Главная · Инструмент · Химические показатели загрязнения воды органическими веществами. Загрязнение воды органическими веществами. Качество питьевой воды

Химические показатели загрязнения воды органическими веществами. Загрязнение воды органическими веществами. Качество питьевой воды

Для суждения об эпидемиологической опасности воды используются бактериологические и химические показатели загрязнения.

Бактериологические показатели загрязнения воды. С эпидемиологической точки зрения при оценке воды имеют значение преимущественно патогенные микроорганизмы. Однако даже при современных достижениях микробиологической техники исследование воды на присутствие в ней патогенных микроорганизмов, а тем более вирусов является довольна трудоемким процессом. Поэтому оно не проводится при массовых анализах воды и осуществляется лишь при наличии эпидемиологических показаний, например при вспышках инфекционных заболеваний, в которых подозревается водный путь передачи.

В оценке качества воды в санитарной практике широко используются косвенные бактериологические показатели загрязнения воды. При этом считается, что чем менее вода загрязнена сапрофитами, тем менее опасна она в эпидемиологическом отношении.

Одним из показателей загрязнения воды сапрофитной микрофлорой является так называемое микробное число.

Микробное число - это количество колоний, вырастающих при посеве 1 мл воды на мясо-пептонный агар после 24 часов выращивания при температуре 37°.

Микробное число характеризует общую бактериальную обсемененность воды. При оценке качества воды по этому показателю пользуются данными наблюдений о том, что в воде незагрязненных и хорошо оборудованных артезианских скважин микробное число не превышает 10-30 в 1 мл, в воде незагрязненных шахтных колодцев - 300-400 в 1 мл, в воде сравнительно чистых открытых водоемов - 1000-1500 в 1 мл. При эффективной очистке и обеззараживании воды на водопроводе число не превышает 100 в 1 мл.

Еще большее значение имеет определение наличия в воде кишечной палочки, которая выделяется с испражнениями человека и животных. Поэтому присутствие в воде кишечной палочки сигнализирует о фекальном загрязнении и, следовательно, о возможном заражении воды патогенными микроорганизмами кишечной группы (брюшной тиф, паратиф, дизентерия и пр.).

Исследование воды на содержание кишечной палочки позволяет предвидеть возможность заражения воды патогенной микрофлорой в будущем и, следовательно, создает возможность путем своевременного проведения необходимых мероприятий предотвратить его.

Степень обсеменения воды кишечной палочкой выражается величиной коли-титра или коли-индекса.

Коли-титр представляет собой то наименьшее количество исследуемой воды, в котором при соответствующей методике обнаруживается (выращивается) кишечная палочка. Чем меньше (ниже) коли-титр, тем значительнее фекальное загрязнение воды.

Коли-индекс - количество кишечных палочек в 1 л воды.

В чистой воде артезианских скважин коли-титр обычно выше 500 (коли-индекс меньше 2), в незагрязненных и хорошо оборудованных колодцах коли-титр не ниже 100 (коли-индекс не более 10).

Ряд экспериментальных исследований показал, что кишечная палочка более устойчива к дезинфицирующим агентам, чем возбудители кишечных инфекций, туляремии, лептоспироза и бруцеллеза, и поэтому может служить не только показателем загрязнения воды, но и индикатором надежности ее обеззараживания, например на водопроводе.

Если после обеззараживания воды титр кишечной палочки поднимается до 300 (коли-индекс не более 3), то такую воду можно считать безопасной в отношении главнейших возбудителей заболеваний, распространяющихся водным путем.

Химические показатели загрязнения воды. К химическим показателям загрязнения воды относят органические вещества и продукты их распада: аммонийные соли, нитриты и нитраты. Кроме нитратов, названные соединения сами по себе в тех количествах, в которых они обычно встречаются в природных водах, не оказывают влияния на здоровье человека. Наличие их лишь может свидетельствовать о загрязнении почвы, через которую протекает вода, питающая водоисточник, и о том, что наряду с этими веществами в воду могли попасть патогенные микроорганизмы.

