Главная · Прочее · Как рассчитать количество радиаторов отопления на квартиру. Стальные радиаторы отопления. Расчет мощности стальных радиаторов отопления с учетом площади помещения и теплопотерь. Дополнительные параметры для более точных вычислений

Как рассчитать количество радиаторов отопления на квартиру. Стальные радиаторы отопления. Расчет мощности стальных радиаторов отопления с учетом площади помещения и теплопотерь. Дополнительные параметры для более точных вычислений

При проектировании систем отопления обязательным мероприятием является проведение расчётов мощности отопительных приборов. Полученный результат в большей степени влияет на выбор того или иного оборудования – радиаторов отопления и нагревательных котлов (если проект выполняется для частных домов, не подключенных к центральным системам отопления).

Наибольшей популярностью в данный момент пользуются батареи, выполненные в виде соединённых между собой секций. В данной статье речь как раз и пойдёт о том, как рассчитать количество секций радиатора.

Способы расчета количества секций батареи

Для того чтобы выполнить расчет количества секций радиаторов отопления, можно воспользоваться тремя основными способами. Первые два – достаточно лёгкие, но они дают лишь приблизительный результат, который подходит для типовых помещений многоэтажных домов. Сюда относится расчет секций радиаторов по площади помещения или по его объёму. Т.е. в этом случае достаточно узнать нужный параметр (площадь или объём) помещения и вставить его в соответствующую формулу для вычисления.

Третий способ предполагает использование для расчётов множества различных коэффициентов, определяющих теплопотери помещения. Сюда относятся размеры и тип окон, этаж, тип утепления стен, высота потолков и другие критерии, влияющие на теплопотери. Потеря тепла может также происходить и по различным причинам, связанными с ошибками и недочётами при строительстве дома. Например, внутри стен имеется полость, слой утеплителя имеет трещины, брак в строительном материале и т.д. Таким образом, поиск всех причин утечки тепла – одно из обязательных условий для выполнения точного расчёта. Для этого используются тепловизоры, отображающие на мониторе места утечки тепла из помещения.

Всё это делается для того, чтобы подобрать такую мощность радиаторов, которая компенсирует суммарное значение теплопотерь. Рассмотрим каждый способ расчёта секций батарей по отдельности и приведём для каждого из них наглядный пример.

Расчет количества секций радиатора по площади помещения

Данный способ является наиболее простым. Для получения результата потребуется перемножить площадь помещения на значение мощности радиатора, требуемой для обогрева 1кв.м. Это значение приведено в СНиП, и составляет оно:

  • 60-100Вт для средней климатической зоны России (Москва);
  • 120-200Вт для районов, расположенных севернее.

Расчет секций радиаторов согласно усреднённому параметру мощности осуществляется путём его умножения на значение площади помещения. Так, 20 кв.м. потребуют для обогрева: 20*60 (100)=1200 (2000)Вт

Далее, полученное число необходимо разделить на значение мощности одной секции радиатора. Чтобы узнать, на какую площадь рассчитана 1 секция радиатора, достаточно открыть техпаспорт оборудования. Допустим, что мощность секции равна 200Вт, а требуемая для обогрева общая мощность составляет 1600Вт (возьмём среднее арифметическое). Остаётся только уточнить, сколько нужно секций радиатора на 1 м2. Для этого разделим значение требуемой мощности для обогрева на мощность одной секции: 1600/200 =8

Результат: для обогрева помещения площадью 20 кв. м. потребуется 8-секционный радиатор (при условии, что мощность одной секции составляет 200Вт).

Расчет секций радиаторов отопления по значению площади помещения даёт лишь приблизительный результат. Чтобы не ошибиться с количеством секций, лучше всего производить расчёты при условии, что для обогрева 1 кв.м. требуется мощности в 100Вт.

Это, как следствие, увеличит общие затраты на монтаж системы отопления, а потому проведение такого расчёта не всегда уместно, особенно при ограниченном бюджете. Более точный, но, всё такой же, приблизительный результат даст следующий способ.

Способ данного расчёта аналогичен предыдущему, за исключением того, что теперь из СНиП потребуется узнать значение мощности для обогрева не 1 кв.м., а кубометра помещения. Согласно СНиП – это:

    41Вт для обогрева помещений зданий панельного типа;34Вт для кирпичных домов.

В качестве примера возьмём то же помещение площадью в 20 кв. м., и зададим условную высоту потолка – 2,9м. В этом случае объём будет равен: 20*2,9 =58 кубометров

Из этого: 58*41 =2378 Вт для панельного дома 58*34 =1972 Вт для кирпичного дома

Разделим полученные результаты на значение мощности одной секции. Итого: 2378/200 =11,89 (панельный дом) 1972/200 =9,86 (кирпичный дом)

Если округлять до большего числа, тогда для обогрева помещения в 20 кв. м. панельного понадобятся 12-секционные, а для кирпичного дома 10-секционные радиаторы. И эта цифра также является приблизительной. Чтобы с высокой точностью рассчитать, сколько секций батарей нужно для отопления помещений, необходимо воспользоваться более сложным способом, который будет рассмотрен далее.

Для проведения точного расчёта в общую формулу вводятся специальные коэффициенты, которые могут, как увеличивать (коэффициент увеличения) значение минимальной мощности радиатора для обогрева помещения, так и понижать его (коэффициент понижения).

