Главная · На заметку · Цитозоль принцип компартментализации клеточного объема. Компартменты клеток и разделение труда. Единицы измерения клетки. Мембранные белки и липиды

Цитозоль принцип компартментализации клеточного объема. Компартменты клеток и разделение труда. Единицы измерения клетки. Мембранные белки и липиды

Высокая упорядоченность внутреннего содержимого эукариотической клетки достигается путем компартментации ее объема - подразделения на «ячейки», отличающиеся деталями химического (ферментного) состава. Компартментация способствует пространственному разделению веществ и процессов в клетке.

В настоящее время принята точка зрения, согласно которой мембрана составлена из бимолекулярного слоя липидов. Гидрофобные участки их молекул повернуты друг к другу, а гидрофильные - находятся на поверхности слоя. Разнообразные белковые молекулы встроены в этот слой или размещены на его поверхностях.

Благодаря компартментации клеточного объема в эукариотической клетке наблюдается разделение функций между разными структурами. Одновременно различные структуры закономерно взаимодействуют друг с другом.

8. Строение эукариотической клетки: поверхностный аппарат, протоплазма (ядро и цитоплазма).

Основная часть поверхностного аппарата клетки - плазматическая или биологическая мембрана (цитоплазматическая мембрана). Клеточная мембрана - важнейший компонент живогосодержимого клетки, построенный по общему принципу. Предложено несколько моделей строения. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой фосфолипидов, в который включены молекулы белков. Липиды - водонерастворимые вещества, молекулы которых имеют два полюса: гидрофильный, гидрофобный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу гидофобными концами. А гидрофильные полюса остаются снаружи, которые образуют гидрофильные поверхности. На поверхности мембраны кнаружи и кнутри расположены НЕСПЛОШНЫМ слоем белки, их 3 группы: периферические, погруженные (полуинтегральные), пронизывающие (интегральные). Большинство белков мембраны - ферменты. Погруженные белки образуют на мембране биохимический конвейер, на котором происходит превращение веществ. Положение погруженных белков стабилизируется периферическими белками. Пронизывающие белки обеспечивают передачу вещества в двух направлениях: через мембрану внутрь клетки и обратно. Бывают двух типов: переносчики и каналообразующие. Каналообразующие выстилают пору, заполненную водой, через которую проходят растворенные неорганические вещества с одной стороны мембраны на другую. На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы, связаны с разветвленными углеводными цепями, образуя гликокаликс, надмебранный, неживой слой, продукт жизнедеятельности клетки. Углеводные цепи выполняют роль рецепторов (межклеточное узнавание- свой-чужой) . Клетка приобретает способность специфически реагировать на воздействие извне. В надмебранный слой у бактерий входим муреин, у растений - целлюлоза или пектин. Под плазматической мембраной со стороны цитоплазмы имеются кортикальный (поверхностный) слой и внутриклеточные фибриллярные структуры, обеспечивают механическую устойчивость мембраны.



Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Основу ядерного сока, или матрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала.

Ядрышко представляет собой структуру, в которой происходит образование и созревание рибосомальных РНК (рРНК). Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.

В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Важнейшие из белков представлены ферментами гликолиза, обмена сахаров, азотистых оснований, аминокислот и липидов.

Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа.

9. Поверхностный аппарат клетки. Строение и функции. Биологические мембраны. Их строение и функции. Транспорт веществ: активный и пассивный.

Поверхностный аппарат клеток состоит из 3 субсистем - плазматической мембраны, надмембранного комплекса (гликокаликс или клеточная стенка) и субмембранного опорно-сократительного аппарата.

Его основные функции определяются пограничным положением и включают:

1) барьерную (разграничительную) функцию;

2) функцию распознавания других клеток и компонентов межклеточного вещества;

3) рецепторную функцию, включая взаимодействие с сигнальными молекулами

4) транспортную функцию;

5) функцию движения клетки посредством образования псевдо-, фило- и ламеллоподий).

Биологические мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндоплазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов.

Плазматическая мембрана, или плазмалемма , - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую пленку, покрывающую всю клетку

Молекулы фосфолипидов расположены в два ряда - гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы - поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

Функции биологических мембран следующие:

1. Барьерная. Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2. Транспортная. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3. Рецепторная. Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4. Стабилизирующая.

