Главная · Бытовая техника · Высокий уровень co2 в квартире. Управление вентиляцией по датчику CO2. Симптомы, на которые стоит обратить внимание

Высокий уровень co2 в квартире. Управление вентиляцией по датчику CO2. Симптомы, на которые стоит обратить внимание

Заполнение пассажирами салона транспорта может быстро привести к опасному увеличению концентрации углекислого газа в воздухе. Переизбыток CO₂ может вызвать сонливость, физическую усталость и снижение концентрации внимания. Эта проблема актуальна для вагонов поездов, салонов автобусов, самолётов и многих других видов транспорта. Для её решения существуют специальные сенсоры климат-контроля, которые могут отслеживать концентрацию CO₂ в воздухе. Собранные сенсором данные могут помочь увеличить эффективность системы кондиционирования воздуха, что, в свою очередь, позволит снизить энергопотребление транспортного средства.

Зачем измерять уровень CO₂ в салоне?

Автобус, вагон метро, самолёт - конструкции этих транспортных средств становятся всё более герметичными. И чем больше в салоне пассажиров, тем выше там концентрация углекислого газа. В сравнении с пустым салоном, уровень CO₂ в переполненном может быстро достичь критических значений. А это означает, что необходима система вентиляции.

Высокая концентрация углекислого газа в воздухе может вызывать ощутимую усталость и серьёзные нарушения концентрации внимания, что может быть крайне опасно для водителя. Так же, отсутствие вентиляции в салоне увеличивает вероятность распространения вирусных и бактериальных инфекций.

На данный момент в большинстве транспортных систем охлаждения используется фреон или аммиак. Но с каждым годом доля систем, работающих на CO₂, растёт, в связи с экологичностью и негорючестью этого газа. Поэтому сенсоры CO₂ актуальны и для отслеживания утечек систем охлаждения.

Из-за особенностей конструкции транспортных средств к используемым в них датчикам CO 2 могут предъявляться специальные требования. Из-за дефицита свободного пространства, габариты всех элементов систем вентиляции, в том числе и датчиков давления, должны быть достаточно небольшими. Также в случае поезда или автомобиля окружающая среда может быть недостаточно чистой, поэтому датчик CO 2 должен обладать повышенным классом защиты, не допускающим попадания внутрь корпуса пыли. Данным условиям прекрасно удовлетворяет датчик , обладающий миниатюрными габаритами, а также имеющий класс защиты IP50.

Как работает система климат-контроля? (Как это работает?)

Концентрация углекислого газа в пустом транспортном средстве - около 400 ppm, что является нормальной уличным показателем. Как упоминалось ранее, показатель концентрации CO₂ в салоне растёт вместе с количеством пассажиров. Оптимальным решением в таком случае будет использование адаптивных систем вентиляции. Сенсоры системы будут непрерывно измерять и оценивать содержание углекислого газа, благодаря чему вентиляционный комплекс сможет поддерживать требуемый уровень свежести воздуха.

Экономия средств

Согласно исследованиям инженеров SenseAir, использование адаптивных систем вентиляции поможет сохранить до 10% топлива, даже в режиме максимального охлаждения. Применение таких систем экологично и экономично.

Так же, правильная вентиляция уменьшает риск многих заболеваний среди персонала и пассажиров транспортного средства, что исключает сопутствующие болезням издержки.

Чистый воздух в салоне значительно уменьшает количество транспортных происшествий, связанных с сонливостью и сниженной концентрацией внимания водителя. Вероятность возникновения соответствующих издержек также уменьшается.

Ключевые преимущества

  • Атмосфера салона, благоприятная для здоровья
  • Энергосбережение
  • Экологичность
  • Уменьшение рисков транспортных происшествий

Описание:

Еще несколько лет назад в отечественных нормативных документах при проектировании вентиляции в помещениях с пребыванием людей СО2 учитывался только косвенно в удельных нормах воздухообмена. В зарубежных стандартах его концентрация в воздухе помещений служит индикатором содержания других более вредных загрязняющих веществ и соответствующей интенсивности вентиляции.

К вопросу о нормировании воздухообмена по содержанию CO 2 в наружном и внутреннем воздухе

И. М. Квашнин , канд. тех. наук, ведущий специалист НПП «Энергомеханика»

И. И. Гурин , директор компании Alfaintek Oy

В журнале «АВОК», № 4, 2008, была опубликована статья Ю. Д. Губернского и Е. О. Шилькрота «Сколько воздуха нужно человеку для комфорта? », которая вызвала большой интерес у специалистов. Представленный в статье материал показывает, что хотя проблеме нормирования воздухообмена по СО 2 уделяется много внимания, материала для решения этого вопроса пока не достаточно. Данная статья предлагает продолжить обсуждение этой проблеммы.

Еще несколько лет назад в отечественных нормативных документах при проектировании вентиляции в помещениях с пребыванием людей СО 2 учитывался только косвенно в удельных нормах воздухообмена. В зарубежных стандартах его концентрация в воздухе помещений служит индикатором содержания других более вредных загрязняющих веществ и соответствующей интенсивности вентиляции. Высокие концентрации углекислого и других газов в наружном воздухе больших городов приводят к необходимости выбора: либо интенсифицировать воздухообмен, вызывая цепную реакцию увеличения потребления энергоресурсов путем сжигания органического топлива с дополнительным загрязнением атмосферы (в том числе СО 2), либо производить очистку приточного воздуха от газов. Это соответствует последним исследованиям ученых о вреде двуокиси углерода для здоровья людей при повышении концентрации в два–три раза по сравнению с чистым атмосферным воздухом.

