воздуха в зависимости от количества людей в помещении (конечно же, они очень условные, но для грубой оценки вполне полходят):

  • поступление свежего воздуха 15 cfm = 25,5 м3/час на одного человека, находящегося в помещении, соответствует уровню концентрации CO2 в 1000 ppm
  • поступление свежего воздуха 20 cfm = 34 м3/час на одного человека, находящегося в помещении, соответствует уровню концентрации CO2 в 800 ppm

Что делать?

  • Контролировать уровень СО2
  • Проверить хорошо ли работает у вас дома вытяжка (и работает ли вообще)
  • Установить приточную вентиляцию (пассивную — клапаны; или активную — бризеры с электромоторами и подогревом воздуха)
  • Если приточной вентиляции нет, то рекомендуется проветривать помещение (малоэффективный способ, т.к. вставать ночью, особенно зимой, чтобы открыть окно на несколько минут — вряд ли получится)

Как измерить уровень углекислого газа?

Сегодня существует огромное количество разных приборов для измерения CO2. Приведу пример нескольких из них, самых надежных и распространенных.

Sensair K-30

Нужны навыки программирования, пайки и работы с микроэлектроникой, но самый универсальный по соотношению цена/качество. Я использую именно его. Где купить в России, к сожалению, я не нашел и заказал на сайте co2meter.com

Подключение к сенсора K-30 к Raspberry Pi или Arduino расскажу в следующих статьях.

TIM (ссылка)

Симпатичный, кроме измерения CO2 умеет измерять влажность и температуру, существуют версии со встроенной памятью, для хранения замеров. Купить можно там же — co2meter.com .

Netatmo

Симпатичный, дорогой, удобный, мега-многофункциональный. Можно купить в России.

Заключение

Надеюсь в данной статье я смог донести о важности контроля уровня СО2 и обеспечении свежего воздуха в помещениях, где мы проводим много времени. Это ваше здоровье и здоровье ваших близких! В следующей серии статей я расскажу о том, как подключать датчики СО2 в единую систему Умного дома и как правильно организовывать вентиляцию (с автоматизацией или без).

Описание:

Еще несколько лет назад в отечественных нормативных документах при проектировании вентиляции в помещениях с пребыванием людей СО2 учитывался только косвенно в удельных нормах воздухообмена. В зарубежных стандартах его концентрация в воздухе помещений служит индикатором содержания других более вредных загрязняющих веществ и соответствующей интенсивности вентиляции.

К вопросу о нормировании воздухообмена по содержанию CO 2 в наружном и внутреннем воздухе

И. М. Квашнин , канд. тех. наук, ведущий специалист НПП «Энергомеханика»

И. И. Гурин , директор компании Alfaintek Oy

В журнале «АВОК», № 4, 2008, была опубликована статья Ю. Д. Губернского и Е. О. Шилькрота «Сколько воздуха нужно человеку для комфорта? », которая вызвала большой интерес у специалистов. Представленный в статье материал показывает, что хотя проблеме нормирования воздухообмена по СО 2 уделяется много внимания, материала для решения этого вопроса пока не достаточно. Данная статья предлагает продолжить обсуждение этой проблеммы.

Еще несколько лет назад в отечественных нормативных документах при проектировании вентиляции в помещениях с пребыванием людей СО 2 учитывался только косвенно в удельных нормах воздухообмена. В зарубежных стандартах его концентрация в воздухе помещений служит индикатором содержания других более вредных загрязняющих веществ и соответствующей интенсивности вентиляции. Высокие концентрации углекислого и других газов в наружном воздухе больших городов приводят к необходимости выбора: либо интенсифицировать воздухообмен, вызывая цепную реакцию увеличения потребления энергоресурсов путем сжигания органического топлива с дополнительным загрязнением атмосферы (в том числе СО 2), либо производить очистку приточного воздуха от газов. Это соответствует последним исследованиям ученых о вреде двуокиси углерода для здоровья людей при повышении концентрации в два–три раза по сравнению с чистым атмосферным воздухом.

