Главная · Бытовая техника · Аморфные тела. Плавление аморфных тел. Аморфные вещества. Кристаллическое и аморфное состояние вещества. Применение аморфных веществ

Аморфные тела. Плавление аморфных тел. Аморфные вещества. Кристаллическое и аморфное состояние вещества. Применение аморфных веществ

Твердые тела отличаются постоянством формы и объема и делятся на кристаллические и аморфные.

Кристаллические тела

Кристаллические тела (кристаллы) - это твердые тела, атомы или молекулы которых занимают упорядоченные положения в пространстве.
Частицы кристаллических тел образуют в пространстве правильную кристаллическую пространственную решетку .

Каждому химическому веществу, находящемуся в кристаллическом состоянии, соответствует определенная кристаллическая решетка, которая задает физические свойства кристалла.

Знаете ли вы?
Много лет назад в Петербурге на одном из неотапливаемых складов лежали большие запасы белых оловянных блестящих пуговиц. И вдруг они начали темнеть, терять блеск и рассыпаться в порошок. За несколько дней горы пуговиц превратились в груду серого порошка. "Оловянная чума" - так к прозвали эту «болезнь» белого олова.
А это была всего лишь перестройка порядка атомов в кристаллах олова. Олово, переходя из белой разновидности в серую, рассыпается в порошок.
И белое и серое олово - это кристаллы олова, но при низкой температуре изменяется их кристаллическая структура, а в результате меняются физические свойства вещества.

Кристаллы могут иметь различную форму и ограничены плоскими гранями.

В природе существуют:
а) монокристаллы - это одиночные однородные кристаллы, имеющие форму правильных многоугольников и обладающие непрерывной кристаллической решеткой

Монокристаллы поваренной соли:

б) поликристаллы - это кристаллические тела, сросшиеся из мелких, хаотически расположенных кристаллов.
Большинство твердых тел имеет поликристаллическую структуру (металлы, камни, песок, сахар).

Поликристаллы висмута:

Анизотропия кристаллов

В кристаллах наблюдается анизотропия - зависимость физических свойств (механической прочности, электропроводности, теплопроводности, преломления и поглощения света, дифракции и др.) от направления внутри кристалла.

Анизотропия наблюдается в основном в монокристаллах.

В поликристаллах (например, в большом куске металла) анизотропия в обычном состоянии не проявляется.
Поликристаллы состоят из большого количества мелких кристаллических зерен. Хотя каждый из них обладает анизотропией, но за счет беспорядочности их расположения поликристаллическое тело в целом утрачивает анизотропию.

Любое кристаллическое вещество плавится и кристаллизуется при строго определенной температуре плавления : железо — при 1530°,олово - при 232°, кварц - при 1713°, ртуть - при минус 38°.

Нарушить порядок расположения в кристалле частицы могут, только если он начал плавиться.

Пока есть порядок частиц, есть кристаллическая решетка - существует кристалл. Нарушился строй частиц - значит, кристалл расплавился - превратился в жидкость, или испарился - перешел в пар.

Аморфные тела

Аморфные тела не имеют строгого порядка в расположении атомов и молекул (стекло, смола, янтарь, канифоль).

В амофных телах наблюдается изотропия - их физические свойства одинаковы по всем направлениям.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства (при ударах раскалываются на куски как твердые тела) и текучесть (при длительном воздействии текут как жидкости).

При низких температурах аморфные тела по своим свойствам напоминают твердые тела, а при высоких температурах - подобны очень вязким жидкостям.

Аморфные тела не имеют определенной температуры плавления , а значит,и температуры кристаллизации.
При нагревании они постепенно размягчаются.

Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

Одно и то же вещество может встречаться и в кристаллическом и в некристаллическом виде.