В отдельных случаях каждый из химических показателей может иметь другую природу, например органические вещества - растительное происхождение. Поэтому признать водоисточник загрязненным можно лишь при наличии следующих условий: 1) в воде присутствует не один, а несколько химических показателей загрязненности; 2) в воде одновременно обнаружены бактериальные показатели загрязненности, например кишечная палочка; 3) возможность загрязнения подтверждается санитарным обследованием водоисточника.

Показателем наличия органических веществ в воде служит окисляемость, выражаемая в миллиграммах кислорода, расходуемого на окисление органических веществ, содержащихся в 1 л воды. Наименьшую окисляемость имеют артезианские воды - до 2 мг 02 на 1 л, в водах шахтных колодцев окисляемость достигает 3-4 мг 02 на 1 л, причем с увеличением цветности воды она возрастает. В воде открытых водоемов окисляемость может быть еще выше.

Повышение окисляемости воды сверх названных величин указывает на возможное загрязнение водоисточника.

Основным источником появления аммонийного азота и нитритов в природных водах является разложение белковых остатков, трупов животных, мочи, фекалий.

При свежем загрязнении отбросами в воде возрастает содержание аммонийных солей (превышает 0,1 мг/л). Являясь продуктом дальнейшего химического окисления аммонийных солей, нитриты в количестве превышающем 0,002 мг/л, также служат важным показателем загрязненности водоисточника. Необходимо учитывать, что в глубоких подземных водах возможно образование нитритов и аммонийных солей из нитратов при восстановительных процессах. Нитраты представляют собой конечный продукт окисления аммонийных солей. Наличие их в воде при отсутствии аммиака и нитритов указывает на сравнительно давнее попадание в воду азотсодержащих веществ, которые успели уже минерализоваться.

Некоторым показателем загрязненности водоисточника служат хлориды, поскольку они содержатся в моче и различных отбросах, но при этом необходимо учитывать, что присутствие больших количеств хлоридов в воде (больше 30-50 мг/л) может быть обусловлено и вымыванием хлористых солей из засолоненных почв.

Для правильной оценки происхождения хлоридов нужно учитывать oхарактер водоисточника, наличие хлоридов в воде соседних однотипных водоисточников, а также присутствие других показателей загрязнения воды.

ПРЯМОЙ ЦИКЛ РАЗЛОЖЕНИЯ АЗОТСОДЕРЖАЩИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

представлен неразложившимися веществами белковой природы, нередко животного происхождения, а также азотом, входящим в состав микроорганизмов, низких растений и неразложившихся остатков высших растений.

Вначале разложения образуется аммиак, затем под действием нитрифицирующих бактерий в присутствии достаточного количества кислорода аммиак окисляется до азотистой кислоты (NО 2 -) (нитриты) и далее ферменты другого микробного семейства окисляют азотистую кислоту в азотную (NО 3 -) (нитраты ).

При свежем загрязнении отбросами в воде вырастает содержание АММОНИЙНЫХ СОЛЕЙ , то есть ион аммония является 1. Индикатором недавнего загрязнения воды органическими веществами белковой природы. 2. Ион аммония может быть обнаружен в чистых водах, содержащих гумусовые вещества и в водах глубокого грунтового происхождения.

Обнаружение в воде НИТРИТОВ свидетельствует о недавнем загрязнении водоисточника органикой (содержание в воде нитритов должно быть не более 0,002 мг/л).

НИТРАТЫ - это конечный продукт окисления аммонийных соединений, наличие в воде при отсутствии ионов аммония и нитритов указывает на давнее загрязнение водоисточника. Содержание нитратов в воде шахтных колодцев должно быть 10 мг/л в питьевой воде централизованного водоснабжения до 45 мг/л).

Обнаружение в воде одновременного присутствия солей аммонийных, нитритов и нитратов свидетельствует о постоянном и длительном органическом загрязнении воды.