По данным современной медицины, в составе метаболических (жизнедеятельностных) выделений организма человека выявлено несколько сотен химических соединений, из которых более двухсот веществ – с поверхности кожи и свыше ста – с выдыхаемым воздухом. Одним из наиболее интересных веществ является углекислый газ. Это относительно безвредный газ по ГОСТ 12.1.007-76 относится к 4 классу опасности, он содержится в небольших количествах в составе чистого атмосферного воздуха. По данным большинства источников, его концентрация составляет примерно 0,03 % от объема (об.), то есть в 1 м 3 содержится 0,3 л, или 0,3/22,4 = 0,01339 моль (по данным БСЭ – 0,0314 % об.). Зная молекулярную массу диоксида азота 44 г/моль, легко определить его массу в 1 м 3 , а именно: 44 х 0,01339 = 0,589 г. Концентрация, соответственно, равна 589 мг/м 3 . В таких количествах углекислый газ необходим для жизнедеятельности человека. По ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия» плотность газообразной двуокиси углерода составляет 1,839 кг/м 3 , то есть примерно в 1,5 раза больше воздуха. В таблице 1 приведены формулы перевода величин из одних единиц в другие. Как в отечественных нормативных документах, так и в зарубежных отсутствует норматив предельно допустимой концентрации углекислого газа в атмосферном воздухе. Очевидно, что содержание в воздухе СО 2 будет различным в сельской местности, небольших и крупных городах. Фоновые концентрации определяются выбросами автотранспорта, сжиганием топлива на предприятиях теплоэнергетики и работой промышленных предприятий. Затруднение заключается в том, что мониторинг за уровнем СО 2 службами Центра по гидрометеорологии не ведется. За рубежом углекислый газ, наряду с окислами азота, оксидом углерода, диоксидом серы и летучими органическими соединениями, является типичным загрязняющим веществом, которое подлежит учету при оценке наружного воздуха для проектирования систем вентиляции и кондиционирования. Европейский стандарт ЕН 13779 «Ventilation for non-residential buildings – Performance requirements for ventilation and room-conditioning systems» в качестве общего базового руководства предлагает принимать концентрацию углекислого газа в сельской местности 350 ppm, в небольших городах 400 ppm, в центрах городов 450 ppm. На самом деле она может быть существенно выше. Например, измерения в центре Москвы в безветренную погоду в конце лета в районе Садового кольца показали, что при достаточно интенсивном движении транспорта уровень СО 2 поднимался до 900 ppm (0,09 % об.). Погуляв несколько часов эту концентрацию и без приборов ощутит на себе каждый в виде головной боли.

Примечание:
С а – числовое значение концентрации в заданных единицах;
С х – числовое значение концентрации в искомых единицах;
М – молекулярная масса газа;
Р – общее давление газовой смеси, Па;
Т – температура, °К.

Одним из способов, широко применяемых на Западе, для определения требуемой интенсивности воздухообмена в общественных зданиях, является использование углекислого газа в качестве индикатора качества воздуха. По его концентрации судят о содержании других веществ, выделяемых человеком, которых в относительных концентрациях (отношение фактической концентрации к ПДК) образуется меньше. При снижении уровня СО 2 разбавлением приточным воздухом одновременно снижается уровень концентрации других веществ. Углекислый газ выбран из-за того, что его концентрацию легко измерить с достаточно высокой точностью и его массовое выделение значительно больше других вредных веществ.

Общеизвестно, что один человек в спокойном состоянии, например работник офиса, за один час потребляет 20–30 л кислорода с выделением 18–25 л углекислого газа, а при занятиях в фитнес- и тренажерных залах – до 36 л и более. Если во вдыхаемом воздухе содержится 0,03 % (об.) СО 2 , то в выдыхаемом – 3,6 % (об.), то есть возрастает более чем в 100 раз. Интенсивно выделяется углекислый газ от газовой плиты при приготовлении пищи. При возрастании содержания в воздухе значения CO2 выше определенной величины человек начинает чувствовать себя дискомфортно, может впадать в дремотное состояние, возникают головные боли, тошнота, чувство удушья. Его влияние настолько постепенное и слабое, что его трудно сразу обнаружить. Этот предел индивидуален для различных людей – мужчин и женщин, детей. Однако до недавнего времени в отечественных документах отсутствовал норматив качества воздуха помещений для углекислого газа. Лишь гигиеническими нормативами в 2006 году введена максимально разовая ПДК равная 13 790 ppm (27 000 мг/м 3) и среднесменная 4 597 ppm (9 000 мг/м 3) для воздуха рабочей зоны производственных помещений. Для сравнения: в США эти цифры составляют 30 000 ppm (58 740 мг/м 3) и 5 000 ppm (9 790 мг/м 3), соответственно. В шахтах на рабочих местах допускается концентрация 0,5 % (об.) или 5 000 ppm. В соответствии с ГОСТ 8050-85 «При концентрациях более 5 % двуокись углерода оказывает вредное влияние на здоровье человека… При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья». Напомним, что максимально разовая и среднесменная концентрация ПДК воздуха рабочей зоны определяются ГОСТ 12.1.005-88 и гигиеническими нормативами ГН 2.2.5.1313-03, ГН 2.2.5.1314-03.

Для помещений жилых и общественных зданий этот норматив по-прежнему отсутствует. Коллизия возникает в связи с тем, что в соответствии со СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» , СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям» и др. для этих помещений норматив качества принимается равным для воздуха населенных мест (ГН 2.1.6.1338-03; ГН 2.1.6.1339-03), который, как отмечалось выше, отсутствует. Однако, в отличие от многих других загрязняющих веществ, практически не выделяющихся в помещениях, содержание двуокиси углерода интенсивно увеличивается. Интересно, что еще в справочнике Р. В. Щекина 1976 года приводится расчет требуемого воздухообмена на разбавление СО 2 одним человеком.