По данным современной медицины, в составе метаболических (жизнедеятельностных) выделений организма человека выявлено несколько сотен химических соединений, из которых более двухсот веществ – с поверхности кожи и свыше ста – с выдыхаемым воздухом. Одним из наиболее интересных веществ является углекислый газ. Это относительно безвредный газ по ГОСТ 12.1.007-76 относится к 4 классу опасности, он содержится в небольших количествах в составе чистого атмосферного воздуха. По данным большинства источников, его концентрация составляет примерно 0,03 % от объема (об.), то есть в 1 м 3 содержится 0,3 л, или 0,3/22,4 = 0,01339 моль (по данным БСЭ – 0,0314 % об.). Зная молекулярную массу диоксида азота 44 г/моль, легко определить его массу в 1 м 3 , а именно: 44 х 0,01339 = 0,589 г. Концентрация, соответственно, равна 589 мг/м 3 . В таких количествах углекислый газ необходим для жизнедеятельности человека. По ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия» плотность газообразной двуокиси углерода составляет 1,839 кг/м 3 , то есть примерно в 1,5 раза больше воздуха. В таблице 1 приведены формулы перевода величин из одних единиц в другие. Как в отечественных нормативных документах, так и в зарубежных отсутствует норматив предельно допустимой концентрации углекислого газа в атмосферном воздухе. Очевидно, что содержание в воздухе СО 2 будет различным в сельской местности, небольших и крупных городах. Фоновые концентрации определяются выбросами автотранспорта, сжиганием топлива на предприятиях теплоэнергетики и работой промышленных предприятий. Затруднение заключается в том, что мониторинг за уровнем СО 2 службами Центра по гидрометеорологии не ведется. За рубежом углекислый газ, наряду с окислами азота, оксидом углерода, диоксидом серы и летучими органическими соединениями, является типичным загрязняющим веществом, которое подлежит учету при оценке наружного воздуха для проектирования систем вентиляции и кондиционирования. Европейский стандарт ЕН 13779 «Ventilation for non-residential buildings – Performance requirements for ventilation and room-conditioning systems» в качестве общего базового руководства предлагает принимать концентрацию углекислого газа в сельской местности 350 ppm, в небольших городах 400 ppm, в центрах городов 450 ppm. На самом деле она может быть существенно выше. Например, измерения в центре Москвы в безветренную погоду в конце лета в районе Садового кольца показали, что при достаточно интенсивном движении транспорта уровень СО 2 поднимался до 900 ppm (0,09 % об.). Погуляв несколько часов эту концентрацию и без приборов ощутит на себе каждый в виде головной боли.

Примечание:
С а – числовое значение концентрации в заданных единицах;
С х – числовое значение концентрации в искомых единицах;
М – молекулярная масса газа;
Р – общее давление газовой смеси, Па;
Т – температура, °К.

Одним из способов, широко применяемых на Западе, для определения требуемой интенсивности воздухообмена в общественных зданиях, является использование углекислого газа в качестве индикатора качества воздуха. По его концентрации судят о содержании других веществ, выделяемых человеком, которых в относительных концентрациях (отношение фактической концентрации к ПДК) образуется меньше. При снижении уровня СО 2 разбавлением приточным воздухом одновременно снижается уровень концентрации других веществ. Углекислый газ выбран из-за того, что его концентрацию легко измерить с достаточно высокой точностью и его массовое выделение значительно больше других вредных веществ.

Общеизвестно, что один человек в спокойном состоянии, например работник офиса, за один час потребляет 20–30 л кислорода с выделением 18–25 л углекислого газа, а при занятиях в фитнес- и тренажерных залах – до 36 л и более. Если во вдыхаемом воздухе содержится 0,03 % (об.) СО 2 , то в выдыхаемом – 3,6 % (об.), то есть возрастает более чем в 100 раз. Интенсивно выделяется углекислый газ от газовой плиты при приготовлении пищи. При возрастании содержания в воздухе значения CO2 выше определенной величины человек начинает чувствовать себя дискомфортно, может впадать в дремотное состояние, возникают головные боли, тошнота, чувство удушья. Его влияние настолько постепенное и слабое, что его трудно сразу обнаружить. Этот предел индивидуален для различных людей – мужчин и женщин, детей. Однако до недавнего времени в отечественных документах отсутствовал норматив качества воздуха помещений для углекислого газа. Лишь гигиеническими нормативами в 2006 году введена максимально разовая ПДК равная 13 790 ppm (27 000 мг/м 3) и среднесменная 4 597 ppm (9 000 мг/м 3) для воздуха рабочей зоны производственных помещений. Для сравнения: в США эти цифры составляют 30 000 ppm (58 740 мг/м 3) и 5 000 ppm (9 790 мг/м 3), соответственно. В шахтах на рабочих местах допускается концентрация 0,5 % (об.) или 5 000 ppm. В соответствии с ГОСТ 8050-85 «При концентрациях более 5 % двуокись углерода оказывает вредное влияние на здоровье человека… При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья». Напомним, что максимально разовая и среднесменная концентрация ПДК воздуха рабочей зоны определяются ГОСТ 12.1.005-88 и гигиеническими нормативами ГН 2.2.5.1313-03, ГН 2.2.5.1314-03.

Для помещений жилых и общественных зданий этот норматив по-прежнему отсутствует. Коллизия возникает в связи с тем, что в соответствии со СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» , СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям» и др. для этих помещений норматив качества принимается равным для воздуха населенных мест (ГН 2.1.6.1338-03; ГН 2.1.6.1339-03), который, как отмечалось выше, отсутствует. Однако, в отличие от многих других загрязняющих веществ, практически не выделяющихся в помещениях, содержание двуокиси углерода интенсивно увеличивается. Интересно, что еще в справочнике Р. В. Щекина 1976 года приводится расчет требуемого воздухообмена на разбавление СО 2 одним человеком.

Европейский стандарт 2004 года предлагает разделять воздух в помещениях с пребыванием людей на категории качества от IDA 4 – низкое, IDA 2 и 3 – среднее, до IDA 1 – высокое. Предполагается несколько способов определения категории качества. Один из них оценивает превышение уровня СО 2 , как индикатора, в воздухе помещений над наружным воздухом (табл. 2).

