Главная · Монтаж · Глюконеогенез из аланина. Синтез глюкозы из аминокислот. Энергетические затраты глюконеогензу

Глюконеогенез из аланина. Синтез глюкозы из аминокислот. Энергетические затраты глюконеогензу

Потребность в глюконеогенезе

  • для эритроцитов глюкоза является единственным источником энергии;
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников;
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Таким образом, при определенных ситуациях - при низком содержании углеводов в пище, голодании, длительной физической работе, то есть когда глюкоза крови расходуется и наступает гипогликемия, организм должен иметь возможность синтезировать глюкозу и нормализовать ее концентрацию в крови. Это достигается реакциями глюконеогенеза.

Необходимость глюконеогенеза в организме демонстрируют два цикла – глюкозо-лактатный и глюкозо-аланиновый.

Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклы


Глюкозо-лактатный цикл (цикл Кори)

Глюкозо-лактатный цикл - это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза . Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани.

В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата. Убрать молочную кислоту можно только одним способом - превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5 . Зато клеточная мембрана высоко проницаема для лактата и он движется по градиенту концентрации наружу. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой.

Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Глюкоза, образованная в печени используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена . Также она может распределиться по другим органам.

Глюкозо-аланиновый цикл

Целью глюкозо-аланинового цикла также является уборка пирувата, но, кроме этого решается еще одна немаловажная задача - уборка лишнего азота из мышцы.

При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты трансаминируются с α-кетоглутаратом. Полученный глутамат взаимодействует с пируватом. Образующийся аланин является транспортной формой азота и пирувата из мышцы в печень. В гепатоците идет обратная реакция трансаминирования, аминогруппа передается на синтез мочевины, пируват используется для синтеза глюкозы.

Глюконеогенез энергетически затратен

Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них - глюкогенных - полностью включаются в молекулу глюкозы, некоторых - смешанных - частично. Кроме получения глюкозы, глюконеогенез обеспечивает и уборку «шлаков» - лактата, постоянно образуемого в эритроцитах или при мышечной работе, и глицерола, являющегося продуктом липолиза в жировой ткани.

Обходные пути

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры, которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути, то есть он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках. Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

Обход десятой реакции гликолиза

На этом этапе глюконеогенеза работают два ключевых фермента - в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа.

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант обхода десятой реакции гликолиза


Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а фосфоенолпируват-карбоксикиназа - в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

Обход десятой реакции гликолиза


  1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина. После этого пируват с импортом с ионами Н+, движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Эта реакция идет в клетке постоянно, являясь анаплеротической (пополняющей) реакцией ЦТК.
  2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы. В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат. Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.
  3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват, для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

А Пируват и лактат

Пируват образуется в печени из лактата и аланина. Лактатдегидрогеназа окисляет лактат в пируват с образованием NADH. Аланинаминотрансфераза переносит аминогруппу с аланина на α -кетоглутарат с образованием глутамата и пирувата.

Б Глюкогенные аминокислоты

Аминокислоты, которые катаболизируются до пирувата или метаболитов ЦТК, являются потенциальными субстратами глюконеогенеза (пируват и метаболиты ЦТК способны образовывать оксалоацетат и включаться в глюконеогенез). Такие аминокислоты называют глюкогенными . Аминокислоты аланин и глутамин, переносящие аминогруппы из мышц в печень, являются особенно важными глюкогенными аминокислотами в нашем организме.

В Глицерол

Глицерол поступает в наш организм с пищей и синтезируется в печени и жировой ткани. Во время голодания триацилглицеролы (ТАГ) в адипоцитах расщепляются до глицерола и жирных кислот. Глицерол поступает в кровь и переносится в печень. Далее в ходе двух ферментативных реакций он преобразуется в дигидроксиацетонфосфат , который является метаболитом гликолиза и глюконеогенеза.

Г Жирные кислоты

Жирные кислоты с нечетным числом атомов окисляются с образованием про- пионил-КоА . Он преобразуется в метилмалонил-КоА, который образует сукцинилКоА в ходе ещё одной ферментативной реакции. Сукцинил-КоА является метаболитом ЦТК, поэтому потенциально способен включаться в глюконеогенез. Это подтверждается исследованиями с изотопами углерода C-14.