5. Регуляторная.

Транспорт веществ:

Поступление веществ через мембрану зависит от размеров вещества. Малые молекулы проходят путем активного и пассивного транспорта, перенос макромолекул и крупных частиц осуществляется за счет образования мембранных пузырьков эндоцитозом и экзоцитозом. Пассивный транспорт- (без энергии) диффузия по градиенту концентрации облегчённая диффузия через канал в мембране, образованный белками. Активный транспорт- (затрата энергии АТФ) при участии белков переносчиков против градиента концентрации.

Эндоцитоз - это транспорт макромолекул через плазмолемму. Соответственно агрегатному состоянию поглощаемого вещества выделяют пиноцитоз (захват и транспорт клеткой жидкости или растворенных в жидкости соединений) и фагоцитоз (захват и транспорт твердых частиц). Фагоцитоз и пиноцитоз также относятся к активному транспорту. Фагоцитоз – поглощение клеткой твердых органических веществ. Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется углубления мембраны. В результате частица оказывается заключенной в мембранный пузырек – фагосому – внутри клетки.

Пиноцитоз – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются.

10. Протоплазма. Организация и функции. Роль изменения агрегатного состояния цитоплазмы в жизнедеятельности клетки (золь–гель переходы). Понятие о биоколлоиде.

Протоплазма - содержимое живой клетки, включающее ее ядро и цитоплазму.

Взаимодействуя с окружающей средой, клетка ведет себя как целостная структура.

Свойствам протоплазмы приписывается важная роль функционального объединения структурных компонентов и компартментов клетки. В целом, ее принято рассматривать как особую многофазную коллоидную систему или биоколлоид.

Важная роль в функциональном объединении структурных компонентов и компартментов клетки принадлежит свойствам живой протоплазмы. В целом ее принято рассматривать как особую многофазную коллоидную систему, или биоколлоид. От банальных коллоидных систем биоколлоид отличается сложностью дисперсной фазы. Основу ее составляют макромолекулы, которые присутствуют либо в составе плотных микроскопически видимых структур (органелл), либо в диспергированном состоянии, близком к растворам или рыхлым сетеобразным структурам типа гелей.

Будучи коллоидным раствором в физико-химическом смысле, биоколлоид благодаря наличию липидов и крупных частиц проявляет одновременно свойства соответственно эмульсии и суспензии. На обширных поверхностях макромолекул оседают разнообразные «примеси», что ведет к изменению агрегатного состояния протоплазмы.

Между крайними полюсами организации протоплазмы в виде вязких гелей и растворов имеются переходные состояния. При указанных переходах совершается работа, в результате которой осуществляются различные внутриклеточные превращения,-образование мембран, сборка микротрубочек или микрофиламентов из субъединиц, выброс из клетки секрета, изменение геометрии белковых молекул, приводящее к торможению или усилению ферментативной активности. Особенностью биоколлоида является также и то, что в физиологических условиях переходы протоплазмы из одного агрегатного состояния в другое (в силу наличия особого ферментативного механизма) обратимы.

Названное свойство биоколлоида обеспечивает клетке способность при наличии энергии многократно совершать работу в ответ на действие стимулов.

Функции

Внутри компартментов, окруженных бислоем липидов, могут существовать различные значения , функционировать разные ферментативные системы. Принцип компартментализации позволяет клетке выполнять разные метаболические процессы одновременно.

В цитозоле митохондрий находится окислительная среда, в которой NADH окисляется в NAD + .

Квинтессенцией принципа компартментализации можно считать аппарат Гольджи , в диктиосомах которого работают различные ферментативные системы, осуществляющие, например, разные стадии посттрансляционной модификации белков .

Классификация

Классифицируют три основных клеточных компартмента:

  1. Ядерный компартмент, содержащий ядро
  2. Пространство цистерн эндоплазматического ретикулума (переходящее в ядерную ламину)
  3. Цитозоль

Прокариоты

В любой клетке существует два генеральных микрокомпартмента, разделённые унитарной мембраной - цитоплазматический и экзоплазматический. Бактерии, обладающие грамотрицательным морфотипом, имеют ещё и третий генеральный микрокомпартмент - периплазматический, который расположен между цитоплазматической мембраной и наружной мембраной.Пиневич А. В. Микробиология: Биология прокариотов, том I, издательство СПбГУ, 2006.

