Главная · Измерения · Разновидности конденсаторов и их применение. Назначение и применение конденсаторов

Разновидности конденсаторов и их применение. Назначение и применение конденсаторов

Применение конденсаторов в технике довольно обширно. Практически в каждой электрической или электронной схеме содержатся эти радиоэлементы. Трудно представить блок питания, в котором бы не было конденсаторов. Они наряду с резисторами и транзисторами являются основой радиотехники.

А что же такое конденсатор? Это простейший элемент, с двумя металлическими обкладками, разделенными диэлектрическим веществом. Принцип работы этих приборов основан на способности сохранения электрического заряда, т. е. заряжаться, а в нужный момент разряжаться.

В современной электронике применение конденсаторов весьма широкое и разностороннее. Разберем, в каких сферах техники, и с какой целью используются эти приборы:

  1. В телевизионной и радиотехнической аппаратуре - для реализации колебательных контуров, а также их блокировки и настройки. Также их используют для разделения цепей различной частоты, в выпрямительных фильтрах и т. д.
  2. В радиолокационных приборах - с целью формирования импульсов большой мощности.
  3. В телеграфии и телефонии - для разделения цепей постоянного и различной частоты, симметрирования кабелей, искрогашения контактов и прочее.
  4. В телемеханике и автоматике - с целью реализации принципа, разделения цепей пульсирующего и постоянного токов, искрогашения контактов, в тиратронных импульсных генераторах и т. д.
  5. В сфере счетных устройств - в специальных запоминающих устройствах.
  6. В электроизмерительной аппаратуре - для получения образцов емкости, создания переменных емкостей (лабораторные переменные емкостные приборы, магазины емкости), создания измерительных устройств на емкостной основе и т. д.
  7. В лазерных устройствах - для формирования мощных импульсов.


Применение конденсаторов в современном электроэнергетическом комплексе также довольно разнообразно:

  • для повышения коэффициента мощности, а также для промышленных установок;
  • для создания продольной компенсационной емкости дальних а также для регулировки напряжения распределительных сетей;
  • для отбора емкостной энергии от высоковольтных линий передач и для подключения к ним специальной защитной аппаратуры и приборов связи;
  • для защиты от перенапряжения сети;
  • для применения в мощных тока, в схемах импульсного напряжения;
  • для разрядной электрической сварки;
  • для запуска конденсаторных электродвигателей и для создания требуемого сдвига фаз дополнительных обмоток двигателей;
  • в осветительных приборах на основе люминесцентных ламп;
  • для гашения радиопомех, которые создаются электрическим оборудованием и электротранспортом.


Применение конденсаторов в неэлектротехнических областях промышленности и техники также весьма широко. Так, в сфере металлопромышленности эти компоненты обеспечивают бесперебойную работу высокочастотных установок для плавки и термообработки металлов. Применение конденсаторов в угольной и металлорудной добывающей промышленности позволило построить транспорт на конденсаторных электровозах. А в электровзрывных устройствах используется электрогидравлический эффект.

Подведя итог, скажем, что конденсаторов настолько широка, что она охватывает все сферы нашей жизни, нет такого направления, где бы ни использовались эти приборы.

В электротехнике и радиоэлектронике широкое распространение получили различные виды конденсаторов. Каждый из них представляет собой устройство с двумя полюсами, имеющее определенное или переменное значение емкости и очень малую проводимость. Самый простой вариант конденсатора включает в себя два электрода в виде пластин или обкладок, где накапливаются разряды с противоположным значением. Чтобы избежать замыкания, они разделяются между собой тонкими .

Стандартный выпускаемый конденсатор состоит из электродов в виде многослойного рулона лент, разделяемых диэлектриком. Конфигурация конденсатора, чаще всего, представляет собой параллелепипед или цилиндр.

Как работает конденсатор

В сравнении с обычной батареей, конденсатор имеет существенные отличия. У него совершенно другая максимальная емкость, а также скорость зарядки и разрядки.


При подключении к источнику питания в самом начале ток зарядки будет иметь максимальное значение. Однако, по мере того, как заряд накапливается, наблюдается постепенное уменьшение тока, который полностью пропадает при полном заряде. Напряжение во время зарядки, наоборот, увеличивается и по окончании процесса становится равным напряжению в источнике питания.


Обозначение конденсаторов на схеме.