2.3 Реакции глюконеогенеза

А Уравнения реакций

Пируват + АТФ + HCO3 - + H2 O Оксалоацетат + АДФ + Фн + 2H+

Оксалоацетат + ГТФ Фосфоенолпируват + ГДФ + CO2

Фосфоенолпируват + H2 O 2-Фосфоглицерат

2-Фосфоглицерат 3-Фосфоглицерат

3-Фосфоглицерат + АТФ 1,3-Бисфосфоглицерат + АДФ

1,3-Бисфосфоглицерат + NADH + H+ Глицеральдегид-3-фосфат + NAD+ + Фн (× 2)

Глицеральдегид-3-фосфат Дигидроксиацетонфосфат

8. Дигидроксиацетонфосфат + Глицеральдегид-3-фосфат Фруктозо-1,6-бисфосфат

9. Фруктозо-1,6-бисфосфат + H2 O Фруктозо-6-фосфат + Фн

10. Фруктозо-6-фосфат Глюкозо-6-фосфат

11. Глюкозо-6-фосфат + H2 O Глюкоза + Фн

32 Глава 2 Глюконеогенез

Б Энергетические барьеры и уникальные реакции глюконеогенеза

В гликолизе необратимыми являются 1-я, 3-я и 10-я реакции. Эти реакции идут лишь в одном направлении и называются энергетическими барьерами . В глюконеогенезе они обходятся с помощью 4 реакций. Остальные реакции являются общими для гликолиза и глюконеогенеза, поскольку способны идти как в прямом, так и в обратном направлении в зависимости от избытка продукта или субстрата.

Реакция 1

В первой реакции глюконеогенеза пируваткарбоксилаза катализирует карбоксилирование пирувата с образованием оксалоацетата с затратой 1 молекулы АТФ. Реакция протекает в митохондриях в две фазы:

1. Разрыв макроэргической связи в молекуле АТФ с образованием АДФ. Образуется высокоэнергетическая молекула карбоксифосфата, которая затем связывается с биотином и «активируется».

2. Активная карбоксильная группа переносится с карбоксибиотина на молекулу пирувата с образованием оксалоацетата.

Реакция 2

Реакции глюконеогенеза 33

Гормональная регуляция:

Некоторые гормоны оказывают стимулирующее влияние на экспрессию гена ФЕПкарбоксикиназы.

Вторая реакция глюконеогенеза приводит к образованию высокоэнергетической молекулы - фосфоенолпирувата . В ходе этой реакции оксалоацетат декарбоксилируется с затратой 1 молекулы ГТФ.

Рис. 7. Транспорт оксалоацетата и фосфоенолпирувата из митохондрий в цитозоль.

Эту реакцию катализирует фермент ФЕП-карбоксикиназа . У человека он обнаруживается как в митохондриях, так и в цитозоле. Однако в некоторых тканях он присутствует только в цитозоле, поэтому оксалоацетат должен быть перенесен туда из митохондрий. Во внутренней мембране митохондрий есть белковые переносчики для малата и аспартата, но не для оксалоацетата, поэтому он должен быть преобразован в одно из этих соединений, для которых в мембране есть транспортные белки.

Для этого существует два пути (см. Рис. 7 ): 1) оксалоацетат восстанавливается до малата; 2) оксалоацетат принимает аминогруппу в реакции трансаминирования и образует аспартат. Первый путь требует участия NADH. Второй имеет небольшое в печени: аспартат, который переносится в цитозоль из митохондрий, дезаминируется в цикле мочевины до оксалоацетата.

Реакции 3-8

Эти реакции катализируются ферментами гликолиза, однако протекают не в прямом (для гликолиза), а в обратном направлении.

Реакция 9

В 9-й реакции глюконеогенеза фруктозо-1,6-бисфосфат гидролизуется до фруктозо-6-фосфата при участии фермента фруктозо-1,6-бисфосфатазы . Известно несколько аллостерических регуляторов этого фермента (указаны выше).