ХЛОРИДЫ - имеют исключительно широкое распространение в природе и встречаются во всех природных водах. Большое их количество в воде делает ее непригодной для питья из-за соленого вкуса. Кроме того, хлориды могут служить показателем возможного загрязнения водоисточника сточными водами, поэтому хлориды как санитарно-показательные вещества могут иметь значение в том случае, если анализы на их содержание проводятся неоднократно, на протяжении более или менее длительного времени. (ГОСТ "Вода питьевая не >> 350 мг/л).

СУЛЬФАТЫ - также являются важными показателями органического загрязнения воды, так как они всегда содержатся в хозяйственно бытовых сточных водах. (ГОСТ "Вода питьевая" не >> 500 мг/л).

ОКИСЛЯЕМОСТЬ - это количество кислорода в мг, расходуемого на окисление органических веществ, содержащихся в 1 литре воды.

РАСТВОРЕННЫЙ КИСЛОРОД

Подземные воды вследствие отсутствия соприкосновения с воздухом очень часто не содержат кислород. Степень насыщения поверхностных вод сильно колеблется. Вода считается чистой, если в ней содержится 90% кислорода от максимально возможного содержания при данной температуре, Средней чистоты - при 75-80%; Сомнительной - при 50-75%; Загрязненной - менее 50%.

Согласно "Правилам охраны поверхностных вод от загрязнений", содержание кислорода в воде в любой период года должно быть не менее 4 мг/л в пробе, отобранной до 12 часов дня.

Вследствие значительных колебаний абсолютного содержания кислорода в природных водах более ценным показателем является величина потребления кислорода в течение некоторого срока хранения воды при определенной температуре (БИОХИМИЧЕСКАЯ ПОТРЕБНОСТЬ В КИСЛОРОДЕ в течение 5 или 20 суток - БПК 5 - БПК 20).

Для его определения исследуемую воду путем энергичного встряхивания насыщают кислородом воздуха, определяют в ней исходное содержание кислорода и оставляют на 5 или 20 суток при температуре 20 0 С. После этого вновь определяют содержание кислорода. Чаще всего показатель БПК 5 используется для характеристики процессов самоочищения водоемов от загрязнения промышленными и хозяйственно-бытовыми сточными водами.

ОСНОВНЫЕ ИСТОЧНИКИ ЗАГРЯЗНЕНИЯ ВОДОЕМОВ, ПОСЛЕДСТВИЯ ЗАГРЯЗНЕНИЯ ВОДОЕМОВ

Основными источниками загрязнения водоемов являются:

1. промышленные и бытовые сточные воды (бытовые воды имеют высокую бактериальную и органическую загрязненность)

2. дренажные воды с орошаемых земель

3. сточные воды животноводческих комплексов (могут содержать патогенные бактерии и яйца гельминтов)

4. организованный (ливневая канализация) и неорганизованные поверхностный сток с территории населенных пунктов, с/х полей (использование различных химических препаратов - минеральных удобрений, пестицидов и т.д.)

5. молевой сплав леса;

6. водный транспорт (сточные воды 3-х видов: фекальные, хозяйственно-бытовые и воды, получаемые в машинных отделениях).

Кроме того, дополнительными источника заражения воды возбудителями кишечных инфекций могут стать: сточные воды больниц; массовые купания; стирка белья в небольшом водоеме.

Загрязнения, поступающие в водоемы:

1. нарушают нормальные условия жизнедеятельности биоценоза водоема;

2. способствуют изменению органолептических показателей воды (цветность, привкус, запах, прозрачность);

3. повышают бактериальную загрязненность водоемов. Употребление человеком воды, не подвергшейся методам очистки и обеззараживания, приводит к развитию: инфекционных заболеваний, а именно бактериальных, дизентерии, холеры, вирусных (вирусных гепатит), зоонозам (лептоспироз, туляремия), гельминтозам, а так же заражение человека простейшими (амеба, инфузория туфелька);

4. увеличивают количество химических веществ, превышение ПДК которых в питьевой воде способствует развитию хронических заболеваний (например, накопление в организме свинца, бериллия)

Поэтому к качеству питьевой воды предъявляют следующие гигиенические требования:

1. Вода должна быть эпидемиологически безопасной в отношении острых инфекционных заболеваний;

2. должна быть безвредной по химическому составу;

3. вода должна иметь благоприятные органолептические показатели должна быть приятной на вкус, не должна вызывать эстетическое неприятие.