На самом деле, факторов, влияющих на значение мощности, множество, но мы будем использовать наиболее те, которые легко вычислить и с которыми легко оперировать. Коэффициент зависит от значений следующих параметров помещения:

  1. Высота потолков:
    • При высоте в 2,5м коэффициент составляет 1;
    • При 3м – 1,05;
    • При 3,5м – 1,1;
    • При 4м – 1,15.
  2. Тип остекления окон в помещении:
    • Простое двойное стекло – коэффициент равен 1,27;
    • Стеклопакет из 2 стёкол – 1;
    • Тройной стеклопакет – 0,87.
  3. Процент площади окна от общей площади помещения (для простоты определения можно разделить площадь окна на площадь помещения и умножить затем на 100):
    • Если результат вычислений равен 50%, берётся коэффициент 1,2;
    • 40-50% – 1,1;
    • 30-40% – 1;
    • 20-30% – 0,9;
    • 10-20% – 0,8.
  4. Теплоизоляция стен:
    • Низкий уровень теплоизоляции – коэффициент равен 1,27;
    • Хорошая теплоизоляция (кладка в два кирпича или утеплитель 15-20см) – 1.0;
    • Повышенная теплоизоляция (стена толщиной от 50см или утеплитель от 20см) – 0,85.
  5. Среднее значение минимальной температура зимой, которая может продержаться неделю:
    • -35 градусов – 1,5;
    • -25 – 1,3;
    • -20 – 1,1;
    • -15 – 0,9;
    • -10 – 0,7.
  6. Количество наружных (торцевых) стен:
    • 1 торцевая стена – 1,1;
    • 2 стены – 1,2;
    • 3 стены – 1,3.
  7. Тип помещения над отапливаемым помещением:
    • Неотапливаемый чердак – 1;
    • Отапливаемый чердак – 0,9;
    • Отапливаемое жилое помещение – 0,85.

Отсюда понятно, что если коэффициент выше единицы, то он считается повышающим, если ниже – понижающим. Если в его значении стоит единица, то он никак не влияет на результат. Чтобы произвести расчёт, необходимо умножить каждый из коэффициентов на значение площади помещения и усреднённую удельную величину тепловых потерь на 1 кв.м., которая составляет (согласно СНиП) 100Вт.

Таким образом, мы имеем формулу: Q_T= γ*S*K_1*…*K_7,где

  • Q_T – требуемая мощность всех радиаторов для обогрева помещения;
  • γ – средняя величина теплопотерь на 1 кв.м., т.е. 100Вт; S – общая площадь помещения; K_1…K_7 – коэффициенты, влияющие на величину тепловых потерь.
  • Площадь помещения – 18 кв.м.;
  • Высота потолка – 3м;
  • Окно с обычным двойным стеклом;
  • Площадь окна 3 кв.м., т.е. 3/18*100 = 16,6%;
  • Теплоизоляция – двойной кирпич;
  • Минимальная температура на улице в течение недели подряд -20 градусов;
  • Одна торцевая (внешняя) стена;
  • Помещение сверху – отапливаемая жилая комната.

Теперь заменим буквенные значения на числовые и получим: Q_T= 100*18*1,05*1,27*0,8*1*1,3*1,1*0,85≈2334 Вт

Осталось разделить результат на значение мощности одной секции радиатора. Допустим, что на равна 160Вт: 2334/160 =14,5

Т.е. для обогрева помещения площадью в 18 кв.м. и приведёнными коэффициентами тепловых потерь потребуется радиатор с 15 секциями (округлим в большую сторону).

Существует ещё один несложный способ того, как рассчитать секции радиаторов, ориентируясь на материал их изготовления. На самом деле, этот метод не даёт точного результата, однако помогает прикинуть примерное количество секций батарей, которые потребуется задействовать в помещении.

Отопительные батареи принято разделять на 3 типа в зависимости от материала их изготовления. Это биметаллические, в которых используется металл и пластик (обычно в качестве внешнего покрытия), чугунные и алюминиевые радиаторы отопления. Расчёт количества секций батарей, выполненных из того или иного материала, одинаков во всех случаях. Здесь достаточно воспользоваться усреднённым значением мощности, которую может выдать одна секция радиатора, и значением площади, которую данная секция способна прогреть:

  • Для алюминиевых батарей – это 180Вт и 1,8 кв. м;
  • Биметаллических – 185Вт и 2 кв.м.;
  • Чугунных – 145Вт и 1,5 кв.м.

Используя простой калькулятор, расчёт количества секций радиаторов отопления можно произвести путём разделения площади помещения на значение площади, которую способна прогреть одна секция радиатора из интересующего нас металла. Возьмём помещение в 18 кв. м. Тогда получаем:

  • 18/1,8 = 10 секций (алюминий);
  • 18/2 = 9 (биметалл);
  • 18/1,5 = 12 (чугун).