Европейский стандарт 2004 года предлагает разделять воздух в помещениях с пребыванием людей на категории качества от IDA 4 – низкое, IDA 2 и 3 – среднее, до IDA 1 – высокое. Предполагается несколько способов определения категории качества. Один из них оценивает превышение уровня СО 2 , как индикатора, в воздухе помещений над наружным воздухом (табл. 2).

Таблица 2
Категория помещения Превышение уровня СО 2 в помещении над его
содержанием в наружном воздухе, ppm
Типичный диапазон Задаваемое значение
IDA 1 <400 350
IDA 2 400–600 500
IDA 3 600–1 000 800
IDA 4 ≥1000 1 200

Зная местонахождение здания (сельская местность, город) и уровень концентрации СО 2 в наружном воздухе легко определить его расчетное содержание в воздухе помещения. Далее приводятся рекомендации по установке определенных классов фильтров, как правило, не менее двух ступеней, для достижения необходимой чистоты воздуха в соответствии с требуемой категорией качества IDA. Это касается не только твердых пылевых частиц, но и основных газов: NO x , SO 2 , полициклических ароматических углеводородов и летучих органических соединений. Стандарт гласит: «В городской среде рекомендуется использование молекулярных (газовых) фильтров». Отметим, что по представлению ассоциации АСИНКОМ европейский стандарт принят без изменений как отечественный ГОСТ Р ЕН 13779-2007 «Вентиляция в нежилых зданиях. Технические требования к вентиляции и кондиционированию». ФГУП СТАНДАРТИНФОРМ объявило о том, что он вводится в действие с 1 октября 2008 года.

Допустимое приемлемое значение содержания углекислого газа в помещениях с пребыванием людей было установлено гигиенистами и принято, например, стандартом ASHRAE 62-1989 на уровне 1 000 ppm (1 958 мг/м 3) или 0,1 % (об.). На эту величину опираются многие авторы при расчетах воздухообмена. Это значение фигурирует в СП 2.5.1198-03 «Санитарные правила по организации пассажирских перевозок» для железнодорожных вокзалов и СанПиН 2.5.1.051-96 «Условия труда и отдыха для летного состава гражданской авиации» для кабин воздушных судов. Зная выделение СО 2 одним человеком в офисе – 18 л/ч (0,005 л/с) или 35 200 мг/ч по формуле (Л.2) СНиП 41-01-2003 требуемый расход приточного воздуха для одного человека равен

L = 35 200 / (1 958 – 589) = 25,7 м 3 /ч.

В единицах л/с и ppm L = х 106 = 7,14 л/с.

Первым отечественным документом, в котором предпринята попытка регламентировать содержание СО 2 в наружном и внутреннем воздухе, является стандарт АВОК «Здания жилые и общественные. Нормы воздухообмена» . В качестве рекомендуемой справочной предлагается предельно допустимая концентрация в наружном воздухе: сельская местность – 332 ppm (650 мг/м 3), малые города – 409 ppm (800 мг/м 3), большие города – 511 ppm (1 000 мг/м 3). Верхний допустимый предел концентрации СО 2 в помещениях жилых и общественных зданий не должен превышать концентрацию в наружном воздухе на 638 ppm (1 250 мг/м 3). В этом случае требуемый воздухообмен на 1 человека составит 28 м 3 /ч.

В результате последних исследований, проведенных индийскими учеными в городе Калькутта , было выяснено, что так же, как NO 2 , СО 2 является потенциально токсичным для человека даже в низких концентрациях, принимая во внимание его воздействие на клеточную мембрану и биохимические изменения, такие, как увеличение напряжения CO 2 в крови, увеличение концентрации ионов бикарбоната в крови и моче, ацидоз и т. д. Для выявления того, как влияет уровень СО 2 в воздухе на процессы в организме человека, были проведены замеры уровня бикарбоната в крови и в моче человека. Всего было исследовано 593 человек из жилого, коммерческого и промышленного районов города и контрольной зоны, находящейся в экологически чистой сельской местности. Уровень бикарбоната в сыворотке крови – биологический показатель влияния СО 2 – оказался в среднем на 60 % выше у жителей Калькутты, чем у жителей сельских районов, причем самым высоким он был у жителей промышленной зоны. В городе Калькутта СО 2 присутствовал в воздухе в концентрациях от 0,03 до 0,06 %. Уровень вентиляции в помещениях был адекватным почти в 75 % жилых и рабочих помещений. Принимая во внимание то, что увеличение уровня СО 2 в атмосфере ведет к увеличению его концентрации в воздухе помещения, можно сказать, что он может явиться причиной увеличение уровня бикарбоната в крови.