Для снижения заболеваемости человека, связанной с водным фактором передачи необходимо:

выполнение природоохранного комплекса мероприятий (предприятия источники загрязнений) и контроль над его выполнением (контролирующие органы министерства природного хозяйства, ФС «Роспотребнадзор»);

применение методов улучшения качества питьевой воды (водоканал);

контроль качества питьевой воды.

Природная воды имеет слабощелочную реакцию (6,0-9,0). Увеличение щелочности указывает на загрязнение ее или цветение водоема. Кислая реакция воды отмечается при наличии гуминовых веществ или проникновении промышленных сточных вод.

Жесткость. Жесткость воды зависит от химического состава почвы, через которую проходит вода, содержания в ней оксида углерода, степени загрязнения ее органическими веществами. Измеряется либо в мг-экв/л, либо в градусах. По степени жесткости вода бывает: мягкая (до 3мг-экв/л); средней жесткости (7мг=экв/Л); жесткая (14мг=экв/л); очень жесткая (свыше 14мг-ээкв/Л). Очень жесткая вода имеет неприятный вкус, может ухудшать течение почечнокаменной болезни.

Окисляемость воды – это количество кислорода в миллиграммах, которое расходуется на химическое окислении е органических и неорганических веществ, содержащихся в 1л воды. Повышенная окисляемость может указывать на загрязнение воды.

Сульфаты в количествах, превышающих 500мг/л, придают воде горьковато-соленноватый вкус, при концентрации 1000-1500мг/л неблагоприятно влияют на желудочную секрецию, могут вызвать диспепсические явления. Сульфаты могут быть показателем загрязнения поверхностных вод животными отбросами.

Повышенное содержание железа вызывает окрашивание, помутнение, придает воде запах сероводорода, неприятный чернильный привкус, а в сочетании мс гуминовыми соединениями – болотный привкус.

Аммиак в воде расценивается как показатель опасного в эпидемиологическом отношении свежего загрязнения воды органическими веществами животного происхождения. Показателем более давнего загрязнения являются соли азотистой кислоты – нитраты, которые представляют собой продуты окисления аммиака под влиянием микроорганизмов в процессе нитрификации наличие в воде нитратов без аммиака си солей азотистой кислоты указывает на завершение процесса минерализации и при высоком их содержании в воде свидетельствуют о давнишнем загрязнении ее. Однако содержание в воде всех трех компонентов – аммиака, нитритов и нитратов – свидетельствует о незавершенности процесса минерализации и опасном в эпидемиологическом отношении загрязнении воды.

52. Методы улучшения качества воды .

I.Основные методы

1.Осветление и обесцвечивание (очистка): отстаивание, фильтрация, коагуляция.

2.Обеззараживание: кипячение, хлорирование, озонирование, облучение УФ-лучами, использование олигодинамического действия серебра, применение ультразвука, применение гамма-лучей.


II.Методы специальной обработки: дезодорация, дегазация, обезжелезивание, умягчение, опреснение, обесфторирование, фторирование, дезактивация.

На первом этапе очистки воды из открытого водоисточника проводится ее осветление и обесцвечивание. Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном гуминовых веществ) и достигается отстаиванием, фильтрацией. Эти процессы протекают медленно и эффективность обесцвечивания невелика. Стремление ускорить осаждение взвешенных частиц, ускорить процесс фильтрации привело к проведению предварительного коагулирования воды химическими веществами (коагулянтами), образующими гидроокиси с быстро оседающими хлопьями и ускоряющими осаждение взвешенных частиц.