Площадь, которую способна прогреть одна секция радиатора, не всегда указывается. Обычно производители указывают её мощность. В этом случае потребуется вычислить общую мощность, требуемую для обогрева помещения, любым из приведённых выше способов. Если брать расчёт по площади и мощность, необходимую для прогрева 1 кв.м., в 80Вт (согласно СНиП), тогда получим: 20*80=1800/180 =10 секций (алюминий); 20*80=1800/185 =9,7 секций (биметалл); 20*80=1800/145 =12,4 секций (чугун);

Округлив десятичные числа в одну из сторон, мы получим примерно одинаковый результат, как и в случае расчётов по площади.

Важно понимать, что вычисление количества секций по металлу изготовления радиатора – это самый неточный метод. Он может помочь определиться с выбором в пользу той или иной батареи, и ни с чем другим.

И напоследок совет. Практически каждый производитель отопительного оборудования или интернет-магазин на своём сайте размещает специальный калькулятор для расчёта количества секций радиаторов отопления. Достаточно ввести в него требуемые параметры, и программа выдаст на выходе нужный результат. Но, если вы не доверяете роботу, то вычисления, как можно заметить, достаточно легко произвести и самостоятельно даже на листе бумаги.

Остались вопросы? Позвоните или напишите нам!

Комфорт проживания в доме или квартире тесно связан с оптимально сбалансированной системой отопления. Создание такой системы – наиболее важный вопрос, который невозможно решить без знания современных проверенных схем подключения радиаторов отопления. Прежде чем переходить к решению задачи с подключением отопления, важно учесть правила расчета радиаторов отопления.

Особенности

Расчет радиаторов отопления производится в соответствии с теплопотерями конкретного помещения, а также в зависимости от площади этого помещения. Казалось бы, ничего сложного в создании проверенной схемы отопления с контурами труб и циркулирующим по ним носителю нет, однако правильные теплотехнические расчеты основываются на требованиях СНиП. Такие расчеты выполняются специалистами, а сама процедура считается чрезвычайно сложной. Однако с допустимым упрощением выполнить процедуры можно и самостоятельно. Кроме площади обогреваемого помещения, в расчетах учитываются некоторые нюансы.

Не зря для расчета радиаторов специалисты применяют различные методики. Основная их особенность – учет максимальных теплопотерь помещения. Затем уже рассчитывается нужное количество отопительных приборов, которые компенсируют эти потери.

Понятно, что чем проще будет используемый метод, тем более точными будут итоговые результаты. К тому же для нестандартных помещений специалисты применяют специальные коэффициенты.

Под нестандартными условиями конкретного помещения принимается выход на балкон, большие окна, расположение комнаты, например, если она угловая. Профессиональные расчеты включают целый ряд формул, которыми сложно апеллировать непрофессионалу в этой области.

Специалисты в своих проектах нередко используют специальные приборы. Например, с точным определением фактических теплопотерь справится тепловизор. На основании данных, полученных по прибору, рассчитывается количество радиаторов, которые с точностью компенсируют потери.

Такой метод расчета покажет наиболее холодные точки квартиры, места, где тепло будет уходить активнее всего. Такие точки часто возникают из-за строительного брака, например, допущенного рабочими, или из-за некачественных строительных материалов.

Результаты проводимых расчетов тесно связаны с существующими видами радиаторов отопления. Для получения наилучшего результата в расчетах необходимо знание параметров планируемых к использованию устройств.

Современный ассортимент включает такие виды радиаторов:

  • стальные;
  • чугунные;
  • алюминиевые;
  • биметаллические.

Для проведения расчетов нужны такие параметры устройств, как мощность и форма радиатора, материал изготовления. Самая простая схема подразумевает размещение радиаторов под каждым окном, имеющимся в комнате. Поэтому рассчитываемое количество радиаторов обычно равно числу оконных проемов.

Однако, прежде чем закупать необходимое оборудование, нужно определить его мощность. Этот параметр часто связан с размерами устройства, а также с материалом изготовления батарей. С этими данными в расчетах нужно разобраться подробнее.

От чего зависит?

Точность расчетов зависит также и от того, как они сделаны: для всей квартиры или на одну комнату. Специалисты советуют выбрать расчет для одной комнаты. Пусть на работу уйдет немного больше времени, но полученные данные будут наиболее точными. При этом, приобретая оборудование, нужно учесть около 20 процентов запаса. Этоп запас пригодится, если в работе центральной системы отопления случаются перебои или если стены панельные. Также эта мера спасет при недостаточно эффективном отопительном котле, используемом в частном доме.

Взаимосвязь системы отопления с видом используемого радиатора нужно учесть в первую очередь. Например, стальные устройства бывают весьма элегантной формы, но модели не особо популярны среди покупателей. Считается, что главный недостаток таких приборов – в некачественном теплообмене. Основное достоинство – в недорогой цене, а также небольшом весе, что упрощает работы, связанные с установкой устройства.

Стальные радиаторы обычно имеют тонкие стенки, которые быстро нагреваются, но столь же быстро и охлаждаются. При гидравлических ударах сварные стыки стальных листов дают течь. Недорогие варианты без специального покрытия подвергаются коррозии. Гарантийные обязательства производителей обычно имеют короткий срок. Поэтому, несмотря на относительную дешевизну, потратиться придется много.

Стальные радиаторы представляют собой цельную конструкцию несекционного типа. При выборе этого варианта стоит сразу же обращать внимание на паспортную мощность изделий. Этот параметр должен соответствовать особенностям помещения, в котором планируется установка оборудования. Стальные радиаторы с возможностью изменения количества секций обычно делаются на заказ.