Реакция 10

Фруктозо-6-фосфат изомеризуется в глюкозо-6-фосфат. Эту реакцию катализирует фермент гликолиза фосфоглюкоизомераза.

Реакция 11

Заключительной реакцией глюконеогенеза является дефосфорилирование глюкозы в эндоплазматическом ретикулуме, катализируемое глюкозо-6-фосфата- зой . В результате этой реакции образуется глюкоза . Остаток фосфорной кислоты и глюкоза переносятся обратно в цитозоль с помощью белков T3 и T2, соответственно. Далее свободная глюкоза выносится наружу из клетки белками ГЛЮТ2.

Фермент этой реакции обнаружен лишь в печени, почках и тонком кишечнике, поэтому эти органы способны экспортировать глюкозу в кровь. Остальные клетки (не все) синтезируют глюкозу лишь для собственных нужд.

Синтез глюкозы из молочной кислоты

При физической нагрузке в мышцах продуцируется большое количество молочной кислоты, особенно если нагрузка интенсивная, максимальной мощности.Также молочная кислота непрерывно образуется эритроцитами , независимо от состояния организма. С током крови она поступает в гепатоцит и здесь превращается в пируват. Далее реакции идут по классической схеме.

Суммарная реакция глюконеогенеза из молочной кислоты:

Лактат + 4АТФ + 2ГТФ + 2H 2 O → Глюкоза + 4АДФ + 2ГДФ + 6Ф н

Синтез глюкозы из аминокислот

Ряд аминокислот являются глюкогенными , то есть их углеродные скелеты в той или иной степени способны включаться в состав глюкозы. Такими является большинство аминокислот, кроме лейцина и лизина, атомы углерода которых никогда не участвуют в синтезе углеводов.

В качестве примера синтеза глюкозы из аминокислот рассмотрим участие в этом процессе глутамата, аспартата, серина и аланина.

Аспарагиновая кислота (после реакции трансаминирования) и глутаминовая кислота (после дезаминирования) превращаются в метаболиты ЦТК, соответственно, в оксалоацетат и α-кетоглутарат.

Аланин , трансаминируясь, образует пировиноградную кислоту, которая способна карбоксилироваться до оксалоацетата. Оксалоацетат, являясь первым элементом в процессе глюконеогенеза, далее включается в синтез глюкозы.

Серин в трехступенчатой реакции под воздействием сериндегидратазы теряет аминогруппу и превращается в пируват, который вступает в глюконеогенез.

Включение аминокислот в синтез глюкозы

Синтез глюкозы из глицерина

При физической нагрузке под влиянием адреналина или при голодании под влиянием глюкагона и кортизола в адипоцитах активно происходит распад триацилглицеролов (липолиз). Одним из продуктов этого процесса является спирт глицерин , который поступает в печень. Здесь он фосфорилируется, окисляется до диоксиацетонфосфата и вовлекается в реакции глюконеогенеза.

Мы перейдем теперь к синтезу глюкозы из неуглеводных предшественников, процессу, называемому глюконеогенезом. Этот метаболический путь имеет очень важное значение, поскольку некоторые ткани, и в частности мозг, в высшей степени зависят от глюкозы как первичного топлива.

Рис. 15.4. Схематическое изображение доменной структуры глута-тион-редуктазы. Каждая субъединица этого димерного фермента состоит из NADP+ -домена, FAD-домена и пограничного домена. Глутатион связан с FAD-доменом одной субъединицы и пограничным доменом другой субъединицы

Дневная потребность мозга взрослого человека в глюкозе составляет примерно 120 г, т. е. на долю мозга приходится большая часть общей потребности организма в глюкозе (160 г). В жидкостях тела присутствует около 20 г глюкозы, и примерно 190 г глюкозы может быть легко получено из гликогена, ее резервной формы Таким образом, «прямых» резервов глюкозы вполне достаточно для удовлетворения потребности в ней в течение одного дня. При более длительном голодании для обеспечения жизнеспособности организма глюкоза должна образовываться из неуглеводных источников. Важную роль играет глюконеогенез также в периоды интенсивной физической нагрузки.