Таблица 2
Категория помещения Превышение уровня СО 2 в помещении над его
содержанием в наружном воздухе, ppm
Типичный диапазон Задаваемое значение
IDA 1 <400 350
IDA 2 400–600 500
IDA 3 600–1 000 800
IDA 4 ≥1000 1 200

Зная местонахождение здания (сельская местность, город) и уровень концентрации СО 2 в наружном воздухе легко определить его расчетное содержание в воздухе помещения. Далее приводятся рекомендации по установке определенных классов фильтров, как правило, не менее двух ступеней, для достижения необходимой чистоты воздуха в соответствии с требуемой категорией качества IDA. Это касается не только твердых пылевых частиц, но и основных газов: NO x , SO 2 , полициклических ароматических углеводородов и летучих органических соединений. Стандарт гласит: «В городской среде рекомендуется использование молекулярных (газовых) фильтров». Отметим, что по представлению ассоциации АСИНКОМ европейский стандарт принят без изменений как отечественный ГОСТ Р ЕН 13779-2007 «Вентиляция в нежилых зданиях. Технические требования к вентиляции и кондиционированию». ФГУП СТАНДАРТИНФОРМ объявило о том, что он вводится в действие с 1 октября 2008 года.

Допустимое приемлемое значение содержания углекислого газа в помещениях с пребыванием людей было установлено гигиенистами и принято, например, стандартом ASHRAE 62-1989 на уровне 1 000 ppm (1 958 мг/м 3) или 0,1 % (об.). На эту величину опираются многие авторы при расчетах воздухообмена. Это значение фигурирует в СП 2.5.1198-03 «Санитарные правила по организации пассажирских перевозок» для железнодорожных вокзалов и СанПиН 2.5.1.051-96 «Условия труда и отдыха для летного состава гражданской авиации» для кабин воздушных судов. Зная выделение СО 2 одним человеком в офисе – 18 л/ч (0,005 л/с) или 35 200 мг/ч по формуле (Л.2) СНиП 41-01-2003 требуемый расход приточного воздуха для одного человека равен

L = 35 200 / (1 958 – 589) = 25,7 м 3 /ч.

В единицах л/с и ppm L = х 106 = 7,14 л/с.

Первым отечественным документом, в котором предпринята попытка регламентировать содержание СО 2 в наружном и внутреннем воздухе, является стандарт АВОК «Здания жилые и общественные. Нормы воздухообмена» . В качестве рекомендуемой справочной предлагается предельно допустимая концентрация в наружном воздухе: сельская местность – 332 ppm (650 мг/м 3), малые города – 409 ppm (800 мг/м 3), большие города – 511 ppm (1 000 мг/м 3). Верхний допустимый предел концентрации СО 2 в помещениях жилых и общественных зданий не должен превышать концентрацию в наружном воздухе на 638 ppm (1 250 мг/м 3). В этом случае требуемый воздухообмен на 1 человека составит 28 м 3 /ч.

В результате последних исследований, проведенных индийскими учеными в городе Калькутта , было выяснено, что так же, как NO 2 , СО 2 является потенциально токсичным для человека даже в низких концентрациях, принимая во внимание его воздействие на клеточную мембрану и биохимические изменения, такие, как увеличение напряжения CO 2 в крови, увеличение концентрации ионов бикарбоната в крови и моче, ацидоз и т. д. Для выявления того, как влияет уровень СО 2 в воздухе на процессы в организме человека, были проведены замеры уровня бикарбоната в крови и в моче человека. Всего было исследовано 593 человек из жилого, коммерческого и промышленного районов города и контрольной зоны, находящейся в экологически чистой сельской местности. Уровень бикарбоната в сыворотке крови – биологический показатель влияния СО 2 – оказался в среднем на 60 % выше у жителей Калькутты, чем у жителей сельских районов, причем самым высоким он был у жителей промышленной зоны. В городе Калькутта СО 2 присутствовал в воздухе в концентрациях от 0,03 до 0,06 %. Уровень вентиляции в помещениях был адекватным почти в 75 % жилых и рабочих помещений. Принимая во внимание то, что увеличение уровня СО 2 в атмосфере ведет к увеличению его концентрации в воздухе помещения, можно сказать, что он может явиться причиной увеличение уровня бикарбоната в крови.

В своих работах , английский ученый D. S. Robertson пишет, что уровень углекислого газа в атмосфере, при котором человечество может выжить, значительно ниже, чем предполагалось, поэтому безопасный для человека уровень углекислого газа требует пересмотра. Он рассчитал максимальный безопасный для человека уровень углекислого газа в атмосфере, составляющий 426 ррm. Ученый также считает, что под влиянием углекислого газа, уровень которого выше указанной цифры, происходит снижение величины pH в сыворотке крови, что ведет к ацидозу. Симптомы начальной степени ацидоза следующие: состояние перевозбуждения и умеренная гипертензия. Далее к ним добавляются сонливость и состояние беспокойства и как следствие уменьшение желания проявлять физическую активность. Существует вероятность того, что когда концентрация углекислого газа в атмосфере достигнет 426 ppm, а это может случиться раньше, чем через два поколения, здоровье, по крайней мере, некоторой части населения Земли, ухудшится.

Финские ученые под руководством Olli Seppanen провели 21 эксперимент на основе более 30 000 испытуемых по исследованию влияния концентрации углекислого газа. Если уровень углекислого газа в офисном помещении был ниже 800 ppm (0,08 % об.), такие симптомы, как воспаление глаз, заложенность носа, воспаление носоглотки, проблемы, связанные с дыхательной системой, головная боль, усталость и сложность с концентрацией внимания, которые возникали у сотрудников при более высокой концентрации СО 2 , значительно снижались.

В пресс-релизе ежегодной конференции Европейского респираторного общества в 2006 году были опубликованы результаты исследований, проведенных в пяти странах ЕЭС группой итальянских ученых. Исследования показали, что 68 % детей испытывают на себе негативное влияние СО 2 выше уровня 1 000 ppm. У них наблюдалось тяжелое дыхание, одышка, сухой кашель и ринит чаще, чем у других детей. Были сделаны следующие выводы: у детей, находящихся в помещении с высоким уровнем СО 2 , в 3,5 раза выше риск возникновения сухого кашля и в 2 раза – развитие ринита. Они имеют более уязвимую носоглотку, чем их ровесники.