В жидком расплаве вещества частицы движутся совершенно беспорядочно.
Если, например, расплавить сахар, то:

1. если расплав застывает медленно, спокойно, то частицы собираются в ровные ряды и образуются кристаллы. Так получается сахарный песок или кусковой сахар;

2. если остывание происходит очень быстро, то частицы не успевают построиться правильными рядами и расплав затвердевает некристаллическим. Так, если вылить расплавленный сахар в холодную воду или на очень холодное блюдце, образуется сахарный леденец, некристаллический сахар.

Удивительно!

С течением времени некристаллическое вещество может «переродиться», или, точнее, закристаллизоваться, частицы в них собираются в правильные ряды.

Только срок для разных веществ различен:для сахара это несколько месяцев, а для камня — миллионы лет.

Пусть леденец полежит спокойно месяца два-три.Он покроется рыхлой корочкой. Посмотрите на нее в лупу: это мелкие кристаллики сахара. В некристаллическом сахаре начался рост кристаллов. Подождите еще несколько месяцев — и уже не только корочка, но и весь леденец закристаллизуется.

Даже наше обыкновенное оконное стекло может закристаллизоваться. Очень старое стекло становится иногда совершенно мутным,потому что в нем образуется масса мелких непрозрачных кристаллов.

На стекольных заводах иногда в печи образуется «козел», то есть глыба кристаллического стекла. Это кристаллическое стекло очень прочное.Легче разрушить печь, чем выбить из нее упрямого «козла».
Исследовав его, ученые создали новый очень прочный материал из стекла - ситалл. Это стеклокристаллический материал, полученный в результате объёмной кристаллизации стекла.

Любопытно!

Могут существовать разные кристаллические формы одного и того же вещества .
Например, углерод.

Графит - это кристаллический углерод. Из графита сделаны стержни карандашей, которые оставляют след на бумаге при легком надавливании. Структура графита слоиста. Слои графита легко сдвигаются, поэтому чешуйки графита пристают к бумаге при письме.

Но существует и другая форма кристаллического углерода - алмаз .

АМОРФНЫЕ ТЕЛА (греческий amorphos - бесформенный) - тела, в которых элементарные составные частицы (атомы, ионы, молекулы, их комплексы) располагаются в пространстве хаотически. Для отличия аморфных тел от кристаллических (см. Кристаллы) используют рентгеноструктурный анализ (см.). Кристаллические тела на рентгенограммах дают четкую определенную дифракционную картину в виде колец, линий, пятен, а аморфные тела - размытое неправильное изображение.

Аморфные тела имеют следующие особенности: 1) в обычных условиях изотропны, то есть их свойства (механические, электрические, химические, тепловые и так далее) одинаковы во всех направлениях; 2) не имеют определенной температуры плавления, и при повышении температуры большинство аморфных тел, постепенно размягчаясь, переходит в жидкое состояние. Поэтому аморфные тела можно рассматривать как переохлажденные жидкости, не успевшие закристаллизоваться из-за резкого возрастания вязкости (см.) в силу увеличения сил взаимодействия между отдельными молекулами. Многие вещества в зависимости от способов получения могут находиться в аморфном, промежуточном или кристаллическом состояниях (белки, сера, кремнезем и так далее). Однако существуют вещества, которые находятся практически только в одном из этих состояний. Так, большинство металлов, солей находятся в кристаллическом состоянии.

Аморфные тела широко распространены (стекло, естественные и искусственные смолы, каучук и так далее). Искусственные полимерные материалы, также являющиеся аморфные тела, стали незаменимыми в технике, быту, медицине (лаки, краски, пластмассы для протезирования, различные полимерные пленки).

В живой природе к аморфным телам относится цитоплазма и большинство структурных элементов клеток и тканей, состоящих из биополимеров - длинноцепочечных макромолекул: белков, нуклеиновых кислот, липидов, углеводов. Молекулы биополимеров легко взаимодействуют друг с другом, давая агрегаты (см. Агрегация), или рои-коацерваты (см. Коацервация). Аморфные тела находятся в клетках также в виде включений, запасных веществ (крахмал, липиды).

