Главная · Прочее · Что такое QD-телевизор, где искать «квантовые точки» и почему они показывают лучше. Конструкция квантовых точек. Конструкции квантовых точек

Что такое QD-телевизор, где искать «квантовые точки» и почему они показывают лучше. Конструкция квантовых точек. Конструкции квантовых точек

LED, LCD, OLED, 4K, UHD... казалось бы, последнее, что сейчас нужно телевизионной индустрии, так это очередная техническая аббревиатура. Но прогресс не остановить, встречайте еще пару букв - QD (или Quantum Dot). Сразу отмечу, что термин «квантовые точки» в физике имеет более широкое значение, чем требуется для телевизоров. Но в свете нынешней моды на все нанофизическое маркетологи крупных корпораций с радостью начали применять это непростое научное понятие. Поэтому я решил разобраться, что же это за квантовые точки такие и почему все захотят купить QD-телевизор.

Сначала немного науки в упрощенном виде. «Квантовая точка» - полупроводник, электрические свойства которого зависят от его размера и формы (wiki). Он должен быть настолько мал, чтобы квантово-размерные эффекты были выраженными. А эффекты эти регулируются размером этой самой точки, т.е. от «габаритов», если это слово применимо к столь малым объектам, зависит энергия испускаемого, например, фотона - фактически цвет.


Quantum-Dot-телевизор LG, который впервые покажут на CES 2015

Еще более потребительским языком - это крошечные частицы, которые начнут светиться в определенном спектре, если их подсветить. Если их нанести и «растереть» на тонкой пленке, затем подсветить ее, пленка начнет ярко люминесцировать. Суть технологии в том, что размер этих точек легко контролировать, а значит добиться точного цвета.


Цветовой охват QD-телевизоров, согласно данным компании QD Vision, выше в 1,3 раза, чем у обычного ТВ, и полностью покрывает NTSC

На самом деле, не так уж и важно, какое имя выбрали большие корпорации, главное, что это должно дать потребителю. И тут обещание довольно простое - улучшенная цветопередача. Чтобы лучше понять, как «квантовые точки» ее обеспечат, нужно вспомнить устройство ЖК-дисплея.

Свет под кристаллом

LCD-телевизор (ЖК) состоит из трех основных частей: белая подсветка, цветовые фильтры (разделяющие свечение на красный, синий и зеленый цвета) и жидкокристаллическая матрица. Последняя выглядит как сетка из крошечных окон - пикселей, которые, в свою очередь, состоят из трех субпикселей (ячеек). Жидкие кристаллы, подобно жалюзи, могут перекрыть световой поток или наоборот открыться полностью, также есть промежуточные состояния.


Компания PlasmaChem GmbH производит «квантовые точки» килограммами и пакует их во флаконы

Когда белый свет, излучаемый светодиодами (LED, сегодня уже сложно найти телевизор с люминесцентными лампами, как это было всего лишь несколько лет назад), проходит, например, через пиксель, у которого закрыты зеленая и красная ячейки, то мы видим синий цвет. Степень «участия» каждого RGB-пикселя меняется, и таким образом получается цветная картинка.


Размер квантовых точек и спектр, в котором они излучают свет, по данным Nanosys

Как вы понимаете, для обеспечения цветового качества изображения требуются как минимум две вещи: точные цвета светофильтров и правильная белая подсветка, желательно с широким спектром. Как раз с последним у светодиодов есть проблема.

Во-первых, они фактически не белые, вдобавок, у них очень узкий цветовой спектр. То есть спектр шириной белого цвета достигается дополнительными покрытиями - есть несколько технологий, чаще других используются так называемые люминофорные диоды с добавкой желтого. Но и этот «квазибелый» цвет все же недотягивает до идеала. Если пропустить его через призму (как на уроке физики в школе), он не разложится на все цвета радуги одинаковой интенсивности, как это происходит с солнечным светом. Красный, например, будет казаться гораздо тусклее зеленого и синего.