В исследовании корейских ученых о влиянии концентрации СО 2 в помещении на приступы астмы у детей, в домах и квартирах, где живут дети больные астмой, замерялся уровень содержания веществ, которые считаются основными загрязнителями воздуха в помещении, таких как СО, NO 2 , аллергены и СО 2 . В результате данных исследований были сделаны выводы о том, что самым важным фактором, влияющим на возникновение приступов астмы у детей, является только уровень концентрации СО 2 .

Принимая допустимую концентрацию СО 2 в наружном воздухе мегаполиса 450 ppm, а оптимальную во внутреннем воздухе 800 ppm требуемый воздухообмен на 1 человека составит

L = 106 = 14,29 л/с = 51,4 м 3 /ч.

Реально концентрация в наружном воздухе может быть еще выше, а внутри помещения могут быть другие источники выделения СО 2 , например при приготовлении пищи. При разности содержания СО 2 в наружном и внутреннем воздухе 100 ppm требуемый воздухообмен составит 180 м 3 /чел., что превышает разумные пределы.

В качестве одной из мер новый американский стандарт ANSI/ASHRAE Standard 62.1-2004 предусматривает динамическое изменение режимов работы вентиляции жилых и общественных зданий. Это реализуется средствами DCV (Demand-Controlled Ventilation, DCV), путем регулирования количества подаваемого свежего воздуха сверх минимально необходимого по мере изменения реально складывающейся обстановки, определяемой количеством людей, присутствующих внутри вентилируемого объема. Объективной предпосылкой к использованию в отечественной практике является значительное удешевление за последние годы инверторных схем управления скоростью вентилятора путем использования все более доступных частотно-регулируемых приводов. Технология DCV доступно рассмотрена в статье . Однако такой мерой не всегда можно добиться эффективного результата.

О другой мере по снижению содержания вредных газов в воздухе помещений П. Оле Фангер писал в своей статье : «Очистка внутреннего воздуха от газообразных загрязняющих веществ представляет собой многообещающий метод повышения качества воздуха и частичного замещения вентиляции. Разрабатываются различные методы очистки воздуха, включая сорбцию и фотокатализ. Было показано, что последний метод обладает значительной эффективностью фильтрации, которая была зафиксирована при фильтрации отдельных химических веществ, присутствующих в воздухе. Для типичной смеси из сотен химических веществ, присутствующих внутри здания в очень малых концентрациях, при использовании указанных двух методов может быть реально достижимой эффективность очистки более 80 %, то есть очистка может снизить концентрацию загрязняющих веществ и повысить качество внутреннего воздуха в пять раз. При этом очевидно, что для повышения эффективности очистки для типичных источников загрязнения внутреннего воздуха необходимы дополнительные разработки технологии очистки и проведение дальнейших исследований».

Фотокаталитическое окисление (ФКО) является очень многообещающей технологией для уменьшения летучих органических соединений (ЛОС) в воздухе помещения. Однако исследования, проведенные Национальной лабораторией Л. Беркли в 2005 и 2007 годах, показали, что метод фотокаталитического окисления уменьшает количество ЛОС в воздухе помещения, но производит формальдегид как побочный продукт. Ученые считают, что для применения данного метода необходимо провести дальнейшее изучение, с тем чтобы либо уменьшить количество формальдегидов и ацетальдегидов, получаемых в результате реакции, либо соединить эту технологию с применением газоочистителей, для того чтобы улавливать токсичные побочные продукты до того, как они попадут в помещение. К этому необходимо добавить, что ФКО не удаляет углекислый газ, а наоборот – добавляет его в помещение, так как конечными продуктами реакции должны быть СО 2 и вода.

В настоящее время наиболее безопасными для очистки воздуха от газов в помещениях, где находятся люди, можно считать фильтры, основанные на методе адсорбции загрязняющих веществ в составе приточных вентиляционных установок. В качестве фильтрующего элемента используют активированный уголь и высокоэффективные материалы. Такие фильтры уже предлагаются на климатическом рынке.

Если возможность поддержания качества воздуха на высоком уровне при помощи вентиляционных систем не представляется возможным, можно удалять его избыток бытовыми адсорберами углекислого газа.

Выводы

1. Углекислый газ является токсичным для человека даже в относительно низких концентрациях. Его нельзя рассматривать только как индикатор эффективности вентиляции. Наилучшим для человека в помещении является уровень углекислого газа, максимально приближенный к атмосферному.

2. Концентрация СО 2 требует постоянного контроля в помещениях с пребыванием людей в промышленных городах и крупных мегаполисах, где промышленность и транспорт постоянно загрязняют атмосферный воздух углекислым и другими газами. Особенно это касается детских учреждений и других общественных зданий.

3. Рост углекислого газа в атмосфере, особенно в крупных городах из-за выбросов автотранспорта, предприятий энергетики и промышленности, вызывает необходимость в увеличении воздухообмена в помещениях с пребыванием людей. Это приводит к повышенным затратам энергии и увеличению выбросов СО 2 при ее выработке. Выход из ситуации заключается в достижении разумного оптимума между количеством приточного наружного воздуха и требуемой очисткой от углекислого и других газов.

Литература

1. ГОСТ 8050-85. Двуокись углерода газообразная и жидкая. Технические условия.

2. Стандарт EN 13779:2004. Ventilation for non-residential buildings – Performance requirements for ventilation and room-conditioning systems.

3. Гигиенические нормативы ГН 2.2.5.2100-06. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны (дополнение N 2 к ГН 2.2.5.1313-03. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны).

4. РД-06-28-93. Правила безопасности при строительстве (реконструкции) и горнотехнической эксплуатации размещаемых в недрах объектов, не связанных с добычей полезных ископаемых.

5. СанПиН 2.2.3.570-96. Гигиенические требования к предприятиям угольной промышленности и организации работ.

6. СНиП 41-01-2003. Отопление, вентиляция и кондиционирование.

7. СанПиН 2.1.2.1002-00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям.