В случае подключения нагрузки при отключенном источнике питания, конденсатор сам становится источником тока. В этот момент, между пластинами происходит образование цепи. Через нагрузку происходит движение отрицательно заряженных электронов к ионам, обладающим положительным зарядом. В данном случае, вступает в силу закон притяжения разноименных зарядов. При прохождении тока через нагрузку происходит постепенная потеря заряда и, в конечном итоге, разрядка конденсатора. Одновременно, снижается напряжение и ток. Процесс разрядки считается завершенным, когда напряжение на электродах будет равным нулю.


Время зарядки полностью зависит от величины , а время его разрядки находится в зависимости от величины подключаемой нагрузки.

Применение конденсаторов

Конденсаторы, так же как транзисторы и , нашли широкое применение для электронных и радиотехнических схем. В электрических цепях они играют роль емкостного сопротивления. Благодаря способности к быстрой разрядке и созданию импульсов, они применяются в конструкциях фотовспышек, лазерах и ускорителях электромагнитного типа.

Очень эффективны конденсаторы при переключении электродвигателя с 380 на 220 вольт. Во время переключения к третьему выводу, происходит сдвиг фазы на 90 градусов. Таким образом, появляется возможность подключения трехфазного двигателя в однофазную сеть.

.

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Как и резисторы, конденсатор бывают разных типов и емкостей. Выпускаются в разных корпусах, самые маленькие это ЧИП SMD конденсаторы, которые применяются например в сотовых телефонах.


Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:


Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). В электронике используются конденсаторы с разными емкостями, это пикофарады, нанофарады и микрофарады.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. Номинальное напряжение маркируют на корпусе конденсатора, при превышении этого напряжения конденсаторы взрываются.

Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе, у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Электролитический полярный конденсатор.


Кроме обычных конденсаторов (пико и нанофарадов) существуют электролитические. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность.

Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Подстроечный конденсатор.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Конденсатор переменной емкости (КПЕ).

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Конденсатор не пропускает постоянный ток и является для него изолятором.

Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Конденсатор - это элемент электрической цепи, состоящий из проводящих электродов обкладок, разделённых диэлектриком и предназначенный для использования его ёмкости. Ёмкость конденсатора - есть отношение заряда конденсатора к разности потенциалов, которую заряд сообщает конденсатору.

В качестве диэлектрика в конденсаторах используются органические и неорганические материалы, в том числе оксидные плёнки некоторых металлов. При приложении к конденсатору постоянного напряжения происходит его заряд; при этом затрачивается определённая работа, выражаемая в джоулях.

Конденсаторы находят применение практически во всех областях электротехники.Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.

В вторичных источниках электропитания конденсаторы применяются для сглаживания пульсаций выпрямленного напряжения.

В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.

Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов.

Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора. ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).

Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня.

Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Также он может применяться для пуска и работы трёхфазных асинхронных двигателей при питании от однофазного напряжения.

Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени.

В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Также существуют некоторые модели трамваев, в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

Классификация конденсаторов.

Рисунок 1.

Условное обозначение на схемах.

Взависимости от назначения конденсаторы разделяются на две большие группы: общего и специального назначения.

Группа общего назначения включает в себя широко применяемые конденсаторы, используемые в большинстве видов и классов аппаратуры. Традиционно к ней относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования.

Все остальные конденсаторы являются специальными. К ним относятся: высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и др.

В зависимости от способа монтажа конденсаторы могут выполняться для печатного и навесного монтажа, а также в составе микромодулей и микросхем или для сопряжения с ними. Выводы конденсаторов для навесного монтажа могут быть жёсткие или мягкие, аксиальные или радиальные из проволоки круглого сечения или ленты, в виде лепестков, с кабельным вводом, в виде проходных шпилек, опорных винтов и т. п.

По характеру защиты от внешних воздействий конденсаторы выполняются: незащищёнными, защищёнными, неизолированными, изолированными, уплотнёнными и герметизированными.

Незащищённые конденсаторы допускают эксплуатацию в условиях повышенной влажности только в составе герметизированной аппаратуры. Защищённые конденсаторы допускают эксплуатацию в аппаратуре любого конструктивного исполнения. Неизолированные конденсаторы (с покрытием или без него) не допускают касаний своим корпусом шасси аппаратуры. Изолированные конденсаторы имеют достаточно хорошее изоляционное покрытие и допускают касания корпусом шасси аппаратуры. Уплотнённые конденсаторы имеют уплотнённую органическими материалами конструкцию корпуса. Герметизированные конденсаторы имеют герметичную конструкцию корпуса, который исключает возможность сообщения окружающей среды с его внутренним пространством. Герметизация производится с помощью керамических и металлических корпусов или стеклянных колб. По виду диэлектрика все конденсаторы можно разделить на группы: с органическим, неорганическим, газообразным и оксидным диэлектриком.