Чугунные радиаторы знакомы многим из-за ребристого внешнего вида. Такие «гармошки» устанавливались как в квартирах, так и в зданиях общественного назначения повсеместно. Особым изяществом чугунные батареи не отличаются, но зато служат долго и качественно. В некоторых частных домах они есть и сейчас. Положительной характеристикой данного типа радиаторов является не только качество, но и возможность дополнить количество секций.

Современные чугунные батареи немного видоизменили внешний облик. Они более элегантные, гладкие, выпускают и эксклюзивные варианты с рисунком чугунного литья.

Современные модели имеют свойства предыдущих версий:

  • длительно сохраняют тепло;
  • не боятся гидроударов и температурных перепадов;
  • не подвергаются коррозии;
  • подходят для любых видов теплоносителей.

Кроме неприглядного внешнего вида, чугунные батареи имеют еще один существенный недостаток – хрупкость. Батареи из чугуна практически невозможно установить одному, так как они очень массивны. Не все стеновые перегородки могут выдержать вес чугунной батареи.

Алюминиевые радиаторы появились на рынке недавно. Популярности этого вида способствует невысокая цена. Алюминиевые батареи отличаются отменной теплоотдачей. При этом эти радиаторы имеют небольшой вес, обычно не требуют большого объема теплоносителя.

В продаже можно встретить варианты алюминиевых батарей как секциями, так и цельными элементами. Это дает возможность рассчитать точное количество изделий в соответствии с нужной мощностью.

Как и любой другой продукт, алюминиевые батареи имеют недостатки, например, подверженность к коррозии. При этом присутствует риск газообразования. Качество теплоносителя для алюминиевых батарей должно быть очень высоким. Если алюминиевые радиаторы секционного типа, то в местах соединений они часто дают течь. При этом отремонтировать батарею просто невозможно. Самые качественные алюминиевые батареи делаются способом анодного оксидирования металла. Однако внешних отличий эти конструкции не имеют.

Биметаллические радиаторы отопления имеют особую конструкцию , из-за которой у них повышенная теплоотдача, а надежность сравнима с чугунными вариантами. Биметаллическая радиаторная батарея состоит из секций, соединенных вертикальным каналом. Наружная алюминиевая оболочка батареи обеспечивает высокую теплоотдачу. Гидравлических ударов такие батареи не боятся, а внутри них может циркулировать любой теплоноситель. Единственным недостатком биметаллических батарей является высокая цена.

Из представленного разнообразия продукции можно сделать вывод, что расчет мощности отопительной системы выполняется не только от площади помещения, но и от характеристик радиаторов. Разберемся в теме проведения расчетов подробнее.

Как рассчитать?

Технические параметры радиаторов батарей, изготовленных из разных материалов, отличаются. Специалисты советуют устанавливать чугунные радиаторы в частном доме. В квартире лучше ставить биметаллические или алюминиевые батареи. Подбор количества батарей ведется из расчета квадратов площади помещения. Подсчет размера секций производится из возможных тепловых потерь.

Учет тепловых потерь удобнее произвести на примере частного дома. Тепло будет теряться через оконные, дверные проемы, перекрытия и стены, вентиляционные системы. Для каждой потери имеется классический коэффициент. Он в профессиональных формулах обозначается литерой Q.

В расчеты включаются такие компоненты, как:

  • площадь окна, двери или других конструкций – S;
  • температурная разница внутри и снаружи – DT;
  • толщина стен –V;
  • теплопроводность стен –Y.

Формула выглядит следующим образом: Q = S*DT /R слоя, R = v /Y.

Все рассчитанные Q суммируются, а к ним добавляются 10-40 процентов потерь, которые могут присутствовать из-за наличия вентиляционных шахт. Число нужно поделить на общую площадь дома и суммировать с предполагаемой мощностью радиаторных батарей.

Также стоит учесть теплопотери у верхних этажей с холодными чердаками.

Для упрощения расчетов специалисты используют профессиональную таблицу, которая включает такие колонки:

  • наименование помещения;
  • объем в куб. м;
  • площадь в кв. м;
  • теплопотери в кВт.

Например, комната, площадью 20 м2 будет соответствовать объему 7,8. Теплопотери помещения составят 0,65. В расчетах стоит учесть, что значение будет иметь и ориентация стен. Добавки для вертикалей, ориентированных на север, северо-восток, северо-запад составят 10 процентов. Для стен, ориентированных на юго-восток и запад – 5 процентов. Добавочного коэффициента для южной стороны нет. Если помещение высотой более 4 метров, добавочный коэффициент – 2 процента. Если рассматриваемое помещение угловое, то добавка составит 5 процентов.

Кроме теплопотерь, в расчет нужно принимать и другие факторы. Подобрать количество батарей для комнаты можно по квадратуре. Например, известно, что на обогрев 1 м2 нужно не менее 100 Вт. То есть на комнаты в 10 м2 нужен радиатор по мощности не менее 1 кВт. Это примерно 8 секций стандартной чугунной батареи. Расчет актуален и для комнат со стандартными потолками высотой до трех метров.