8. Справочник по теплоснабжению и вентиляции. Книга вторая. Вентиляция и кондиционирование воздуха / Р. В. Щекин и др. – Киев: Будiвельник, 1976.

9. СП 2.5.1198-03. Санитарные правила по организации пас-сажирских перевозок.

10. СанПиН 2.5.1.051-96. Условия труда и отдыха для летного состава гражданской авиации.

11. АВОК СТАНДАРТ – 1 2002. Здания жилые и общественные. Нормы воздухообмена. – М. : АВОК-ПРЕСС, 2002.

12. Dr. R. N. Chaudhuri, Dr. D. Sengupta. Report of the research project on evaluation of environmental N02, C02, benzene and lead exposures of Kolkata population by biological monitoring techniques.

13. D. S. Robertson. Health effects of increase in concentration of carbon dioxide in the atmosphere. Current science, vol. 90, no. 12, 25 june 2006.

14. D. S. Robertson. The rise in the atmospheric concentration of carbondioxide and the effects on human health. Med. Hypotheses, 2001, 56.

15. Olli Seppanen. Энергоэффективные системы вентиляции для обеспечения качественного микроклимата помещений // АВОК. – 2000. – № 5.

16. Stanke. В библиотеку проектировщика. Технологии DCV в системах вентиляции // Мир климата. – № 43.

17. П. Оле Фангер. Качество внутреннего воздуха в зданиях, построенных в холодном климате, и его влияние на здоровье, обучение и производительность труда людей // АВОК. – 2006. – № 2.

18. C. D. Keeling, T. P. Whorf. Atmospheric carbon dioxide record from Mauna Loa. Period of record 1958–2003. Carbon Dioxide Research Group, Scripps Institution of Oceanography, University of California, Internet source.

ЖЕНЕВА, 24 окт - РИА Новости, Елизавета Исакова. Усредненная концентрация углекислого газа в атмосфере Земли выросла до рекордной отметки в 2015-2016 годах, достигнув существенного значения в 400 частей на миллион, говорится в ежегодном Бюллетене Всемирной метеорологической организации (ВМО) по парниковым газам, опубликованном в понедельник.

Чубайс: нанотехнологии могут снизить мировые выбросы парниковых газов Для снижения эмиссии парниковых газов не обязательно заниматься только энергоэффективностью, заявил председатель правления госкомпании Роснано Анатолий Чубайс.

Согласно данным ВМО, уровни CO2 ранее достигали пороговой отметки в 400 частей на миллион в определенные месяцы года и в определенных точках планеты, однако никогда прежде этот уровень не наблюдался в глобальном среднем масштабе за целый год. По прогнозам станции мониторинга парниковых газов на Мауна-Лоа (Гавайи), концентрации CO2 останутся на уровне выше 400 частей на миллион в течение всего 2016 года, и не опустятся ниже этой отметки в течение жизни многих поколений.

Причиной такого скачка СО2 метеорологи называют мощное явление Эль-Ниньо, которое послужило толчком для развития засух в тропических регионах и уменьшению способности лесов, растительности и океанов поглощать углекислый газ. Эти поглотители в настоящее время вбирают в себя примерно половину выбросов CO2, однако существует риск их насыщения, что приведет к увеличению доли выбрасываемой двуокиси углерода, которая остается в атмосфере.

Помимо сокращения потенциала растительности поглощать CO2, Эль-Ниньо также привел к увеличению объема выбросов углекислого газа в результате лесных пожаров. Объем выбросов CO2 в экваториальной Азии, где в августе-сентябре 2015 года в Индонезии наблюдались масштабные лесные пожары, был более чем вдвое выше средних значений за 1997-2015 годы.

"Без решения проблемы выбросов CO2 мы не сможем решить проблему изменения климата и удержать повышение температуры на уровне ниже 2 °С в сравнении со значениями доиндустриального периода. В этой связи крайне важно, чтобы Парижское соглашение действительно вступило в силу со значительным опережением графика 4 ноября, а также чтобы мы ускорили его осуществление", — заявил генеральный секретарь ВМО Петтери Таалас, комментируя данные, опубликованные в бюллетене ВМО.

На двуокись углерода приходится около 65 % от общего объема радиационного воздействия долгоживущих парниковых газов. Уровень концентрации СО2 в доиндустриальный уровень составлял 278 частей на миллион. Рост среднегодовых концентраций CO2 в 2015 году составил 144 % от доиндустриальных уровней, достигнув отметки в 400 частей на миллион. Прирост CO2 с 2014 года по 2015 года был больше, чем в среднем за предыдущие 10 лет.

Вторым наиболее важным долгоживущим парниковым газом является метан. На него приходится примерно 17 % вклада в радиационное воздействие. В настоящее время его концентрация составляет 256 % от доиндустриального уровня. Концентрация в атмосфере третьего парникового газа — закиси азота - в прошлом году составила около 328 частей на миллиард, что является 121 % от доиндустриальных уровней. Закись азота также играет важную роль в разрушении стратосферного озонового слоя, который защищает нас от пагубного воздействия ультрафиолетовых солнечных лучей.

Есть прописные истины, знакомые любому человеку практически с рождения. Зимой холодно, а летом тепло. При дыхании потребляется кислород и выделяется углекислый газ. Когда в помещении скапливается много углекислого газа, то становится душно, а чтобы в помещении стало находиться комфортнее - его нужно проветрить. Но при этом большинство людей склонно недооценивать влияние повышенной концентрации CO2 на здоровье и качество жизни. Об этом я и хочу поговорить в данной статье, а также показать, как влияет кондиционер на процесс очистки воздуха. И заодно представить обзор детектора уровня CO2, который помогает держать качество воздуха в помещении под контролем.

1 Что нужно знать о CO2
2 Техническая информация
3 Внешний вид и принцип действия
4 Измерения
5 Домашняя автоматизация
6 Выводы

1. Что нужно знать о CO2

CO2 или углекислый газ - неотъемлемая часть любой воздушной смеси, содержание которого измеряется в миллионных долях (ppm - parts per million). Условно нормальный уровень CO2 в свежем уличном воздухе принято считать за 400ppm. Эта цифра непостоянна и зависит от конкретной локации - так, в экологически чистом районе с отсутствием промышленности и малой плотностью заселенности содержание углекислого газа в атмосфере может быть ниже среднего значения, а в густонаселенном мегаполисе, да еще с промышленными предприятиями практически наверняка будет выше среднего.