В своих работах , английский ученый D. S. Robertson пишет, что уровень углекислого газа в атмосфере, при котором человечество может выжить, значительно ниже, чем предполагалось, поэтому безопасный для человека уровень углекислого газа требует пересмотра. Он рассчитал максимальный безопасный для человека уровень углекислого газа в атмосфере, составляющий 426 ррm. Ученый также считает, что под влиянием углекислого газа, уровень которого выше указанной цифры, происходит снижение величины pH в сыворотке крови, что ведет к ацидозу. Симптомы начальной степени ацидоза следующие: состояние перевозбуждения и умеренная гипертензия. Далее к ним добавляются сонливость и состояние беспокойства и как следствие уменьшение желания проявлять физическую активность. Существует вероятность того, что когда концентрация углекислого газа в атмосфере достигнет 426 ppm, а это может случиться раньше, чем через два поколения, здоровье, по крайней мере, некоторой части населения Земли, ухудшится.

Финские ученые под руководством Olli Seppanen провели 21 эксперимент на основе более 30 000 испытуемых по исследованию влияния концентрации углекислого газа. Если уровень углекислого газа в офисном помещении был ниже 800 ppm (0,08 % об.), такие симптомы, как воспаление глаз, заложенность носа, воспаление носоглотки, проблемы, связанные с дыхательной системой, головная боль, усталость и сложность с концентрацией внимания, которые возникали у сотрудников при более высокой концентрации СО 2 , значительно снижались.

В пресс-релизе ежегодной конференции Европейского респираторного общества в 2006 году были опубликованы результаты исследований, проведенных в пяти странах ЕЭС группой итальянских ученых. Исследования показали, что 68 % детей испытывают на себе негативное влияние СО 2 выше уровня 1 000 ppm. У них наблюдалось тяжелое дыхание, одышка, сухой кашель и ринит чаще, чем у других детей. Были сделаны следующие выводы: у детей, находящихся в помещении с высоким уровнем СО 2 , в 3,5 раза выше риск возникновения сухого кашля и в 2 раза – развитие ринита. Они имеют более уязвимую носоглотку, чем их ровесники.

В исследовании корейских ученых о влиянии концентрации СО 2 в помещении на приступы астмы у детей, в домах и квартирах, где живут дети больные астмой, замерялся уровень содержания веществ, которые считаются основными загрязнителями воздуха в помещении, таких как СО, NO 2 , аллергены и СО 2 . В результате данных исследований были сделаны выводы о том, что самым важным фактором, влияющим на возникновение приступов астмы у детей, является только уровень концентрации СО 2 .

Принимая допустимую концентрацию СО 2 в наружном воздухе мегаполиса 450 ppm, а оптимальную во внутреннем воздухе 800 ppm требуемый воздухообмен на 1 человека составит

L = 106 = 14,29 л/с = 51,4 м 3 /ч.

Реально концентрация в наружном воздухе может быть еще выше, а внутри помещения могут быть другие источники выделения СО 2 , например при приготовлении пищи. При разности содержания СО 2 в наружном и внутреннем воздухе 100 ppm требуемый воздухообмен составит 180 м 3 /чел., что превышает разумные пределы.

В качестве одной из мер новый американский стандарт ANSI/ASHRAE Standard 62.1-2004 предусматривает динамическое изменение режимов работы вентиляции жилых и общественных зданий. Это реализуется средствами DCV (Demand-Controlled Ventilation, DCV), путем регулирования количества подаваемого свежего воздуха сверх минимально необходимого по мере изменения реально складывающейся обстановки, определяемой количеством людей, присутствующих внутри вентилируемого объема. Объективной предпосылкой к использованию в отечественной практике является значительное удешевление за последние годы инверторных схем управления скоростью вентилятора путем использования все более доступных частотно-регулируемых приводов. Технология DCV доступно рассмотрена в статье . Однако такой мерой не всегда можно добиться эффективного результата.

О другой мере по снижению содержания вредных газов в воздухе помещений П. Оле Фангер писал в своей статье : «Очистка внутреннего воздуха от газообразных загрязняющих веществ представляет собой многообещающий метод повышения качества воздуха и частичного замещения вентиляции. Разрабатываются различные методы очистки воздуха, включая сорбцию и фотокатализ. Было показано, что последний метод обладает значительной эффективностью фильтрации, которая была зафиксирована при фильтрации отдельных химических веществ, присутствующих в воздухе. Для типичной смеси из сотен химических веществ, присутствующих внутри здания в очень малых концентрациях, при использовании указанных двух методов может быть реально достижимой эффективность очистки более 80 %, то есть очистка может снизить концентрацию загрязняющих веществ и повысить качество внутреннего воздуха в пять раз. При этом очевидно, что для повышения эффективности очистки для типичных источников загрязнения внутреннего воздуха необходимы дополнительные разработки технологии очистки и проведение дальнейших исследований».