Если нужно произвести более точный расчет по квадратному метру, то стоит учесть все теплопотери. Формула предполагает умножение 100 (ватт/м2) на соответствующие квадратные метры и на все коэффициенты Q.

Значение, найденное по объему, дает такие же цифры, как и формула расчета по площади, показатели СНиП потерь тепла в помещении панельного дома с деревянными рамами 41 Вт на метр3. Меньший показатель нужен, если установлены современные пластиковые окна – 34 Вт на м3.

Расход тепла будет еще меньшим, если в помещении широкие стены. Учитывается в расчетах и вид материала стен: кирпич, пенобетон, а также наличие утеплителя.

Для расчета числа секций батарей и предполагаемой мощности существуют следующие формулы:

  • N=S*100|P (без учтенных теплопотерь);
  • N=V*41Bt*1,2|P 9 (с учтенными теплопотерями), где:
    • N –число секций;
    • P- мощность единицы секции;
    • S- площадь;
    • V- объем помещения;
    • 1,2 – стандартный коэффициент.

Теплоотдачу секций конкретных видов радиаторов можно найти на ребре изделий. Производители обычно стандартно указывают показатели.

Средние значения следующие:

  • алюминий – 170-200 Вт;
  • биметалл – 150 Вт;
  • чугун – 120 Вт.

Для упрощения задачи можно воспользоваться специальным калькулятором. Для того чтобы воспользоваться программным средством, понадобятся все исходные данные. Готовый результат на руках будет быстрее, чем при расчетах вручную.

Для упрощения расчетов можно внести корректировки и дробные цифры округлить в большую сторону. Лучше иметь запас мощности, а температурный уровень поможет отрегулировать термостат.

Если в помещении несколько окон, нужно разделить высчитанное число секций, чтобы установить их под каждым окном. Таким образом, для холодного воздуха, проникающего через стеклопакеты, будет создаваться оптимальная тепловая завеса.

Если несколько стен одной комнаты уличные, количество секций нужно добавлять. Это же правило действует при высоте потолка более трех метров.

В качестве дополнения не помешает учесть особенности системы отопления. Например, индивидуальная или автономная система обычно эффективнее централизованной системы, которая присутствует в многоквартирных домах.

Теплоотдача радиаторов будет изменяться в зависимости от типа подключения. Оптимальное подключение – диагональное, с подачей носителя сверху. В этом случае нетепловая мощность радиатора не уменьшится. При боковом подключении обычно наблюдаются самые большие тепловые потери. У всех остальных видов подключений средняя эффективность.

Фактическая мощность устройства уменьшится и при наличии заграждающих вещей. Например, при нависающем подоконнике сверху радиатора теплоотдача упадет на 7-8 процентов. Если подоконник перекрывает не весь радиатор, то потери составят примерно 3-5 процентов. При установке экрана на радиатор также будут наблюдаться потери тепла – примерно 7-8 процентов. Если экран размещен на весь отопительный прибор, то теплоотдача радиатора уменьшится на 25 процентов.

Также стоит принимать во внимание температуру носителя, курсирующего по трубам. Какими бы эффективными не были радиаторы, они не нагреют помещение остывшим теплоносителем.

Точность расчетов позволит собрать максимально комфортную систему для вашего жилья. При правильном подходе можно сделать любую комнату достаточно теплой. Грамотный подход влечет за собой и финансовые преимущества. Вы точно сэкономите, не переплачивая за лишнее оборудование. Еще больше можно сэкономить при условии грамотного монтажа оборудования.

Особой сложностью отличается однотрубная система отопления. Здесь в каждый последующий отопительный прибор носитель поступает все более холодный. Для расчета мощности однотрубной системы для каждого радиатора в отдельности нужно пересчитывать температуру.

Вместо того, чтобы заниматься сложными и долгими расчетами, можно определить мощность как для двухтрубной системы, а потом пропорционально, в зависимости от удаленности радиаторов, добавлять секции. Такой подход будет способствовать увеличению теплоотдачи батарей во всех помещениях дома или квартиры.

Грамотно устроенная отопительная система обеспечит жилье необходимой температурой и во всех комнатах в любую погоду будет комфортно. Но, чтобы передать тепло воздушному пространству жилых помещений, нужно знать необходимое количество батарей, ведь верно?

Выяснить это поможет расчет радиаторов отопления, основанный на вычислениях тепловой мощности, требуемой от устанавливаемых нагревательных приборов.

Вы никогда не делали таких вычислений и боитесь ошибиться? Мы поможем разобраться с формулами – в статье рассмотрен подробный алгоритм расчета, разобраны значения отдельных коэффициентов, используемых в процессе вычислений.

Чтобы вам было проще разобраться в тонкостях расчета, мы подобрали тематические фотоматериалы и полезные видеоролики, поясняющие принцип вычисления мощности отопительных приборов.

Любые вычисления базируются на определенных принципах. В основу расчетов требуемой тепловой мощности батарей закладывается понимание того, что хорошо работающие нагревательные приборы должны полностью компенсировать потери тепла, возникающие при их работе из-за особенностей отапливаемых помещений.

Для жилых комнат, находящихся в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в некоторых случаях подойдет упрощенный расчет компенсации тепловых утечек.