Воздух в помещении считается качественным, если содержание CO2 в нем колеблется в пределах 800ppm. При достижении концентрации углекислого газа 1000ppm у многих людей уже появляется ощущение духоты и вялости, а 1400ppm - предел нормы по рекомендациям Сан-Пина.

Опасным уровнем является 30000ppm - при достижении такой концентрации CO2 у человека учащается пульс, возникает ощущение тошноты и прочие симптомы кислородного голодания. Хорошая новость заключается в том, что «надышать» такую концентрацию углекислого газа практически невозможно в офисных и жилых помещениях даже очень низкого качества. Тем не менее, даже небольшие превышения допустимой концентрации CO2 способны существенно влиять на качество жизни. Уже при 1000ppm снижается концентрация внимания, появляется ощущение вялости, мозг начинает хуже обрабатывать информацию. При концентрации CO2 выше 1400ppm в офисе становится трудно концентрироваться на работе, а дома появятся проблемы со сном. Содержание СО2 зависит, в большей степени, от количества людей, находящихся в закрытом помещении.

«Управлять можно только тем, что можно измерить», писал основоположник современной теории управления Питер Друкер. И первый шаг к управлению микроклиматом помещения заключается в начале отслеживания его объективных показателей.

В этом-то нам и поможет от компании Даджет.

2. Техническая информация

Название модели: Детектор СО2 (Mini Monitor СО2)
Диапазон измерения CO2: 0 - 3000 ppm
Диапазон измерения температуры: 0 - 50
Точность измерений: ±10% ppm, ±1,5°C
Вывод информации: ЖК-дисплей, светодиодные индикаторы
Потребление тока: до 200мА
Дополнительные функции: звуковой сигнал превышения концентрации CO2

3. Внешний вид и принцип действия

Детектор CO2 поставляется в картонной коробке, содержащей сведения о производителе и краткую памятку по влиянию повышенных концентраций углекислого газа на самочувствие человека.

Внутри находится сам прибор, инструкция на русском языке и USB-кабель. У детектора нет встроенного аккумулятора, поэтому работать он может только от внешнего источника питания: USB-порта компьютера или обычного зарядного устройства для смартфона.

Само устройство крупным планом. На передней панели находится экран и три индикационных светодиода, отображающих усреднённо результаты измерений: при концентрации CO2 ниже 800ppm светится зеленый светодиод, при 800-1200ppm - желтый, выше 1200ppm - красный. Значения интервалов действия индикаторов можно изменить в настройках.

Вообще, светодиодная индикация оказалась очень информативной вещью. Не нужно подходить к прибору и всматриваться в текущие значения показателей. Издалека видно, что если индикатор переключился с зеленого на желтый, то помещение можно уже и проветрить, а если он покраснел - проветривание желательно начать уже прямо сейчас.

На правом боку находится microUSB-порт и отверстие, через которое происходит забор воздуха для анализа.

Сзади отверстия для вентиляции, наклейка с технической информацией и две кнопки, которыми осуществляется настройка.

Сердцем устройства является датчик углекислого газа ZGm053UK, работающий по технологии NDIR (non-dispersive infrared radiation, недисперсионное инфракрасное излучение): в световодную трубку заходит поток воздуха и попадает под излучение инфракрасной лампы, а на другом конце трубки стоит инфракрасный детектор с соответствующим фильтром. Чем больше в воздушной смеси содержится CO2 - тем сильнее ослабевает инфракрасное свечение, что и позволяет датчику определить текущую концентрацию CO2.

Себестоимость NDIR-сенсоров выше, чем у аналогов с другим принципом работы (электрохимическим или электроакустическим), но при этом они имеют длительный срок службы и обеспечивают более точные результаты.

4. Измерения

Теперь испытаем детектор в работе. Место проведения измерений - Челябинск, двухкомнатная квартира в относительно тихом районе, окна выходят во двор.

Опыт №1. Знакомство с прибором

Первым делом я измерил концентрацию углекислого газа на улице, разместив детектор у открытого окна на 4 этаже.

Измерения показали 440ppm. Нормальный уровень содержания CO2 в атмосфере, напоминаю, составляет 400ppm. Ну что же, с поправкой на безветренную погоду и проживание в промышленном мегаполисе с традиционно проблемной экологией, 440ppm можно считать нормальным результатом.

Теперь измерим уровень CO2 в самой квартире, предварительно хорошо ее проветрив все комнаты.

Получилось 550ppm. Это отличный результат, воздух почти как на улице.

Но, забегая наперед, скажу: поддерживать такое качество воздуха на постоянной основе в квартире, не оснащенной продвинутыми системами вентиляции, практически невозможно.

Опыт №2. Длительные измерения

По ходу обзора я еще не упоминал, что детектор не только отображает моментальные значения концентрации CO2, но и способен работать в связке с компьютером.

Если установить специальную программу, то устройство будет фиксировать уровень концентрации CO2 и температуры в помещении с привязкой ко времени и строить график на основании этих показателей.

Дальнейшие измерения будем проводить при помощи этой программы.

Ночь с закрытыми окном и дверью. К утру концентрация CO2 в комнате подскакивает практически до 2000ppm.

Открываем створку окна на проветривание и смотрим на график. Примерно за 40 минут концентрация углекислого газа снижается с 2000ppm до здорового уровня 700ppm.

Вечер. Затихает естественный шум и становятся особенно слышны голоса отдыхающих во дворе компаний. Они мешают, поэтому закрываю окно.

За час концентрация CO2 повышается почти что вдвое, с 700ppm до 1300ppm.

Опыт №3. Суточный мониторинг

Теперь посмотрим, как меняется концентрация CO2 в помещении в течение одного полного дня.
Исходные данные: все та же двухкомнатная квартира, в которой одновременно находятся от одного до трех человек. Окно на кухне практически всегда открыто, окна и балконная дверь в комнатах открываются и закрываются в течение дня, межкомнатные двери закрываются на ночь.