Основными неуглеводными предшественниками глюкозы служат лактат, аминокислоты и глицерол. Лактат образуется в работающей скелетной мышце, когда скорость гликолиза превосходит скорость превращений в цикле трикарбоновых кислот и в дыхательной цепи (разд. 12.10). Аминокислоты происходят из белков, поступающих с пищей, а при голодании образуются в результате распада белков скелетных мышц

Рис. 15.5. Путь тлюконеогенеза. Отличительные реакции этого пути показаны красными стрелками. Остальные реакции - общие с реакциями гликолиза. Ферменты тлюконеогенеза локализованы в цитозоле, кроме пируват-карбоксилазы (в митохондриях) и глюкозо-6-фосфатазы (связана с эндоплазматическим ретикулумом). Указаны этапы («пункты входа»), на которых в глюконеогенез включаются лактат, глицерол и аминокислоты.

(разд. 23.8). В результате гидролиза триацилглицеролов (разд. 17.4) в жировых клетках образуются глицерол и жирные кислоты. Глицерол служит предшественником глюкозы, тогда как жирные кислоты не могут превращаться в организме животных в глюкозу по причинам, которые будут обсуждаться позднее (разд. 17.14). По пути глюконеогенеза происходит превращение пирувата в глюкозу. Включение метаболитов в этот путь происходит в основном на уровне пирувата, оксалоацетата и дигидроксиацетонфосфата (рис. 15.5). Главным местом глюконеогенеза служит печень. Этот процесс протекает также в коре почек, но общее количество глюкозы, образующейся в почках, составляет лишь 1/10 такового и печени, что объясняется меньшей массой почечной ткани. Очень незначительный глюконеогенез имеет место в мозгу, а также в скелетной и сердечной мышцах. Скорее всего глюконеогенез в печени и почках обеспечивает такое содержание глюкозы в крови, при котором мозг и мышцы могут извлекать из крови достаточные количества глюкозы для удовлетворения своих метаболических потребностей.

Аэробный распад глюкозы

Энергетическое значение аэробного распада глюкозы.

В аэробном гликолизе образуется 10 моль АТФР на 1 моль глюкозы. Так, в реакциях 7, 10 образуется 4 моль АТФ путем субстратного фосфорилирования, а в реакции 6 синтезируется 6 моль АТФ (на 2 моль глицероальдегидфосфата) путем окислительного фосфорилирования.

Баланс аэробного гликолиза.

Суммарный эффект аэробного гликолиза составляет 8 моль АТФ, так как в реакциях 1 и 3 используется 2 моль АТФ. Дальнейшее окисление двух моль пируват в общих путях катаболизма сопровождается синтезом 30 моль АТФ (по 15 моль на каждую молекулу пирувата. Следовательно, суммарный энергетический эффект аэробного распада глюкозы до конечных продуктов составляет 38 моль АТФ.

Значение анаэробного гликолиза

Анаэробный и аэробный гликолиз энергетически неравноценны. Образование двух моль лактата из глюкозы сопровождается синтезом всего двух моль АТФ, потому что NADH, полученный при окислении глицероальдегидфосфата, не используется дыхательной цепью, а акцептируется пируватом.

Анаэробный распад глюкозы.

Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальном периоде интенсивной работы, т. е. в условиях, когда снабжение кислородом ограничено. Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, потому что не имеют митохондрий.

Спиртовое брожение - химическая реакция брожения , осуществляемая дрожжами, в результате которой одна молекула глюкозы преобразуется в 2 молекулы этанола и в 2 молекулы углекислого газа.

Спиртовое брожение (осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и двуокись углерода. Из одной молекулы глюкозы в результате получается две молекулы питьевого спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя двуокись углерода обычно уходит в атмосферу, хотя в последнее время её стараются утилизировать.

40.Глюконеогенез - процесс образования в печени и отчасти в корковом веществе почек (около 10 %) молекул глюкозы из молекул других органических соединений - источников энергии, например свободных аминокислот, молочной кислоты,глицерина

.