В качестве коагулянтов применяют сернокислый алюминий – Al2(SO4)3; хлорное железо – FeCl3; сернокислое железо – FeSO4 и др. Коагулянты при правильно произведенной обработке воды безвредны для организма, так как остаточные количества алюминия и железа весьма малы (алюминия - 1,5 мг/л, железа – 0,5 – 1,0 мг/л).

После коагуляции и отстаивания вода подвергается фильтрации на скорых или медленных фильтрах.

При любой схеме заключительным этапом обработки воды на очистном сооружении водопровода должно быть обеззараживание. Его задача – уничтожение патогенных микроорганизмов, т.е. обеспечение эпидемической безопасности воды. Обеззараживание может быть проведено химиче-скими и физическими (безреагентными) методами.

Кипячение является простым и надежным методом. Вегетативные микроорганизмы погибают при нагревании до 800С уже через 20 – 40 се-кунд, поэтому в момент закипания вода фактически обеззаражена.

Ультразвук применяется для обеззараживания бытовых сточных вод. Он эффективен в отношении всех микроорганизмов, включая споровые формы, а так же его применение не приводит к пенообразованию при обеззараживании бытовых стоков.

Гамма – излучение – очень надежный и эффективный метод, мгновенно уничтожающий все виды микроорганизмов.

К реагентам, которые не изменяют химического состава воды при обеззараживании, относится озон.

В настоящее время основным методом, используемым для обеззараживания воды на водопроводных станциях в силу технико – экономических причин, является метод хлорирования.

Эффективность обеззараживания воды зависит от подобранной дозы хлора, времени контакта активного хлора с водой, температуры воды и от многих других факторов.

К модификациям хлорирования относят: двойное хлорирование, хлорирование с аммонизацией, перехлорирование.

Кондиционирование минерального состава воды можно разделить на удаление из воды солей или газов, находящихся в ней в избыточном количестве (умягчение, обессоливание и опреснение, обезжелезивание, дефторирование, дегазация, дезактивация и др.) и добавление минеральных веществ с целью улучшения органолептических и физиологических свойств воды (фторирование, частичная минерализация после опреснения и др.).

Для обеззараживания индивидуальных запасов воды применяются таблетированные формы, содержащие хлор. Аквасепт, таблетки, содержащие 4 мг активного хлора мононатриевой соли дихлоризоциануровой кислоты. Пантоцид – препарат из группы органических хлораминов, растворимость – 15- 30 минут. Выделяет 3 мг активного хлора.

22.12.2016

2880

Сегодня мы рассказываем все, что вы хотели знать об органических загрязнителях воды.

Органические загрязнители воды

Помимо неорганических веществ (железо , марганец , фториды) в воде содержатся и органические вещества. В нашем блоге вы узнаете о видах органических загрязнителей и о том, как обнаружить их превышение.

Источники загрязнения воды:

Выделяют 3 основных вида источников загрязнения воды:

  • Населенные пункты. Канализационные стоки являются в данном случае основным местом скопления бытовых отходов. Ежедневно люди используют огромное количество воды для употребления, приготовления пищи, гигиенических процедур и уборки, после чего эта вода вместе с моющими средствами и пищевыми отходами попадает в канализацию. Затем происходит очистка коммунальными сооружениями, и вода возвращается на повторное использование.
  • Промышленность. Является основным загрязнителем в развитых странах с огромным количеством предприятий. Количество выбрасываемых ими сточных вод в три раза превышает коммунально-бытовые стоки.
  • Сельское хозяйство. В этой области интенсивно загрязняет водоемы растениеводство, благодаря применению удобрений и пестицидов. Около четверти азотных удобрений, треть калийных и 4 % фосфорных удобрений попадает в водоемы.

Влияние органических загрязнителей на здоровье человека

Существует множество заболеваний, вызванных загрязнением воды. Например, умываясь зараженной водой, можно заболеть коньюктивитом. Моллюски и водоросли, живущие в воде, могут вызвать шистосоматоз(лихорадка, боли в печени).