Хорошо проветриваю комнату перед сном, закрываю окно и ложусь спать.

К полуночи концентрация CO2 уже превышена, но до пяти часов утра сохраняется на уровне, который с натяжкой можно назвать удовлетворительным. На временном промежутке с пяти до девяти утра концентрация CO2 повышается до 2000ppm. Кстати, это вполне коррелирует с личными ощущениями при сне с закрытым окном. Где-то в 5 утра я просыпаюсь в достаточно бодром состоянии, но поскольку еще слишком рано - остаюсь в кровати досыпать до звонка будильника. По звонку будильника в 7 утра просыпаюсь с тяжелой головой и в подавленном настроении, как будто и не спал всю ночь - к этому времени организм уже успевает надышаться «плохим» воздухом, что сказывается на самочувствии.

С 9 до 10 часов - проветривание. Открыты окна во всех комнатах, концентрация CO2 спадает с 2000ppm до 600ppm.

С 10 до 15 часов - окна в комнатах закрыты, на кухне открыта форточка. В квартире 1 человек. Концентрация CO2 в норме.

С 15 до 18 часов - открыты форточки во всех комнатах. В квартире 2 человека. Концентрация CO2 всё еще в норме.

С 18 до 21 часа - открыты форточки во всех комнатах. В квартире 3 человека. Концентрация CO2 начинает нарастать, форточки уже не спасают.

С 21 до 22-30 часов - проветривание с открытыми окнами. В квартире 3 человека. Концентрация CO2 приходит в норму, но начинает повышаться сразу же, стоит закрыть окна и оставить одни форточки для проветривания.

А теперь рассмотрим другой день с другим распорядком.

Ночью в комнате открыта форточка, концентрация CO2 немного превышена, но все же не растет до совсем диких величин.

С 8 до 14 часов - в квартире никого нет, межкомнатные двери открыты, во всех комнатах открыты окна. Концентрация CO2 спадает до уровня уличного воздуха.

С 14 до 18 часов - в квартире 2 человека, межкомнатные двери открыты, во всех комнатах открыты форточки. Концентрация CO2 уже не как на улице, но в пределах нормы.

С 18 часов и до утра - в квартире 3 человека, межкомнатные двери закрыты, форточки открыты. Концентрация CO2 немного превышена, но стабильна.

Вывод: если жить одному в двухкомнатной квартире, то о качестве воздуха можно практически не беспокоиться. Достаточно лишь иногда проветривать помещение. А вот при двух-трех обитателях на том же количестве квадратных метров для поддержания концентрации углекислого газа в нормальных пределах придется осуществлять проветривание практически круглосуточно.

Опыт №4. CO2 и кондиционер

Теперь посмотрим, что происходит в комнате при использовании кондиционера.
Исходные данные: проветренное помещение, но на улице жарко, а соответственно и в помещении тоже.

Закрываю окна чтобы воздух не уходил, включаю кондиционер.

В результате, за час работы кондиционера температура в комнате упала на несколько градусов, а концентрация CO2 возросла.

Подвох в том, что если не выходить из помещения на свежий воздух, то субъективно воздух в нем воспринимается как свежий и качественный просто за счет своей прохлады. И только цифры на приборе показывают реальную картину.

Кондиционирование не заменяет проветривания, поэтому сидя целый день в уютной и прохладной комнате можно незаметно для себя «надышать» концентрацию CO2 в 2000ppm, а то и больше. Особенно это актуально для офисов, где в одном небольшом помещении находятся сразу несколько человек. Широко распространено заблуждение, что раз для кондиционера монтируется отдельный воздуховод прямо на улицу, то кондиционер забирает уличный воздух, охлаждает его внутри себя и выпускает в помещение. На самом же деле воздуховод служит для выброса горячего воздуха из помещения на улицу, то есть работает как вытяжка. Причём такие кондиционеры встречаются далеко не везде. Обычная сплит система «гоняет» воздух в помещении по кругу, а по трубкам поступает охлаждённых хладагент.

Пользуясь кондиционером следует помнить о необходимости насыщать помещение свежим воздухом.

5. Домашняя автоматизация

В завершение обзора хочу отметить, что сфера применения детектора CO2 не ограничивается одним лишь проведением измерений и построением графиком на компьютере.

Это устройство можно использовать в проектах домашней автоматизации, причём сделать это можно двумя различными способами.

Первый способ - подключение силового реле к одному из индикационных светодиодов.

Принцип действия очевиден: при повышении концентрации CO2 в воздухе зеленый индикатор сменяется на желтый, при этом автоматически замыкается электронный ключ в реле, что в свою очередь включает подключенное к реле устройство (например, вентилятор приточной системы).

Второй способ - программный.

Поскольку детектор поддерживает передачу данных с датчика на компьютер по USB-протоколу, его можно внедрить в любую самодельную систему «умного дома», считывая показатели с датчика на головное устройство. А уже с головного устройства, на основании получаемых показателей, управлять другой подключенной к системе электроникой.

6. Выводы

Было интересно увидеть реальное состояние воздуха в своей квартире. С использованием стало наглядно видно, что имеющаяся пассивная вентиляция малоэффективна, и если в теплое время еще можно держать окна открытыми практически круглосуточно (хотя и летом это не всегда удобно из-за уличного шума), то зимой это неосуществимо по причине быстрого остывания помещений. Появился повод задуматься о модернизации домашней вентиляции, да и о поддержании здорового микроклимата в помещении в целом. Кроме того, в ассортименте магазина имеется , обладающий более крупным дисплеем и позволяющий измерять помимо концентрации CO2 и температуры еще и относительную влажность воздуха. Скидка 10% предоставляется по промокоду GT-CO2 в течение 14 дней.

В одной из следующих статей будет описано, как подружить детектор СО2 с микрокомпьютером Raspberry Pi. Добавить метки


Насколько хватает проветривания комнаты? Можно ли водить машину в режиме рециркуляции? Что будет с человеком, когда кислорода не хватает? Пришлось все испытать на себе в нескольких опытах.