Для таких помещений вычисления основываются на нормативной мощности 41 Вт, требующейся для обогрева 1 куб.м. жилого пространства.

Формула для определения тепловой мощности радиаторов, необходимой для поддержания в помещении оптимальных условий проживания такова:

Q = 41 х V ,

где V – объем отапливаемой комнаты в кубических метрах.

Полученный четырехзначный результат можно выразить в киловаттах, сократив его из расчета 1 кВт = 1000 Вт.

Подробная формула вычисления тепловой мощности

При подробных расчетах количества и размеров батарей отопления принято отталкиваться от относительной мощности 100 Вт, нужной для нормального обогрева 1 м² некоего нормативного помещения.

Формула для определения требуемой от отопительных приборов тепловой мощности такова:

Q = (100 x S) x R x K x U x T x H x W x G x X x Y x Z

Множитель S в вычислениях не что иное, как площадь отапливаемого помещения, выраженная в квадратных метрах.

Остальные буквы – это различные поправочные коэффициенты, без которых расчет будет ограниченным.

Главное при тепловых вычислениях помнить поговорку “жар костей не ломит” и не бояться ошибиться в большую сторону

Но даже добавочные расчетные параметры не всегда могут отразить всю специфику того или другого помещения. Рекомендуется при сомнениях в подсчетах отдавать предпочтение показателям с большими значениями.

Легче потом снизить температуру радиаторов с помощью , чем замерзать при недостатке их тепловой мощности.

В конце статьи дается информация по характеристикам разборных радиаторов из разных материалов, и рассматривается порядок вычислений необходимого количества секций и самих батарей на базе основного расчета.

Галерея изображений

Если разрешает площадь помещения, то можно произвести . А оградить стены от холода снаружи способ найдется всегда.

Хорошо утепленная по спецрасчету угловая комната даст значительный процент экономии затрат на отопление всей жилой площади квартиры

Климат – важный фактор арифметики

Разные климатические зоны имеют различные показатели минимально низких уличных температур.

При расчете мощности теплоотдачи радиаторов для учета температурных отличий предусмотрен коэффициент «T».

Рассмотрим значения этого коэффициента для различных климатических условий:

  • T = 1,0 до -20 °С.
  • T = 0,9 для зим с морозцем до -15 °С
  • T = 0,7 – до -10 °С.
  • T = 1,1 для морозов до -25 °С,
  • T = 1,3 – до -35 °С,
  • T = 1,5 – ниже -35 °С.

Как видим из перечня, приведенного выше, нормальной считается зимняя погода до -20 °С. Для районов с таким наименьшим холодом берут значение, равное 1.

Для более теплых регионов этот расчетный коэффициент понизит общий результат вычислений. А вот для областей сурового климата требуемое от отопительных приборов количество теплоэнергии возрастет.

Особенности обсчета высоких помещений

Понятно, что из двух комнат с одинаковой площадью больше тепла потребуется той, у которой потолок выше. Учесть в вычислениях тепловой мощности поправку на объем отапливаемого пространства помогает коэффициент «H».

В начале статьи было упомянуто про некое нормативное помещение. Таковым считается комната с потолком на уровне 2,7 метра и ниже. Для нее берут значение коэффициента, равное 1.

Рассмотрим зависимость коэффициента Н от высоты потолков:

  • H = 1,0 – для потолков в 2,7 метра высотой.
  • H = 1,05 – для помещения высотой до 3 метров.
  • H = 1,1 – для комнаты с потолком до 3,5 метра.
  • H = 1,15 – до 4 метров.
  • H = 1,2 – потребность в тепле для более высокого помещения.

Как видим, для комнат с высокими потолками в расчет следует добавлять по 5% на каждые полметра высоты, начиная с 3,5 м.

По закону природы теплый нагретый воздух устремляется вверх. Чтобы перемешать весь его объем отопительным приборам придется потрудиться как следует.

При одинаковой площади помещений комната большего объема может потребовать добавочного количества радиаторов, подключаемых к системе отопления

Расчетная роль потолка и пола

К уменьшению тепловой мощности батарей ведут не только хорошо . Соприкасающийся с теплым помещением потолок также позволяет минимизировать потери при обогреве комнаты.

Коэффициент «W» в формуле расчета как раз для того, чтобы предусмотреть это:

  • W = 1,0 – если наверху расположен, например, неотапливаемый неутепленный чердак.
  • W = 0,9 – для неотапливаемого, но утепленного чердака или другого утепленного помещения сверху.
  • W = 0,8 – если этажом выше комната отапливаемая.

Показатель W можно поправлять в сторону увеличения для помещений первого этажа, если они располагаются на грунте, над неотапливаемым подвалом или цокольным пространством. Тогда цифры будут такие: пол утеплен +20% (х1,2); пол не утеплен +40% (х1,4).

Качество рам – залог тепла

Окна – когда-то слабое место в теплоизоляции жилого пространства. Современные рамы со стеклопакетами позволили существенно улучшить защиту комнат от уличного холода.

Степень качества окон в формуле подсчета тепловой мощности описывает коэффициент «G».

За основу расчета взята стандартная рама с однокамерным стеклопакетом, у которой коэффициент равен 1.