Как определить количество органических веществ в воде

Величина, характеризующая содержание в воде органических и минеральных веществ называется окисляемостью. Для оценки химического потребления кислорода, т.е. окисляемости воды, используют бихроматный и перманганатный метод. Определение бихроматной окисляемости требует довольно продолжительного времени, поэтому для массового контроля работы очистных сооружений он малоудобен. Именно перманганатная окисляемость регламентирует качество питьевой воды согласно СанПиН.

Что такое перманганатная окисляемость?

Перманганатная окисляемость — показатель, получаемый для оценки ХПК перманганатным методом, иными словами, это показатель общего количества органических веществ в воде. Перманганатная окисляемость выражается в миллиграммах кислорода, пошедшего на окисление этих веществ, содержащихся в 1 дм3 воды. Данный показатель не называет органические вещества, содержащиеся в воде, а говорит лишь о превышении их количества.

Признаки превышения пермаганатной окисляемости

→ Очистка сточных вод

Санитарно-химические показатели загрязнения сточных вод


Состав сточных вод и их свойства оценивают по результатам сани-тарно-химического анализа, включающего наряду со стандартными химическими тестами целый ряд физических, физико-химических и санитарно-бактериологических определений.

Сложность состава сточных вод и невозможность определения каждого из загрязняющих веществ приводит к необходимости выбора таких показателей, которые характеризовали бы определенные свойства воды без идентификации отдельных веществ. Такие показатели называются групповыми или суммарными. Например, определение органолептических показателей (запах, окраска) позволяет избежать количественного определения в воде каждого из веществ, обладающих запахом или придающих воде окраску.

Полный санитарно-химический анализ предполагает определение следующих показателей: температура, окраска, запах, прозрачность, величина рН, сухой остаток, плотный остаток и потери при прокаливании, взвешенные вещества, оседающие вещества по объему и по массе, перман-ганатная окисляемость, химическая потребность в кислороде (ХПК), биохимическая потребность в кислороде (БПК), азот (общий, аммонийный, нитритный, нитратный), фосфаты, хлориды, сульфаты, тяжелые металлы и другие токсичные элементы, поверхностно-активные вещества, нефтепродукты, растворенный кислород, микробное число, бактерии группы кишечной палочки (БГКП), яйца гельминтов. Кроме перечисленных показателей, в число обязательных тестов полного санитарно-химического анализа на городских очистных станциях может быть включено определение специфических примесей, поступающих в водоотводящую сеть населенных пунктов от промышленных предприятий.

Температура - один из важных технологических показателей, функцией температуры является вязкость жидкости и, следовательно, сила сопротивления оседающим частицам. Поэтому температура - один из определяющих факторов процесса седиментации. Важнейшее значение имеет температура для биологических процессов очистки, так как от нее зависят скорости биохимических реакций и растворимость кислорода в воде.

Окраска – один из органолептических показателей качества сточных вод. Хозяйственно-фекальные сточные воды обычно слабо окрашены и имеют желтовато-буроватые или серые оттенки. Наличие интенсивной окраски различных оттенков - свидетельство присутствия производственных сточных вод. Для окрашенных сточных вод определяют интенсивность окраски по разведению до бесцветной, например 1:400; 1:250 и т.д.

Запах – органолептический показатель, характеризующий наличие в воде пахнущих летучих веществ. Обычно запах определяют качественно при температуре пробы 20°С и описывают как фекальный, гнилостный, керосиновый, фенольный и т.д. При неясно выраженном запахе определение повторяют, подогревая пробу до 65°С. Иногда необходимо знать пороговое число - наименьшее разбавление, при котором запах исчезает.

Концентрация ионов водорода выражается величиной рН. Этот показатель чрезвычайно важен для биохимических процессов, скорость которых может существенно снижаться при резком изменении реакции среды. Установлено, что сточные воды, подаваемые на сооружения биологической очистки, должны иметь значение рН в пределах 6,5 – 8,5. Производственные сточные воды (кислые или щелочные) должны быть нейтрализованы перед сбросом в водоотводящую сеть, чтобы предотвратить ее разрушение. Городские сточные воды обычно имеют слабощелочную реакцию среды (рН = 7,2-7,8).