Суммарное уравнение глюконеогенеза: 2 CH 3 COCOOH + 4ATP + 2GTP + 2NADH . H + + 6 H 2 O = C 6 H 12 O 6 + 2NAD + 4ADP + 2GDP + 6P n .

Роль в организме

При голодании в организме человека активно используются запасы питательных веществ (гликоген , жирные кислоты ). Они расщепляются до аминокислот , кетокислот и других неуглеводных соединений. Большая часть этих соединений не выводится из организма, а подвергаются реутилизации. Вещества транспортируются кровью в печень из других тканей, и используются в глюконеогенезе для синтеза глюкозы - основного источника энергии в организме. Таким образом при истощении запасов организма, глюконеогенез является основным поставщиком энергетических субстратов.

Большинство стадий глюконеогенеза представляет собой обращениереакциигликолиза . Только 3 реакциигликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие ферменты . Рассмотрим путь синтеза глюкозы из пирувата. Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО 2 и АТФ карбоксилируется с образованием оксалоацетата: Затем оксалоацетат в результате декарбоксилирования и фосфорили-рования под влиянием фермента фосфоенолпируваткарбоксилазы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ): Установлено, что в процессе образования фосфоенолпирувата участвуют ферменты цитозоля и митохондрий . Первый этап синтеза протекает в митохондриях (рис. 10.6). Пируват-карбоксилаза, которая катализирует этуреакцию , является аллостери-ческим митохондриальным ферментом . В качестве аллостерическогоактиватора данного фермента необходим ацетил-КоА. Мембранамитохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же, в митохондриях , восстанавливается в малат: Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы . В митохондриях отношение НАДН/НАД + относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии через митохондриальную мембрану . В цитозоле отношение НАДН/НАД + очень мало, и малат вновь окисляется при участии цитоплазматической НАД-за-висимой малатдегидрогеназы :
Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитозоле клетки . Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфо-енолпируват, образовавшийся из пирувата, в результате ряда обратимых реакцийгликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция , которая необратима. Глюконеогенез идет в обход этой эндергонической реакции . Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой : .Образованиеглюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтезаглюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т.е. реакция идет в обход гексокиназной реакции ) под влиянием фермента глюкозо-6-фос-фатазы: Регуляция глюконеогенеза . Важным моментом в регуляции глюконеоге-неза является реакция , катализируемая пируваткарбоксилазой . Роль положительного аллостерического модулятора этого фермента выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности . Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтезглюкозы из пирувата усиливается. Известно, что ацетил-КоА одновременно является отрицательным модулятором пируватдегидроге-назного комплекса (см. далее). Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу . Другой важный момент в регуляции глюконеогенеза реакция , катализируемая фруктозо-1,6-бисфосфатазой – ферментом , который ингибиру-ется АМФ . Противоположное действие АМФ оказывает на фосфофруктокиназу, т. е. для этого фермента он является аллостерическим активатором . При низкойконцентрацииАМФ и высоком уровне АТФ происходит стимуляция глюконеогенеза . Напротив, когда величина отношения АТФ /АМФ мала, в клетке наблюдается расщепление глюкозы . Показано, что глюконеогенез может регулироваться и непрямым путем, т.е. через изменение активности фермента , непосредственно не участвующего в синтезе глюкозы . Так, установлено, что ферментгликолиза пиру-ваткиназа существует в 2 формах – L и М. Форма L (от англ. liver – печень ) преобладает в тканях , способных к глюконеогенезу . Эта форма ингиби-руется избытком АТФ и некоторыми аминокислотами , в частности ала-нином. М-форма (от англ. muscle – мышцы) такой регуляции не подвержена. В условиях достаточного обеспечения клетки энергией происходит инги-бирование L-формы пируваткиназы . Как следствие ингибирования замедляется гликолиз и создаются условия, благоприятствующие глюконеоге-незу. Наконец, интересно отметить, что между гликолизом , интенсивно протекающим в мышечной ткани при ее активной деятельности, и глюко-неогенезом, особенно характерным для печеночной ткани , существует тесная взаимосвязь. При максимальной активности мышц в результате усиления гликолиза образуется избытокмолочной кислоты , диффундирующей в кровь , в печени значительная ее часть превращается в глюкозу (глюконеогенез ). Такая глюкоза затем может быть использована как энергетический субстрат , необходимый для деятельности мышечной ткани .