Рассмотрим другие варианты применения коэффициента:

  • G = 1,0 – рама с однокамерным стеклопакетом.
  • G = 0,85 – если рама оснащена двух- или трехкамерным стеклопакетом.
  • G = 1,27 – если у окна старая деревянная рама.

Так, если в доме старые рамы, то потери тепла будут значительными. Поэтому потребуются более мощные батареи. В идеале такие рамы желательно заменить, ведь это дополнительные расходы на отопление.

Размер окна имеет значение

Следуя логике, можно утверждать, что чем больше количество окон в комнате и чем обширней их обзор, тем чувствительней утечки тепла через них. Коэффициент «X» из формулы расчета тепловой мощности, требующегося от батарей, как раз отражает это.

В комнате с огромными окнами и радиаторы должны быть из соответствующего размеру и качеству рам количества секций

Нормой является итог деления площади оконных проемов на площадь комнаты равный от 0,2 до 0,3.

Приведем основные значения коэффициента Х для различных ситуаций:

  • X = 1,0 – при соотношении от 0,2 до 0,3.
  • X = 0,9 – для отношения площадей от 0,1 до 0,2.
  • X = 0,8 – при соотношении до 0,1.
  • X = 1,1 – если отношение площадей от 0,3 до 0,4.
  • X = 1,2 – когда оно от 0,4 до 0,5.

Если же метраж оконных проемов (например, в помещениях с панорамными окнами) выходит за рамки предложенных соотношений, разумно добавлять к значению X еще по 10% при росте отношения площадей на 0,1.

Находящаяся в комнате дверь, которой зимой регулярно пользуются для выхода на открытый балкон или лоджию, вносит свои поправки в баланс тепла. Для такого помещения будет правильным увеличить X еще на 30% (х1,3).

Потери тепловой энергии легко компенсируются компактной установкой под балконным входом канального водяного или электрического конвектора.

Влияние закрытости батареи

Конечно же, лучше отдаст тепло тот радиатор, который меньше огражден различными искусственными и естественными препятствиями. На этот случай формула расчета его тепловой мощности расширена за счет коэффициента «Y», учитывающего условия работы батареи.

Самое распространенное место расположения отопительных приборов – под подоконником. При таком их положении значение коэффициента равно 1.

Рассмотрим типичные ситуации размещения радиаторов:

  • Y = 1,0 – сразу под подоконником.
  • Y = 0,9 – если батарея оказывается вдруг полностью открытой со всех сторон.
  • Y = 1,07 – когда радиатор заслонен горизонтальным выступом стены
  • Y = 1,12 – если расположенная под подоконником батарея прикрыта фронтальным кожухом.
  • Y = 1,2 – когда отопительный прибор загражден со всех сторон.

Сдвинутые длинные плотные шторы также становятся причиной похолодания в комнате.

Современный дизайн батарей отопления позволяет эксплуатировать их безо всяких декоративных прикрытий – тем самым обеспечивается максимальная теплоотдача

Эффективность подключения радиаторов

От способа присоединения радиатора к внутрикомнатной отопительной разводке напрямую зависит эффективность его работы. Часто хозяева жилья жертвуют этим показателем в угоду красоте помещения. Формула расчета требуемой тепловой мощности учитывает все это через коэффициент «Z».

Приведем значения этого показателя для различных ситуаций:

  • Z = 1,0 – включение радиатора в общую цепь отопительной системы приемом «по диагонали», что является самым оправданным.
  • Z = 1,03 – другой, самый распространенный из-за малой протяженности подводки, вариант присоединения «с боковой стороны».
  • Z = 1,13 – третий метод «снизу с двух сторон». Благодаря пластиковым трубам, это он быстро прижился в новом строительстве, несмотря на гораздо меньшую эффективность.
  • Z = 1,28 – еще один, очень низкоэффективный способ «снизу с одной стороны». Он заслуживает рассмотрения только потому, что некоторые конструкции радиаторов снабжаются готовыми узлами с подключением к одной точке труб и подачи, и обратки.

Увеличить коэффициент полезного действия отопительных приборов помогут вмонтированные в них воздухоотводчики, которые своевременно спасут систему от «завоздушивания».

Принцип работы любого водяного отопительного прибора опирается на физические свойства горячей жидкости подниматься вверх, а после охлаждения перемещаться вниз.

Практический пример расчета тепловой мощности

Исходные данные:

  1. Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
  2. Длина комнаты 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
  3. Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв.м.
  4. Высота помещения = 2,95 м.

Последовательность расчета:

Ниже приводится описание расчета количества секций радиаторов и требуемого числа батарей. Он основывается на полученных результатах тепловых мощностей с учетом габаритов предполагаемых мест установки отопительных приборов.

Независимо от итогов, рекомендуется в угловых комнатах оснащать радиаторами не только подоконные ниши. Батареи следует устанавливать у «слепых» внешних стен или возле углов, которые подвергаются наибольшему промерзанию под воздействием уличного холода.

Удельная тепловая мощность секций батарей

Еще до выполнения общего расчета требуемой теплоотдачи отопительных приборов, необходимо решить, разборные батареи из какого материала будут устанавливаться в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не стоит забывать о сильно разнящейся стоимости покупаемых изделий.

При теплоносителе в 70 °С стандартные 500-миллиметровые секции радиаторов из разнородных материалов обладают неодинаковой удельной тепловой мощностью «q».