Иногда специализированный микрокомпартмент размещается сразу в нескольких генеральных компартментах, то есть имеет смешанную локализацию. Одним из примеров этого служит ундулоподия.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Компартментализация" в других словарях:

    компартментализация - Наличие в имагинальных дисках насекомых неперекрывающихся групп клеток (компартментов, или поликлонов), занимающих определенное положение в диске и развивающихся по «своему» клеточному пути, развитие каждого компартмента находится под … Справочник технического переводчика

    Compartmentalization компартментализация. Hаличие в имагинальных дисках насекомых неперекрывающихся групп клеток (компартментов, или поликлонов ), занимающих определенное положение в диске и развивающихся… … Молекулярная биология и генетика. Толковый словарь.

    Компартментализация - ж) компартментализация процедуры, осуществляемые компетентным органом или уполномоченным органом во взаимодействии с изготовителями (производителями) продукции на территории страны для определения субпопуляций животных и организаций, участвующих… … Официальная терминология

    У этого термина существуют и другие значения, см. Трансляция. Трансляция (от лат. translatio перевод) процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой.… … Википедия

Компартменты подразделяются на две основные группы - генеральные и специализированные. Выполняемые ими функции также подразделяются на генеральные и специализированные.

Генеральные микрокомпартменты необходимы для жизнедеятельности клетки, поскольку на их основе осуществляются основополагающие функции. Например, функции хранения, воспроизведения и процессинг генных последовательностей, а также функции биогенеза клеточных структур, транспорта и метаболизма.

В любой клетке существует два генеральных микрокомпартмента, разделённые унитарной мембраной - цитоплазматический и экзоплазматический. Бактерии, обладающие грамотрицательным морфотипом, имеют ещё и третий генеральный микрокомпартмент - периплазматический, который расположен между цитоплазматической мембраной и наружной мембраной.

Внутри цитоплазматического генерального микрокомпартмента находятся множественные генеральные микрокомпартменты, лишённые собственной мембранной границы. К ним относятся органеллы трансляции - рибосомы , а также близкие к ним по размерам органеллы посттранскрипционного и посттрансляционного процессинга - дергадосомы, шаперонины и протеасомы .

Специализированные микрокомпартменты выполняют адаптивные функции, и их присутствие в клетке не служит условием сохранения жизнеспособности.

Специализированные микрокомпартменты находятся внутри генеральных микрокомпартментов, соответственно они подразделяются на

  1. цитоплазматические компартменты
  2. периплазматические компартменты
  3. экзоплазматические компартменты

Иногда специализированный микрокомпартмент размещается сразу в нескольких генеральных компартментах, то есть имеет смешанную локализацию. Одним из примеров этого служит вращающийся жгутик .

См. также

Ссылки

Пиневич А.В. Микробиология: Биология прокариотов, том I, издательство СПбГУ, 2006


Wikimedia Foundation . 2010 .

Смотреть что такое "Клеточный компартмент" в других словарях:

    Клеточная стенка грамотрицательных бактерий Периплазматическое пространство обособленный компартмент клеток грамотрицательных … Википедия

    Клеточная стенка грамотрицательных бактерий Периплазматическое пространство обособленный компартмент клеток грамотрицательных бактерий. Представляет собой объём, заключённый между плазматической и внешней мембранами. Содержимое… … Википедия

    Фотография сделанная трансмиссионым электронным микроскопом. Клеточные покровы цианобактерии Phormidium uncinatum. Клеточные покровы (CW) состоит из, цитоплазматической мембраны (CM), пептидогл … Википедия

    У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

    У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

    Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

    Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

    Эта статья посвящена методу лечения. О патологическом состоянии см. Эмболия. Микрофотография эмболизационного материала в артерии почки, удалённой в связи с онкоз … Википедия


Эукариотические клетки поделены на функционально различные, окруженные мембранами области - компартменты . Внутриклеточные мембраны замыкают около половины общего объема клетки в эти отдельные внутриклеточные компартменты.