Фотокаталитическое окисление (ФКО) является очень многообещающей технологией для уменьшения летучих органических соединений (ЛОС) в воздухе помещения. Однако исследования, проведенные Национальной лабораторией Л. Беркли в 2005 и 2007 годах, показали, что метод фотокаталитического окисления уменьшает количество ЛОС в воздухе помещения, но производит формальдегид как побочный продукт. Ученые считают, что для применения данного метода необходимо провести дальнейшее изучение, с тем чтобы либо уменьшить количество формальдегидов и ацетальдегидов, получаемых в результате реакции, либо соединить эту технологию с применением газоочистителей, для того чтобы улавливать токсичные побочные продукты до того, как они попадут в помещение. К этому необходимо добавить, что ФКО не удаляет углекислый газ, а наоборот – добавляет его в помещение, так как конечными продуктами реакции должны быть СО 2 и вода.

В настоящее время наиболее безопасными для очистки воздуха от газов в помещениях, где находятся люди, можно считать фильтры, основанные на методе адсорбции загрязняющих веществ в составе приточных вентиляционных установок. В качестве фильтрующего элемента используют активированный уголь и высокоэффективные материалы. Такие фильтры уже предлагаются на климатическом рынке.

Если возможность поддержания качества воздуха на высоком уровне при помощи вентиляционных систем не представляется возможным, можно удалять его избыток бытовыми адсорберами углекислого газа.

Выводы

1. Углекислый газ является токсичным для человека даже в относительно низких концентрациях. Его нельзя рассматривать только как индикатор эффективности вентиляции. Наилучшим для человека в помещении является уровень углекислого газа, максимально приближенный к атмосферному.

2. Концентрация СО 2 требует постоянного контроля в помещениях с пребыванием людей в промышленных городах и крупных мегаполисах, где промышленность и транспорт постоянно загрязняют атмосферный воздух углекислым и другими газами. Особенно это касается детских учреждений и других общественных зданий.

3. Рост углекислого газа в атмосфере, особенно в крупных городах из-за выбросов автотранспорта, предприятий энергетики и промышленности, вызывает необходимость в увеличении воздухообмена в помещениях с пребыванием людей. Это приводит к повышенным затратам энергии и увеличению выбросов СО 2 при ее выработке. Выход из ситуации заключается в достижении разумного оптимума между количеством приточного наружного воздуха и требуемой очисткой от углекислого и других газов.

Литература

1. ГОСТ 8050-85. Двуокись углерода газообразная и жидкая. Технические условия.

2. Стандарт EN 13779:2004. Ventilation for non-residential buildings – Performance requirements for ventilation and room-conditioning systems.

3. Гигиенические нормативы ГН 2.2.5.2100-06. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны (дополнение N 2 к ГН 2.2.5.1313-03. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны).

4. РД-06-28-93. Правила безопасности при строительстве (реконструкции) и горнотехнической эксплуатации размещаемых в недрах объектов, не связанных с добычей полезных ископаемых.

5. СанПиН 2.2.3.570-96. Гигиенические требования к предприятиям угольной промышленности и организации работ.

6. СНиП 41-01-2003. Отопление, вентиляция и кондиционирование.

7. СанПиН 2.1.2.1002-00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям.

8. Справочник по теплоснабжению и вентиляции. Книга вторая. Вентиляция и кондиционирование воздуха / Р. В. Щекин и др. – Киев: Будiвельник, 1976.

9. СП 2.5.1198-03. Санитарные правила по организации пас-сажирских перевозок.

10. СанПиН 2.5.1.051-96. Условия труда и отдыха для летного состава гражданской авиации.

11. АВОК СТАНДАРТ – 1 2002. Здания жилые и общественные. Нормы воздухообмена. – М. : АВОК-ПРЕСС, 2002.

12. Dr. R. N. Chaudhuri, Dr. D. Sengupta. Report of the research project on evaluation of environmental N02, C02, benzene and lead exposures of Kolkata population by biological monitoring techniques.

13. D. S. Robertson. Health effects of increase in concentration of carbon dioxide in the atmosphere. Current science, vol. 90, no. 12, 25 june 2006.

14. D. S. Robertson. The rise in the atmospheric concentration of carbondioxide and the effects on human health. Med. Hypotheses, 2001, 56.

15. Olli Seppanen. Энергоэффективные системы вентиляции для обеспечения качественного микроклимата помещений // АВОК. – 2000. – № 5.

16. Stanke. В библиотеку проектировщика. Технологии DCV в системах вентиляции // Мир климата. – № 43.

17. П. Оле Фангер. Качество внутреннего воздуха в зданиях, построенных в холодном климате, и его влияние на здоровье, обучение и производительность труда людей // АВОК. – 2006. – № 2.

18. C. D. Keeling, T. P. Whorf. Atmospheric carbon dioxide record from Mauna Loa. Period of record 1958–2003. Carbon Dioxide Research Group, Scripps Institution of Oceanography, University of California, Internet source.