Так выглядит спектр традиционной LED-подсветки. Как видите, синий тон гораздо интенсивней, да и зеленый с красным неравномерно покрывают фильтры жидких кристаллов (линии на графике)

Инженеры, понятное дело, пытаются исправить ситуацию и придумывают обходные решения. Например, можно понизить уровень зеленого и синего в настройках телевизора, однако это повлияет на суммарную яркость - картинка станет бледнее. Так что все производители искали источник белого света, при распадении которого получится равномерный спектр с цветами одинаковой насыщенности. Тут как раз на помощь и приходят квантовые точки.

Квантовые точки

Напомню, что если мы говорим о телевизорах, то «квантовые точки» - это микроскопические кристаллы, которые люминесцируют, когда на них попадает свет. «Гореть» они могут множеством различных цветов, все зависит от размера точки. А учитывая, что сейчас ученые научились практически идеально контролировать их размеры путем изменения количества атомов из которых они состоят, можно получать свечение именно того цвета, которого нужно. Также квантовые точки очень стабильны - они не меняются, а это значит, что точка созданная для люминесценции с определенным оттенком красного будет практически вечно сохранять этот оттенок.


Так выглядит спектр LED-подсветки с использованием QD-пленки (согласно данным компании QD Vision)

Инженеры придумали использовать технологию следующим образом: на тонкую пленку наносится «квантовоточечное» покрытие, созданное для свечения с определенным оттенком красного и зеленого. А светодиод - обычный синий. И тут кто-то сразу догадается: «все понятно - есть источник синего, а точки дадут зеленый и красный, значим мы получим ту самую модель RGB!». Но нет, технология работает иначе.

Нужно помнить, что «квантовые точки» находятся на одном большом листе и они не разбиты на субпиксели, а просто перемешаны между собой. Когда синий диод светит на пленку, точки излучают красный и зеленый, как уже говорилось выше, и только когда все эти три цвета смешиваются - тут-то и получается идеальный источник белого света. И напомню, что качественный белый свет позади матрицы фактически равен натуральной цветопередаче для глаз зрителя по другую сторону. Как минимум, потому что не приходится делать коррекцию с потерей или искажением спектра.

Это все еще LCD-телевизор

Широкая цветовая гамма особенно пригодится для новых 4К-телевизоров и цветовой субдискретизации типа 4:4:4, которая нас ждет в будущих стандартах. Это все прекрасно, но помните, что квантовые точки не устраняют других проблем ЖК-телевизоров. Например, практически невозможно получить идеальный черный, потому как жидкие кристаллы (те самые как бы «жалюзи», о чем я писал выше) не способны полностью блокировать свет. Они могут лишь «прикрываться», но не закрываться полностью.

Квантовые точки призваны улучшить цветопередачу, а это значительно улучшит впечатление от картинки. Но это не OLED-технология или плазма, где пиксели способны полностью прекращать подачу света. Тем не менее плазменные телевизоры ушли на пенсию, а OLED по-прежнему слишком дороги для большинства потребителей, поэтому все же приятно знать, что в скором времени производители предложат нам новый вид LED-телевизоров, который будет показывать лучше.

Сколько стоит «квантовый телевизор»?

Первые QD-телевизоры Sony, Samsung и LG обещают показать на выставке CES 2015 в январе. Однако впереди всех китайская TLC Multimedia, они уже выпустили 4K QD-телевизор и говорят, что он вот-вот появится в магазинах в Китае.


55-дюймовый QD-телевизор от TCL, показанный на выставке IFA 2014

На данный момент назвать точную стоимость телевизоров с новой технологией невозможно, ждем официальных заявлений. Писали , что стоить QD будут втрое дешевле аналогичных по функционалу OLED. К тому же технология, как говорят ученые, совсем недорогая. Исходя из этого, можно надеяться, что Quantum Dot-модели будут широко доступны и попросту заменят обычные. Однако я думаю, что сперва цены все равно завысят. Как это обычно бывает со всеми новыми технологиями.

Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

  1. ħ - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Теги: Добавить метки

Для того чтобы получить общее представление о свойствах материальных предметов и законах, в соответствии с которыми «живет» привычный каждому макромир, вовсе не обязательно заканчивать высшее учебное заведение, ведь ежедневно каждый сталкивается с их проявлениями. Хотя в последнее время все чаще упоминается принцип подобия, сторонники которого утверждают, что микро и макромир весьма схожи, тем не менее, разница, все же, есть. Особенно это заметно при очень незначительных размерах тел и объектов. Квантовые точки, иногда называемые наноточками, как раз представляют собой один из этих случаев.

Меньше меньшего

Давайте вспомним классическое устройство атома, например, водорода. Он включает в себя ядро, которое благодаря присутствию в нем положительно заряженного протона обладает плюсовым то есть +1 (так как водород - первый элемент в таблице Менделеева). Соответственно, на определенном расстоянии от ядра находится электрон (-1), формируя электронную оболочку. Очевидно, что если увеличить значение то это повлечет за собой присоединение новых электронов (напомним: в целом атом электрически нейтрален).

Расстояние между каждым электроном и ядром определяется уровнями энергии отрицательно заряженных частиц. Каждая орбита является постоянной, суммарная конфигурация частиц определяет материал. Электроны могут перескакивать с одной орбиты на другую, поглощая или выделяя энергию посредством фотонов той или иной частоты. На наиболее удаленных орбитах находятся электроны с максимальным уровнем энергии. Что интересно, сам фотон проявляет двойственную природу, определяясь одновременно как безмассовая частица и электромагнитное излучение.

Само слово «фотон» греческого происхождения, оно означает «частица света». Следовательно, можно утверждать, что при смене электроном своей орбиты, он поглощает (выделяет) квант света. В данном случае уместно объяснить смысл другого слова - «квант». На самом деле ничего сложного нет. Слово произошло от латинского «quantum», что дословно переводится как наименьшее значение любой физической величины (здесь - излучения). Поясним на примере, что такое квант: если бы при измерении веса наименьшей неделимой величиной являлся миллиграмм, то его можно было бы так назвать. Вот так просто объясняется, казалось бы, сложный термин.

Квантовые точки: разъяснение

Часто в учебниках можно встретить следующее определение для наноточки - это чрезвычайно маленькая частица какого-либо материала, размеры которой сопоставимы с величиной излучаемой длины волны электрона (полный спектр охватывает предел от 1 до 10 нанометров). Внутри нее значение единичного носителя отрицательного заряда меньше, чем вне, поэтому электрон ограничен в перемещениях.

Однако термин «квантовые точки» может быть объяснен иначе. Электрон, поглотивший фотон, «поднимается» на более высокую энергетическую ступень, а на его месте образуется «недостача» - так называемая дырка. Соответственно, если электрон обладает -1 зарядом, то дырка +1. Стремясь вернуться к прежнему устойчивому состоянию, электрон испускает фотон. Связь носителей зарядов «-» и «+» в данном случае носит название экситон и в физике понимается как частица. Ее размер зависит от уровня поглощенной энергии (более высокой орбиты). Квантовые точки как раз и являются этими частицами. Частота излучаемой электроном энергии непосредственно зависит от размера частицы данного материала и экситона. Стоит отметить, что в основе цветового восприятия света человеческим глазом лежит различная