Особенностью полимеров, входящих в состав аморфных тел биологических объектов, является наличие узких пределов физико-химических зон обратимого состояния, напр. при повышении температуры выше критической необратимо изменяются их структура и свойства (коагуляция белков).

Аморфные тела, образованные рядом искусственных полимеров, в зависимости от температуры могут находиться в трех состояниях: стеклообразном, высокоэластическом и жидком (вязко-текучем).

Для клеток живого организма характерны переходы из жидкого в высокоэластическое состояние при постоянной температуре, например ретракция кровяного сгустка, мышечное сокращение (см.). В биологических системах аморфные тела играют решающую роль в поддержании цитоплазмы в стационарном состоянии. Важна роль аморфных тел в поддержании формы и прочности биологических объектов: целлюлозная оболочка растительных клеток, оболочки спор и бактерий, кожа животных и так далее.

Библиография: Бреслер С. Е. и Ерусалимский Б. Л. Физика и химия макромолекул, М.-Л., 1965; Китайгородский А. И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел, М.-Л., 1952; он же. Порядок и беспорядок в мире атомов, М., 1966; Кобеко П. П. Аморфные вещества, М.-Л., 1952; Сетлоу Р. и Поллард Э. Молекулярная биофизика, пер. с англ., М., 1964.

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.


Например, galena - галенит, pyrite - пирит, quartz - кварц. Грани кристалла пересекаются под прямым углом в галените (PbS) и пирите (FeS 2), под другими углами в кварце.

Свойства кристаллов

  • постоянный объём;
  • правильная геометрическая форма;
  • анизотропия - различие механических, световых, электрических и тепловых свойств от направления в кристалле;
  • чётко определённая температура плавления, так как она зависит от регулярности кристаллической решётки. Межмолекулярные силы, удерживающие твёрдое вещество вместе, однородны, и требуется одинаковое количество тепловой энергии, чтобы одновременно разорвать каждое взаимодействие.

Аморфные тела

Примерами аморфных тел, не имеющих строгой структуры и повторяемости ячеек кристаллической решётки, являются: стекло, смола, тефлон, полиуретан, нафталин, поливинилхлорид.



Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.

В отличие от кристаллических твёрдых тел, в расположении частиц в аморфном теле нет строгого порядка.

Хотя аморфные твёрдые тела способны сохранять форму, кристаллической решётки у них нет. Некоторая закономерность наблюдается лишь для молекул и атомов, расположенных по соседству. Такой порядок называется ближним порядком . Он не повторяется по всем направлениям и не сохраняется на больших расстояниях, как у кристаллических тел.

Примеры аморфных тел - стекло, янтарь, искусственные смолы, воск, парафин, пластилин и др.

Особенности аморфных тел

Атомы в аморфных телах совершают колебания вокруг точек, которые расположены хаотично. Поэтому структура этих тел напоминает структуру жидкостей. Но частицы в них менее подвижны. Время их колебания вокруг положения равновесия больше, чем в жидкостях. Перескоки атомов в другое положение также происходят намного реже.

Как ведут себя при нагревании твёрдые кристаллические тела? Они начинают плавиться при определённой температуре плавления . И некоторое время одновременно находятся в твёрдом и жидком состоянии, пока не расплавится всё вещество.

У аморфных тел определённой температуры плавления нет . При нагревании они не плавятся, а постепенно размягчаются.

Положим кусок пластилина вблизи нагревательного прибора. Через какое-то время он станет мягким. Это происходит не мгновенно, а в течение некоторого интервала времени.

Так как свойства аморфных тел схожи со свойствами жидкостей, то их рассматривают как переохлаждённые жидкости с очень большой вязкостью (застывшие жидкости). При обычных условиях течь они не могут. Но при нагревании перескоки атомов в них происходят чаще, уменьшается вязкость, и аморфные тела постепенно размягчаются. Чем выше температура, тем меньше вязкость, и постепенно аморфное тело становится жидким.