Как правило, летними жаркими днями многие из нас включают на полную мощь в помещении кондиционер, полагая, что он принесет заветную прохладу. Однако вместе с прохладным потоком воздуха коварное устройство приносит еще и простуду.

При этом не все знают, что в этот момент в помещении кислорода становится всё меньше и меньше. Это происходит потому, что большинство кондиционерных систем способно лишь охладить тот воздух, который мы с вами надышали в течение нескольких часов, а может даже и дней. То же самое происходит и в машине.

Симптомы, на которые стоит обратить внимание:

Летом все хорошо, а зимой полная апатия. У нас так любят называть это сезонной депрессией.
- утром все хорошо, а к вечеру уже мозги отказываются работать. Только как зомби листать интернет. Домой заходишь с дикой усталость бухнулся на диван.
- проснулся утром, без будильника и не выспался
- кофе зеленый чай - не дают ожидаемого эффекта, вы становитесь еще злее.
- спишь сколько хочешь, а сон все равно не запоминается.
- иногда нельзя удержать в мыслях что-то важное, оно забывается.
- утром встаем с дикой усталостью
- кажется что в комнате темно.

И если на рабочем месте у вас подобные симптомы, значит у вас - отравление. Что за отравление такое? Отравление углекислым (не стоит путать с угарным!) газом. Углекислый газ не такой уж и безвредный. Процессы связанные с повышением его концентрации, похожи на отравление. При изменении кислотности крови — процессы в организме идут с перебоями.

Недостаток кислорода сказывается крайне негативно на человеческом организме. Мы начинаем чувствовать себя уставшими и вялыми, пропадает желание что-либо делать физически, да и голова напрочь отказывается работать. Списывая вялое состояние на жару, мы продолжаем сидеть в душном офисе или квартире, не подозревая, в чем кроется истинная причина упадка сил.

Из основных факторов, ухудшающих качество воздуха, можно выделить следующие:


  • Температура;

  • Различные запахи;

  • Уровень содержания газов в атмосфере.

Для измерения используется миллионная доля — единица измерения концентрации. Аналогична по смыслу проценту или промилле. Обозначается сокращением ppm (от англ. parts per million)

При этом известно, что последний фактор является самым важным. Поэтому следить за уровнем содержания CO2 в помещении - это первостепенная задача каждого человека. Cодержание CO2 в воздухе помещения определяется так:


  • поступление свежего воздуха 15 cfm = 25,5 м3/час на одного человека, находящегося в помещении, соответствует уровню концентрации CO2 в 1000 ppm

  • поступление свежего воздуха 20 cfm = 34 м3/час на одного человека, находящегося в помещении, соответствует уровню концентрации CO2 в 800 ppm

Нормы:

Итак, чтобы не стать сонной мухой, человеку необходим специальный будильник .

Что делать то?

С анализатором CO2 вы навсегда забудете о проблеме кислородного голодания. Обычно работаете и забываете обо всем. А этот компактный товарищ будет напоминать каждый раз, когда потребуется проветрить помещение.

На панели устройства размещены три индикатора разного цвета:

Зеленый - в воздухе достаточно кислорода;
Желтый - в воздухе повышенное количество углекислого газа (желательно проветрить помещение);
Красный - воздух перенасыщен углекислым газом (срочно открывайте окно).

Помимо световых датчиков, прибор оснащен звуковой оповещалкой, которая срабатывает каждый раз, когда индикатор переключается с одного цвета на другой.



Пищит. Похоже надо срочно открывать окно.



Температура с утра в комнате приятная, вот только чувствовал что-то не то. Датчик показал 2380 ppm


Открыл окно. 10 минут проветривания. Закрываю и делаю замер.


Концентрация углекислого газа упала до нормальных 445 ppm



И температура до 17 градусов по Цельсию


Позади прибора есть две кнопки. Для калибровки и настройки прибора. В инструкции есть подробное описание.


Сбоку выход для microUSB. Можно подключить к компьютеру. С помощью программы ZG VIEW можно наблюдать за состояние кислорода и температуры в помещении.


При включении прибор несколько секунд прогревается.


И делает замер. Ура! В комнате свежо.


И тут мне стало интересно. А вредно ли для водителя ездить долгое время с печкой в режиме рециркуляции? Ведь кислород тоже уходит и все это может привести к печальным последствиям. Причем многие ездят так долгое время.

Кнопка рециркуляции у меня выгдяит так "стрелка по кругу"


Замер в начале.

Ждем 10 мин.



Ждем 25 мин. Тепература в салоне 30 градусов по Цельсию. Что-то спать уже охота. Окна чуть запотели.


Ничего себе! Максимальное показание прибора Hi (High) - 3000 ppm. Я уже зазевался и надо срочно проветривать салон.


Отключаем рециркуляцию. Прошло полчаса. Один человек поднял концентрацию CO2 до нежелательных и можно сказать опасных. Человек чувствует усталость, сонливость и не может сосредоточиться на управлении автомобилем. В итоге может привести к аварии.Поэтому такой режим внутренней рециркуляции рекомендуется включать кратковременно - только если нужно срочно прогреть или, наоборот, за короткое время охладить салон с помощью кондиционера. Задействуется и на запыленных или сильно загазованных дорожных участках.



Свежо и хорошо.

В общественных местах

А теперь испытаем прибор в полевых условиях. Зайдем на посту России, в общественный транспорт и торговый центр.

На Почте России за 5 минут нахождения в очереди возникло некомфортное ощущение. Концентрация CO2 выше среднего. Для сравнения можно посмотреть сколько показывает прибор на улице.

Разница в 4 раза.

В маршрутном такси я ехал один, показатели средние. Водитель не открывал окна, а вентиляция была отключена. Работал обогрев салона на рециркуляцию.

В электропоезде не в час пик показатели как на почте. Заполняемость вагона наполовину. Страшно подумать что-то твориться в час пик.

_____________________________________
Прибор предоставлен на проверку