Важнейшим объектом физики низкоразмерных полупроводниковых геретоструктур являются так называемые квазинульмерные системы или квантовые точки. Дать точное определение квантовых точек достаточно трудно. Это связано с тем, что в физической литературе квантовыми точками называют широкий класс квазинульмерных систем, в которых проявляется эффект размерного квантования энергетических спектров электронов, дырок и экситонов. К этому классу, прежде всего, относят полупроводниковые кристаллы, у которых все три пространственных размера порядка боровского радиуса экситона в объёмном материале. Данное определение предполагает, что квантовая точка находится в вакууме, газовой или жидкой среде, либо ограничена каким-либо твердотельным материалом, отличающимся от материала, из которого она изготовлена. В этом случае трёхмерное пространственное ограничение элементарных возбуждений в квантовых точках обусловлено наличием границ раздела между различными материалами и средами, т. е. существованием гетерограниц. Такие квантовые точки часто называют микро- или нанокристаллами. Однако это простое определение не является полным, поскольку есть квантовые точки, для которых гетерограницы в одном либо двух измерениях отсутствуют. Несмотря на это, движение электронов, дырок или экситонов в таких квантовых точках пространственно ограничено из-за наличия потенциальных ям, возникающих, например, благодаря механическим напряжениям или флуктуациям толщины полупроводниковых слоёв. В этом смысле можно сказать, что квантовая точка - это любая трёхмерная потенциальная яма, заполненная полупроводниковым материалом, с характерными размерами порядка, в которой движение электронов, дырок и экситонов пространственно ограничено в трёх измерениях .

Методы изготовления квантовых точек

Среди всего многообразия различных квантовых точек можно выделить несколько основных типов, которые наиболее часто используются в экспериментальных исследованиях и приложениях. Прежде всего, это нанокристаллы в жидкостях, стёклах и в матрицах широкозонных диэлектриков (рис.1). Если они выращиваются в стеклянных матрицах, то, как правило, имеют сферическую форму. Именно в такой системе, представлявшей собой квантовые точки из CuCl, внедрённые в силикатные стёкла, при исследовании однофотонного поглощения был впервые обнаружен эффект трёхмерного размерного квантования экситонов. Эта работа положила начало бурному развитию физики квазинульмерных систем.

Рис.1.

Квантовые точки в кристаллической диэлектрической матрице могут быть прямоугольными параллелепипедами, как это имеет место для квантовых точек на основе CuCl, встроенных в NaCl. Нанокристаллами являются и квантовые точки, выращенные в полупроводниковых матрицах методом капельной эпитаксии .

Другим важным типом квантовых точек являются так называемые самоорганизованные квантовые точки, которые изготавливаются методом Странски-Крастанова с помощью техники молекулярно-лучевой эпитаксии (рис.2). Их отличительной особенностью является то, что они связаны между собой посредством сверхтонкого смачивающегося слоя, материал которого совпадает с материалом квантовых точек. Таким образом, в этих квантовых точках отсутствует одна из гетерограниц. К этому же типу, в принципе, могут быть отнесены пористые полупроводники, например пористый Si, а также потенциальные ямы в тонких полупроводниковых слоях, возникающие благодаря флуктуациям толщины слоёв .

Рис.2.

Рис.3. Структура с индуцированными механическими напряжениями InGaAs квантовыми точками. 1 - накрывающий слой GaAs; 2 - самоорганизованные InP квантовые точки, которые задают механические напряжения, приводящие к возникновению трёхмерных потенциальных ям в слое InGaAs; 3 и 6 - буферные слои GaAs; 4 - тонкая InGaAs квантовая яма, в которой образуются индуцированные механическими напряжениями квантовые точки; 5 - квантовые точки; 7 - подложка GaAs. Точечными линиями показаны профили механических наряжений.

Квантовые точки, индуцированные механическими напряжениями, можно отнести к третьему типу (рис.3). Они образуются в тонких полупроводниковых слоях благодаря механическим напряжениям, которые возникают из-за рассогласования постоянных решётки материалов гетерограниц. Эти механические напряжения приводят к появлению в тонком слое трёхмерной потенциальной яме для электронов, дырок и экситонов. Из рис. 3. видно, что такие квантовые точки не имеют гетерограниц в двух направлениях .