Рассмотрим классификацию качества воздуха в помещениях по показателю концентрации углекислого газа СО2. В качестве определяющей величины принята концентрация СО2, которая добавляется к уже имеющейся концентрации в поступающем в помещение наружном воздухе. При этом концентрация СО2 наружного воздуха значительно различается в зависимости от места расположения здания. В качестве примера приводятся следующие величины:

  • сельская местность- 350 ppm;
  • небольшой город- 375 ppm;
  • центр большого города- 400 ppm.

Увеличение количества углекислого газа в помещении происходит в результате жизнедеятельности человека. В первую очередь он образуется в организме и выводится в процессе дыхания, так же образуется при использовании открытого пламени. Классификация по добавленной концентрации определена нормативом ГОСТ Р ЕН 13779, см. табл. 1. Так для обеспечения среднего качества воздуха в помещении в небольшом городе добавленная концентрация должна быть в пределах 400-600 ppm. Учитывая, что в наружном городском воздухе уже содержится порядка 375 ppm, результирующая концентрация СО2 в помещении будет находится в пределах 775- 975 ppm.

Таблица 1-Качество воздуха в помещениях по добавленной концентрации СО 2

Класс Характеристика По концентрации СО 2 , добавленной * к наружному воздуху, ppm
IDA 1 Высокое качество воздуха в помещениях

≤400

(типовое значение 350)

IDA 2 Среднее качество воздуха в помещениях

400-600

(типовое значение 500)

IDA 3 Приемлемое качество воздуха в помещениях

Датчики углекислого газа являются составной частью системы автоматизации здания и управляют, как правило, принудительной вентиляцией и кондиционированием. Настройка мощности приточно-вытяжной вентиляции ранее должна была осуществляться в соответствии с установленными нормативами, которые ориентировались на максимальные расчетные показатели, к примеру, на необходимую кратность воздухообмена в зависимости от типа и объема здания.
Адаптивная система вентиляции, управляемая датчиками CO2, потребляет на 30 – 50% меньше электроэнергии в сравнении с постоянно работающей принудительной системой вентиляции. Ведь в течение для требуемый объем подаваемого и удаляемого воздуха может быть намного меньше расчетных показателей. При этом адаптивная система вентиляции, оснащенная датчиками CO2, своевременно выполняет воздухообмен в помещении, когда это требуется, создавая комфортные и безопасные условия для жизни и труда.

Чем опасен для человека углекислый газ

Предельно допустимая норма содержания CO2 в воздухе составляет всего 700 ppm. Если этот порог превышен в 2,5 раза, у людей, дышащих загрязненным углекислым газом воздухом, появляются головные боли и чувство усталости. Уже через 6 часов работы в таких условиях сильно снижается концентрация внимания и работоспособность. При этом содержание CO2 в плохо проветриваемом помещении, где находится большое количество человек, увеличивается в арифметической прогрессии за считанные минуты. К примеру, когда в небольшом переговорном кабинете (около 20 кв. м), собирается около 20 человек, концентрация углекислого газа в течение часа вырастет до 10000 ppm, если не будет выполняться подача свежего воздуха.

Повышенная концентрация CO2 негативно влияет на состояние здоровья человека не только днем, но и ночью, даже несмотря на то, что все процессы в организме замедляются. Ученые из Нидерландов установили, что для здорового сна будет важнее качество воздуха, а не продолжительность сна. Длительное вдыхание воздуха с повышенным содержанием углекислоты приводит к ухудшению иммунитета, развитию острых и хронических заболеваний верхних дыхательных путей, сердечно-сосудистой системы, крови и др.

Влияние концентрации углекислого газа на организм человека
Уровень CO2 (ppm) в атмосферном воздухе Качество воздуха и его влияние на человека
400-600 ppm рекомендованное качество воздуха для спален, детских и образовательных учреждений;
600-1000 ppm появляются жалобы на качество воздуха; у больных астмой учащается количество приступов;
1000-2000 ppm ощутимый дискомфорт испытывает 1 из 3-х человек; у всех наблюдается потеря концентрации внимания на 30%, падение пульса и кровяного давления;
2000 ppm 4 из 5 человек быстро утомляются, 2 из 3-х человек теряют способность сосредоточиться; мигрень в течение дня у 97%;
5000 - 10000 ppm одышка, учащенное сердцебиение, чувство жара во всем теле, мигрень, ощутимое снижение умственной и нервной активности;
35000- 40000 ppm потеря сознания, удушье, остановка дыхания
Последствия постоянного и кратковременного воздействия воздуха с повышенным содержанием CO2 (выше 1000 ppm) на организм человека
Кратковременное воздействие (в течение одного дня) Длительное воздействие (регулярно, от нескольких недель и месяцев до нескольких лет)
  • головная боль;
  • усталость;
  • головокружение;
  • снижение мозговой и нервной активности;
  • повышенное артериальное давление;
  • наблюдается раздражение слизистых глаз, носоглотки и верхних дыхательных путей;
  • ощущение духоты;
  • плохой сон.
  • острые и хронические болезни носоглотки и дыхательных путей (риниты; обострение аллергических заболеваний, бронхиальной астмы);
  • снижение иммунитета;
  • ухудшение репродуктивной функции;
  • изменения ДНК;
  • развитие метаболического ацидоза, который в свою очередь может вызвать сахарный диабет, заболевания крови и сердечно-сосудистой системы, остеопороз и другие серьезные заболевания.