Обычное стекло - твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400 о С, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Аморфное состоянием вещества неустойчиво. Со временем из аморфного состояния оно постепенно переходит в кристаллическое. Этот процесс в разных веществах проходит с разной скоростью. Мы видим, как покрываются кристаллами сахара леденцы. Для этого нужно не очень много времени.

А для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

Изотропность аморфных тел

В кристаллических твёрдых телах физические свойства различаются в разных направлениях. А в аморфных телах они по всем направлениям одинаковы. Это явление называют изотропностью .

Аморфное тело одинаково проводит электричество и теплоту по всем направлениям, одинаково преломляет свет. Звук также одинаково распространяются в аморфных телах по всем направлениям.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами . Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

Строение аморфных тел. Исследования при помощи электронного микроскопа и рентгеновских лучей свидетельствуют, что в аморфных телах не наблюдается строгого порядка в расположении их частиц. В отличие от кристаллов, где существует дальний порядок в расположении частиц, в строении аморфных тел есть ближний порядок. Это значит, что некая упорядоченность расположения частиц сохраняется лишь вблизи каждой отдельной частицы (см. рисунок).

На верхней части рисунка изображено расположение частиц в кристаллическом кварце, на нижней – в аморфной форме существования кварца. Эти вещества состоят из одних и тех же частиц – молекул оксида кремния SiO2.

Как и частицы любых тел, частицы аморфных тел непрерывно и беспорядочно колеблются и чаще, чем частицы кристаллов, могут перескакивать с места на место. Этому способствует то, что частицы аморфных тел расположены неодинаково плотно – между их частицами кое-где имеются сравнительно большие промежутки. Однако это не то же, что «вакансии» в кристаллах (см. § 7-е).

Кристаллизация аморфных тел. С течением времени (недели, месяцы) некоторые аморфные тела самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или мёд, оставленные в покое на несколько месяцев, становятся непрозрачными. В этом случае говорят, что мёд и леденцы «засахарились». Разломив засахарившийся леденец или зачерпнув мёд ложкой, мы действительно увидим образовавшиеся кристаллики сахара, прежде существовавшего в аморфном состоянии.

Самопроизвольная кристаллизация аморфных тел свидетельствует, чтокристаллическое состояние вещества является более устойчивым, чем аморфное. МКТ объясняет это так. Cилы отталкивания «соседок» заставляют частицы аморфного тела перемещаться преимущественно туда, где есть большие промежутки. В результате возникает более упорядоченное расположение частиц, то есть происходит кристаллизация.

Проверь себя:

  1. Цель этого параграфа – познакомиться...
  2. Какую сравнительную характеристику мы дали аморфным телам?
  3. Для опыта используем следующее оборудование и материалы: ...
  4. Во время подготовки к опыту мы...
  5. Что мы увидим по ходу опыта?
  6. Каков результат опыта со стеариновой свечой и куском пластилина?
  7. В отличие от аморфных тел, кристаллические тела...
  8. При плавлении кристаллического тела...
  9. В отличие от кристаллических тел, аморфные...
  10. К аморфным телам относят тела, для которых...
  11. Что делает аморфные тела похожими на жидкости? Они...
  12. Опишите начало опыта по подтверждению текучести аморфных тел.
  13. Опишите результат опыта по подтверждению текучести аморфных тел.
  14. Сформулируйте вывод из опыта.
  15. Откуда нам известно, что у аморфных тел нет строгого порядка в расположении их частиц?
  16. Как мы понимаем термин «ближний порядок» в расположении частиц аморфного тела?
  17. Одинаковые молекулы оксида кремния имеются как в кристаллической, так и...
  18. Каков характер движения частиц аморфного тела?
  19. Каков характер расположения частиц аморфного тела?
  20. Что может происходить с аморфными телами с течением времени?
  21. Как можно убедиться в наличии поликристаллов сахара в леденце или в засахарившемся меду?
  22. Почему мы считаем, что кристаллическое состояние вещества более устойчиво, чем аморфное?
  23. Как МКТ объясняет самостоятельную кристаллизацию некоторых аморфных тел?