Прозрачность характеризует общую загрязненность сточной воды нерастворенными и коллоидными примесями, не идентифицируя вид загрязнений. Прозрачность городских сточных вод обычно составляет 1-3 см, а после очистки увеличивается до 15 см.

Сухой остаток характеризует общую загрязненность сточных вод органическими и минеральными примесями в различных агрегативных состояниях (в мг/л). Определяется этот показатель после выпаривания и дальнейшего высушивания при t = 105 °С пробы сточной воды. После прокаливания (при t = 600°C) определяется зольность сухого остатка. По этим двум показателям можно судить о соотношении органической и минеральной частей загрязнений в сухом остатке.

Плотный остаток – это суммарное количество органических и минеральных веществ в профильтрованной пробе сточных вод (в мг/л). Определяется при таких же условиях, что и сухой остаток. После прокаливания плотного остатка при t = 600°С можно ориентировочно оценить соотношение органической и минеральной частей растворимых загрязнений сточных вод. При сравнении прокаленных сухого и плотного остатков городских сточных вод определено, что большая часть органических загрязнений находится в нерастворенном состоянии. При этом минеральные примеси в большей степени находятся в растворенном виде.

Взвешенные вещества – показатель, характеризующий количество примесей, которое задерживается на бумажном фильтре при фильтровании пробы. Это один из важнейших технологических показателей качества воды, позволяющий оценить количество осадков, образующихся в процессе очистки сточных вод. Кроме того, этот показатель используется в качестве расчетного параметра при проектировании первичных отстойников. Количество взвешенных веществ – один из основных нормативов при расчете необходимой степени очистки сточных вод. Потери при прокаливании взвешенных веществ определяются так же, как для сухого и плотного остатков, но выражаются обычно не в мг/л, а в виде процентного отношения минеральной части взвешенных веществ к их общему количеству по сухому веществу. Этот показатель называется зольностью. Концентрация взвешенных веществ в городских сточных водах обычно составляет 100 – 500 мг/л.

Оседающие вещества - часть взвешенных веществ, оседающих на дно отстойного цилиндра за 2 ч отстаивания в покое. Этот показатель характеризует способность взвешенных частиц к оседанию, позволяет оценить максимальный эффект отстаивания и максимально возможный объем осадка, который может быть получен в условиях покоя. В городских сточных водах оседающие вещества в среднем составляют 50-75% общей концентрации взвешенных веществ.

Под окисляемостью понимают общее содержание в воде восстановителей органической и неорганической природы. В городских сточных водах подавляющую часть восстановителей составляют органические вещества, поэтому считается, что величина окисляемости полностью относится к органическим примесям. Окисляемость – групповой показатель. В зависимости от природы используемого окислителя различают химическую окисляемость, если при определении используют химический окислитель, и биохимическую, когда роль окислительного агента выполняют аэробные бактерии – этот показатель – биохимическая потребность в кислороде -БПК. В свою очередь, химическая окисляемость может быть перманганат-ной (окислитель КМп04), бихроматной (окислитель К2Сг207) и иодатной (окислитель KJ03). Результаты определения окисляемости независимо от вида окислителя выражают в мг/л 02. Бихроматную и иодатную окисляемость называют химической потребностью в кислороде или ХПК.

Перманганатная окисляемость – кислородный эквивалент легко-окисляемых примесей. Основная ценность этого показателя – быстрота и простота определения. Перманганатная окисляемость используется с целью получения сравнительных данных. Тем не менее, есть такие вещества, которые не окисляются КМп04. Определяя ХПК, можно достаточно полно оценить степень загрязненности воды органическими веществами.