В каких случаях необходимы датчики углекислого газа

Датчики CO2 позволяют запускать вентиляцию, в том числе и аварийную, и другие системы инженерных коммуникаций.

Сфера применения:

  • адаптация работы принудительной приточно-вытяжной вентиляции в соответствии с показателями концентрации углекислоты в воздухе в общественных, промышленных и жилых зданиях, особенно в изолированных помещениях (туннелях, подземных гаражах, моторных и испытательных стендов и др);
  • запуск аварийной сигнализации в общественных и промышленных сооружениях;
  • снижение потребляемой мощности системами вентиляции и кондиционирования;
  • контроль качества отработанного воздуха на промышленных предприятиях для своевременного устранения неисправностей.

Представляем вашему вниманию линейку датчиков CO2 от FuehlerSysteme:

Точность диагностики концентрации CO2 составляет 100 ppm (промилей). Возможна настройка трех различных интервалов пороговых значений: 0 – 2000/5000/10000 ppm.

Устройства способны работать при температуре от -20 до +50 градусов по Цельсию. Рабочий диапазон относительной влажности – от 0 до 98%, при условии, что воздух не конденсирован и не содержит большого процента химических веществ.

Имеется возможность как двухпроводного, так и трехпроводного подключения. Сигнал на выходе составляет 0 – 10 вольт или от 4 – 20 миллиампер. Предусмотрена ручная настройка нулевой точки. Производится автоматическая калибровка через каждые семь дней. Выход в рабочий режим происходит только после самодиагностики и запуска термостата.

Тип сенсорного устройства – инфракрасный нерассеянный (NDIR) измерительный элемент.

Виды датчиков углекислого газа FuehlerSysteme:

Наружные

Канальные

Комнатные

Датчики CO2 и температуры

Также разработана линейка датчиков углекислого газа, дополнительной опцией которых является возможность замера температуры в диапазоне от 0 до +50°C. Датчики CO2 и температуры представлены в трех конфигурациях - канальные, комнатные, наружные.

Они позволяют выполнять запуск аварийной сигнализации, вентиляции, отопления или термостата в автоматическом режиме во всех типах помещений. Итоговый сигнал может подаваться по двум критериям, что актуально для производств, где необходимо не только отслеживать концентрацию углекислоты, но и строго соблюдать температурный режим.

Представленное оборудование соответствует европейским нормам: CE, EAC, RoHS.

Датчики углекислого газа способны улучшить качество жизни людей и создать комфортные условия труда, предотвратив влияние вредных концентраций углекислого газа на организм. Они незаменимы и на производстве, когда выполняется контроль отработанного воздуха. Датчики CO2 могут быть интегированы в систему кондиционирования или подлючены к иному виду термостата, если оснащены дополнительной опцией замера температуры. Это позволит выполнять более строгий контроль за производственными процессами. Кроме того, датчики углекислого газа позволяют существенно снизить расходы на обслуживание принудительной системы вентиляции, уменьшив количество потребляемой ей электроэнергии. Это делает этот прибор незаменимой составляющей в современных автоматизированных системах инженерных коммуникаций.

Исследования и уровень углекислого газа в помещениях.


В последние годы появились точные инфракрасные сенсоры для замера уровня углекислого газа в помещениях. Они входят в состав газоанализаторов и показывают концентрацию углекислого газа в режиме реального времени, поэтому их удобно ставить в жилых и общественных помещениях, школах и детских садах. Однако для того, чтобы от этих измерений была польза, нужны четкие нормы по уровню углекислого газа в помещениях. А их у нас пока нет. В странах Европы, США и Канаде, как правило, нормой считается 1000 ppm (0,1%). Да, в ближайшее время мы будем измерять уровень углекислого газа в минских квартирах и улицах.

Квартиры.