41. Гликоген - основная форма депонирования глюкозы в клетках животных. У растений эту же функцию выполняет крахмал. В структурном отношении гликоген, как и крахмал, представляет собой разветвленный полимер из глюкозы.

Однако гликоген более разветвлен и компактен. Ветвление обеспечивает быстрое освобождение при распаде гликогена большого количества концевых мономеров. Синтез и распад гликогена не являются обращением друг в друга, эти процессы происходят разными путями.

Биосинтез***гликогена

Гликоген синтезируется в период пищеварения (в течение 1-2 ч после приема углеводной пищи). Гликогенез особенно интенсивно протекает в печени и скелетных мышцах. В начальных реакциях образуется UDF-глюкоза (реакция 3), которая является активированной формой глюкозы, непосредственно включающейся в реакцию полимеризации (реакция 4). Эта последняя реакция катализируется гликогенсинтазой, которая присоединяет глюкозу к олигосахариду или к уже имеющейся в клетке молекуле гликогена, наращивая цепь новыми мономерами. Для подготовки и включения в растущую полисахаридную цепь требуется энергия 1 моль АТР и 1 моль UTP. Ветвление полисахаридной цепи происходит при участии фермента амило - -1,4--1,6-гликозил-трансферазы путем разрыва одной -1,4-связи и переноса олигосахаридного остатка от конца растущей цепи к ее середине с образованием в этом месте -1,6-гликозидной связи. Молекула гликогена содержит до 1 млн остатков глюкозы, следовательно, на синтез расходуется значительное количество энергии. Необходимость превращения глюкозы в гликоген связана с тем, что накопление значительного количества глюкозы в клетке привело бы к повышению осмотического давления, так как глюкоза хорошо растворимое вещество. Напротив, гликоген содержится в клетке в виде гранул, и мало растворим. Распад гликогена - гликогенолиз - происходит в период между приемами пищи.

Второй вариант билета 40.

Биосинтез глюкозы - глюконеогенез

Глюконеогенез - это синтез глюкозы из неуглеводных предшественников. У млекопитающих эту функцию выполняет в основном печень, в меньшей мере - почки и клетки слизистой кишечника. Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза.

Причем, использование первичных субстратов в глюконеогенезе происходит в различных физиологических состояниях. Так, в условиях голодания часть тканевых белков распадается до аминокислот, которые затем используются в глюконеогенезе. При распаде жиров образуется глицерин, который через диоксиацетонфосфат включается в глюконеогенез. Лактат, образующийся при интенсивной физической работе в мышцах, затем в печени превращается в глюкозу. Следовательно, физиологическая роль глюконеогенеза из лактата и из аминокислот и глицерина различна. Синтез глюкозы из пирувата протекает, как и при гликолизе, но в обратном направлении.

Глюконеогенез.

Ферменты: 1-пируваткарбоксилаза, 2-фосфоенолпируваткарбоксикиназа, 3-фосфатаза фру-1,6-дифосфата, 4-глюкозо-6-фосфатаза.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться. Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным.

Глюконеогенез, необратимые реакции.

Таких циклов существует три - соответственно трем необратимым реакциям. Результатом одновременного протекания реакций субстратных циклов будет расходование энергии. Субстратные циклы могут протекать в условиях нормального обмена веществ в печени и имеют вполне определенное биологическое значение. Кроме того, эти циклы служат точками приложения регуляторных механизмов, в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза. Суммарное уравнение глюконеогенеза из пирувата:

2 пируват + 4 ATФ + 2 GTP + 2(NADH) + 4 Н 2 О Глюкоза + 4 ADP + 2 GDP + 2 NAD+ + 6 Н 3 РО 4 .

За сутки в организме человека может синтезироваться до 80 г глюкозы. На синтез 1 моль глюкозы из пирувата расходуется 6 макроэргических связей (4 ATФ и 2 GTP).


Похожая информация.