БПК - кислородный эквивалент степени загрязненности сточных вод биохимически окисляемыми органическими веществами. БПК определяет количество кислорода, необходимое для жизнедеятельности микроорганизмов, участвующих в окислении органических соединений. БПК характеризует биохимически окисляемую часть органических загрязнений сточной воды, находящихся в первую очередь в растворенном и коллоидном состояниях, а также в виде взвеси.
Для математического описания процесса биохимического потребления кислорода наиболее часто используют кинетическое уравнение первого порядка. Для вывода уравнения введем ряд обозначений: La – количество кислорода, необходимое для окисления всего органического вещества, т.е. БПКполн мг/л; Lt – то же, потребленное к моменту времени t, т.е. БПКЬ мг/л; La – Lt – то же, остающееся в растворе к моменту времени t, мг/л.

Азот находится в сточных водах в виде органических и неорганических соединений. В городских сточных водах основную часть органических азотистых соединений составляют вещества белковой природы – фекалии, пищевые отходы. Неорганические соединения азота представлены восстановленными – NH4+ и NH3 окисленными формами N02” и N03” Аммонийный азот в большом количестве образуется при гидролизе мочевины – продукта жизнедеятельности человека. Кроме того, процесс аммонификации белковых соединений также приводит к образованию соединений аммония.

В городских сточных водах до их очистки азот в окисленных формах (в виде нитритов и нитратов), как правило, отсутствует. Нитриты и нитраты восстанавливаются группой денитрифицирующих бактерий до молекулярного азота. Окисленные формы азота могут появиться в сточной воде лишь после биологической очистки.

Источником соединений фосфора в сточных водах являются физиологические выделения людей, отходы хозяйственной деятельности человека и некоторые виды производственных сточных вод. Концентрации азота и фосфора в сточных водах – важнейшие пока- | затели санитарно-химического анализа, имеющие значение для биологической очистки. Азот и фосфор – необходимые компоненты состава бактериальных клеток. Их называют биогенными элементами. При отсутствии азота и фосфора процесс биологической очистки невозможен.

Хлориды и сульфаты – показатели, концентрация которых влияет на общее солесодержание.

В группу тяжелых металлов и других токсичных элементов входит большое число элементов, которое по мере накопления знаний о процессах очистки все более возрастает. К токсичным тяжелым металлам относят железо, никель, медь, свинец, цинк, кобальт, кадмий, хром, ртуть; токсичным элементам, не являющимся тяжелыми металлами, – мышьяк, сурьма, бор, алюминий и т.д.

Источник тяжелых металлов – производственные сточные воды машиностроительных заводов, предприятий электронной, приборостроительной и других отраслей промышленности. В сточных водах тяжелые металлы содержатся в виде ионов и комплексов с неорганическими и органическими веществами.

Синтетические поверхностно-активные вещества (СПАВ) – органические соединения, состоящие из гидрофобной и гидрофильной частей, обусловливающих растворение этих веществ в маслах и в воде. Примерно 75% общего количества производимых СПАВ приходится на долю анионо-активных веществ, второе место по выпуску и использованию занимают неионогенные соединения. В городских сточных водах определяют СПАВ этих двух типов.

Нефтепродукты – неполярные и малополярные соединения, экстрагируемые гексаном. Концентрация нефтепродуктов в водоемах строго нормируется, и поскольку на городских очистных сооружениях степень их задержания не превышает 85%, в поступающей на станцию сточной воде также ограничивается содержание нефтепродуктов.

Растворенный кислород в поступающих на очистные сооружения сточных водах отсутствует. В аэробных процессах концентрация кислорода должна быть не менее 2 мг/л.

Санитарно-бактериологические показатели включают: определение, общего числа аэробных сапрофитов (микробное число), бактерий группы кишечной палочки и анализ на яйца гельминтов.

Микробное число оценивает общую обсемененность сточных вод микроорганизмами и косвенно характеризует степень загрязненности воды органическими веществами – источниками питания аэробных сапрофитов. Этот показатель для городских сточных вод колеблется в пределах 106 – 108.