Повальное увлечение пластиковыми окнами, совершенно безрукие или неработающие вентиляционные системы усугубляют ситуацию. Я измерял в своей квартире: при плотно закрытых окнах и двери помещение объемом 16 кв. метров, уровень углекислого газа в помещении достигает 1500 ppm за полтора часа. Часто люди не обращают внимание на вытяжные вентиляционные отверстия в кухне и туалете. Некоторые даже замуровывают их при ремонте. Иногда сетка на вентиляционных отверстий настолько засорена, что практически останавливает работу вентиляции. Эти факторы способствуют ухудшению качества воздуха в квартире. Представьте, что вы и еще несколько человек находятся в одном небольшом замкнутом пространстве, активно двигаются, готовят кушать и т.д. Через какое-то время, если воздух не обновляется, в этом пространстве становится очень тяжело находиться, в воздухе сконцентрировано много загрязняющих веществ, в том числе углекислого газа

Спальня.

Для хорошего качества сна и здоровья человека необходимо, чтобы уровень СО2 в спальнях и детских комнатах был не выше 0,08%. Ученые Технологического Университета Делф (Delft University of Technology), Нидерланды, считают, что для сна важнее качественный воздух в спальне, чем продолжительность сна. Высокий уровень СО2 в спальнях может также усиливать храп.

Углекислый газ в помещении, оборудованном кондиционером.

Кондиционер дает поток холодного воздуха, перепада температур при выходе на улицу, бактерий, комфортно живущих в прохладе. Но, кроме этого, для экономии электроэнергии, при работе кондиционера закрывают все окна. При этом концентрация углекислого газа быстро достигает значительной величины и получается прохладный, но содержащий избыток углекислого газа воздух.

Школы.

Ещё более тревожные данные принесло масштабное международное исследование, проведённое по инициативе Европейского респираторного общества в школах Франции, Италии, Дании, Швеции и Норвегии. Оно показало, что в учебных заведениях, где концентрация CO2 в классах превышала 1000 ppm, подверженность учащихся заболеваниям респираторных органов повышалась в 2—3,5 раза. Правда, здесь необходимо сделать уточнение. Тем не менее исследователи проблемы пришли к заключению, что безопасный уровень CO2 в помещении не должен превышать 1000 ppm.

А в школах Департамент здравоохранения США рекомендует поддерживать уровень углекислого газа не выше 600 ppm. Кроме того, существует ещё одна норма: воздух в помещениях по содержанию CO2 не должен отличаться от наружного более чем на 350 ppm. Теоретически обеспечить такое соотношение должны системы вентиляции и кондиционирования.

Во многих школах проводится мониторинг качества воздуха по уровню углекислого газа. Конечно, не всегда и не везде этот уровень соответствует норме. Но в этом случае администрация школ обязана принять меры, чтобы улучшить положение. В Финляндии, например, школу, в классах которой обнаружен повышенный уровень углекислого газа, могут даже закрыть до тех пор, пока не будет налажена вентиляция.

Офисы.

В 2007 году доктор медицинских наук Ю. Д. Губернский (Институт экологии человека и гигиены окружающей среды им. А. Н. Сытина РАМН) и кандидат технических наук Е. О. Шилькрот (ОАО «ЦНИИПромзданий) провели исследования воздушной среды в московских офисах и на улицах Москвы. При том что измерения проводились далеко не в самые неблагополучные с точки зрения метеорологической обстановки дни, уровень углекислого газа на улицах составлял 1000 ppm. А в офисах концентрация CO2 достигала 2000 ppm и даже выше.


Часто переделывают под офис помещения без правильно работающей вентиляции, в этом случае проблемы гарантированы. Особенно это касается маленьких переговорок, в которые набиваются по 20 человек. Если в переговорку на 20 квадратов сядут 20 человек — то за час концентрация углекислого газа вырастет уже до 10"000 ppm углекислого газа в помещении — а это уже уровень, при котором мозги перестают работать. Поэтому в маленьких переговорках без постоянно дующей вентиляции со свежим воздухом (не кондиционер!) допустимое время нахождения 5-10 человек без снижения когнитивных способностей — не более 10-20 минут.

Для вентиляции на больших объектах — модно реализовывать управление мощностью измеряя концентрацию CO2 в отработанном воздухе — чтобы автоматически зря воздух не гонять, когда все из офиса ушли (на подогрев/охлаждение-то уходят огромные мощности).

Фитнес-залы.

Занимаясь в фитнес- или тренажерных залах вы также можете столкнуться с проблемой повышенного уровня углекислого газа, и вместо пользы нанесете вред своему организму. Это особенно актуально потому, что при физических нагрузках уровень концентрации углекислоты в крови и так повышается, и в плохо проветриваемом помещении человек почувствует признаки гиперкапнии (избыток углекислого газа).

Вызванные гиперкапнией испарину, головную боль, головокружение и одышку списывают на физическое утомление и воспринимают чуть ли не как доказательство своей двигательной активности. На самом деле, это может говорить о переизбытке углекислого газа в артериальной крови. Длительная гиперкапния характеризуется расширением сосудов миокарда и головного мозга, может привести к росту кислотности крови, вторичному спазму кровеносных сосудов, замедлению сердечных сокращений.

Что делать? Об этом я напишу в следующей статье.