Внутренние мембраны эукариотической клетки делают возможной функциональную специализацию различных мембран, что является решающим фактором в разделении множества различных процессов, протекающих в клетке.

Внутриклеточные компартменты, общие для всех эукариотических клеток, показаны на рис. 8-1 .

Около половины всех мембран клетки ограничивают похожие на лабиринт полости

Наконец, пероксисомы представляют собой маленькие пузырьки, содержащие множество окислительных ферментов.

Каждый вновь синтезированный белок органелл проходит от рибосомы до органеллы особый путь, определяемый либо сигнальным пептидом, либо сигнальным участком. Сортировка белков начинается с первичной сегрегации, при которой белок либо остается в цитозоле, либо переносится в другой компартмент. Белки, попадающие в ЭР, претерпевают дальнейшую сортировку по мере того, как они переносятся в аппарат Гольджи и затем из аппарата Гольджи в лизосомы, в секреторные пузырьки или к плазматической мембране. Некоторые белки остаются в ЭР и различных цистернах аппарата Гольджи. Белки, предназначенные для других компартментов, видимо, попадают в транспортные пузырьки , которые отшнуровываются от одного компартмента и сливаются с другим.

Когда клетка воспроизводится и делится, она должна удваивать свои мембранные органеллы. Обычно это происходит путем увеличения размеров этих органелл при включении в них новых молекул. Увеличенные органеллы затем делятся и распределяются по двум дочерним клеткам.

Для формирования мембранных органелл недостаточно только информации ДНК, определяющей белки органелл. Необходима также " эпигенетическая " информация. Эта информация передается от родительской клетки потомству с самой органеллой. Вероятно, такая информация необходима для поддержания компартментации клетки, тогда как информация, содержащаяся в ДНК, необходима для "размножения" нуклеотидных и аминокислотных последовательностей.









Эукариотические клетки крупнее прокариотических и более сложно устроены, в них больше различных органелл. Нередко эукариотические клетки сравнивают с фабрикой, где каждая машина и каждый рабочий выполняют свою работу, но все это вместе служит некой единой цели.

Более высокая эффективность достигается здесь за счет «разделения труда ». В клетке каждая органелла выполняет свою особую функцию, определяемую ее структурой и ее биохимическими потенциями.

Митохондрии , например, играют роль «силовых станций клетки» - они поставляют энергию в форме аденозинтрифосфата (АТФ), который синтезируется в процессе дыхания. Специфическое строение митохондрий позволяет им делать это весьма эффективно.

Клетка , будучи единым целым, тем не менее фактически разделена на отдельные отсеки, или компарменты.

Нередко такую компартментализацию обеспечивают клеточные мембраны . Большинство органелл окружено мембранами. Эти выполняют ту же функцию, что и плазматическая мембрана, регулирующая обмен химическими веществами между клеткой и ее окружением; благодаря этим мембранам в каждой органелле сохраняется свой собственный уникальный набор химических веществ и протекают особые, свойственные только ей химические реакции. Электронный микроскоп предоставил возможность ознакомиться с более тонкой структурной организацией клетки, о чем мы будем говорить в соответствующей статье.

Единицы измерения клетки

Прежде чем перейти к рассмотрению отдельных структур клетки , полезно вспомнить, что клетки чрезвычайно малы, и перечислить те единицы измерения, которыми мы будем пользоваться при их описании. Наиболее часто употребляемые для этой цели единицы измерения сведены в таблице.

На рисунке изображены бактерии на кончике булавки , диаметр которого составляет около 100 мкм (мкм - буквенное обозначение микрометра). Нижний предел того, что еще в состоянии различить невооруженный глаз человека, - 50-100 мкм. Самый тонкий волос на теле человека имеет диаметр около 30 мкм. Размер эукариотических клеток очень сильно колеблется (самые крупные клетки водорослей достигают в диаметре 50 мм!), но в среднем диаметр животных клеток равен приблизительно 20, а растительных - 40 мкм.

Средний диаметр митохондрий и бактерий равен 1 мкм (это полезно запомнить как удобную меру для сравнения). Мельчайшие клеточные органеллы рибосомы - имеют в диаметре около 20 нм. Диаметр нити ДНК равен 2 нм, а самого маленького атома (атома водорода) - 0,04 нм.