  1. Чугун – q = 160 Ватт (удельная мощность одной чугунной секции). Радиаторы подойдут для любой системы отопления.
  2. Сталь – q = 85 Ватт . Стальные могут работать в самых жестких условиях эксплуатации. Их секции красивы в своем металлическом блеске, но имеют наименьшую теплоотдачу.
  3. Алюминий – q = 200 Ватт . Легкие, эстетичные надо устанавливать лишь в автономные отопительные системы, в которых давление меньше 7 атмосфер. Но по отдаче тепла их секциям нет равных.Секционный принцип сборки приборов отопления позволяет из модульных элементов получить радиатор с требующейся тепловой мощностью

    Секции устаревшей чугунной батареи

    Цветные секции с порошковым покрытием

    Расчет количества секций радиаторов

    Разборные радиаторы из любого материала хороши тем, что для достижения их расчетной тепловой мощности можно добавлять или убавлять отдельные секции.

    Для определения нужного количества «N» секций батарей из выбранного материала придерживаются формулы:

    N = Q / q ,

    • Q = рассчитанная ранее требуемая тепловая мощность устройств для обогрева комнаты,
    • q = мощность тепловая удельная отдельной секции предполагаемых для установки батарей.

    Вычислив общее необходимое число секций радиаторов в помещении, надо понять, сколько всего батарей нужно установить. Этот расчет основывается на сравнении габаритов предполагаемых мест и размеров батарей с учетом подводки.

    лементы батареи соединяются ниппелями с разнонаправленной наружной резьбой при помощи радиаторного ключа, одновременно в стыки устанавливаются прокладки

    Для предварительных подсчетов можно вооружиться данными о ширине секций разных радиаторов:

    • чугунных = 93 мм,
    • алюминиевых = 80 мм,
    • биметаллических = 82 мм.

    При изготовлении разборных радиаторов из стальных труб, производители не держатся за определенные стандарты. При желании поставить такие батареи, следует подходить к вопросу индивидуально.

В условиях суровой российской зимы правильно подобранные радиаторы – залог комфортной температуры. Для правильного расчета необходимо учитывать множество нюансов - от размера комнаты до средней температуры. Такие сложные расчеты обычно выполняются специалистами, но можно провести их самостоятельно с учетом возможных погрешностей.

Самый простой и быстрый способ расчета

Чтобы быстро прикинуть необходимую теплоотдачу батареи, можно воспользоваться самой простой формулой . Вычислить площадь помещения (длину в метрах умножить на ширину в метрах), а затем умножить полученный результат на 100.

Q = S × 100, где:

  • Q – необходимая теплоотдача отопительного прибора.
  • S – площадь отапливаемой комнаты.
  • 100 – количество Вт на 1 м2 при стандартной высоте потолков 2,7 м. по ГОСТу.

Рассчитывать показатели по этой формуле очень просто. Чтобы установить необходимые значения, потребуется рулетка, лист бумаги, ручка. При этом, важно помнить, что такой способ расчета подходит только для неразборных радиаторов . Кроме того, полученные результаты будут приблизительными – многие важные показатели остаются неучтенными.

Расчет по площади

Расчет такого типа – один из самых простых. Он не учитывает целый ряд показателей: количество окон, наличие внешних стен, степень утепленности помещения и т.д.

Тем не менее, у радиаторов разного типа есть ряд особенностей, которые необходимо учитывать. О них пойдет речь ниже.

Биметаллические, алюминиевые и чугунные радиаторы

Как правило, устанавливаются взамен чугунных предшественников. Чтобы новый отопительный элемент служил не хуже, нужно правильно рассчитать количество секций в зависимости от площади комнаты.

Биметалл имеет несколько особенностей:

  • Теплоотвод у таких батарей выше, чем у чугунных. Например, если температура теплоносителя будет около 90 градусов С, то средние показатели составят 150 Вт у чугуна и 200 у биметалла.
  • Со временем на внутренних поверхностях радиаторов появляется налет, вследствие чего их КПД снижается.

Формула для расчета количества секций следующая:

N=S*100/Х, где:

  • N – количество секций.
  • S – площадь помещения.
  • 100 – минимальная мощность радиатора на 1 квадратный метр.
  • Х – заявленная теплоотдача одной секции.

Данный способ расчета подходит также для и новых чугунных радиаторов . Но, к сожалению, такая формула не учитывает некоторые особенности:

  • Подходит для помещений с высотой потолков до 3 метров.
  • В расчет не берется количество окон, степень утепления комнаты.
  • Не подходит для северных регионов России, где температурный режим зимой значительно отличается от средних показателей.

Читайте также: Объем воды в радиаторе отопления

Стальные радиаторы

Панельные стальные батареи различаются по размерам и мощности. Количество панелей варьируется от одной до трех. Они сочетаются с различными типами оребрения (это гофрированные металлические пластины внутри). Чтобы разобраться, какую именно батарею брать в расчет, нужно ознакомиться со всеми типами:

  • Тип 10. Содержит всего одну панель. Такие батареи тонкие, легкие, но маломощные.
  • Тип 11. Сочетают одну панель и одну пластину оребрения. Они чуть больше и тяжелее, чем предыдущие, зато более теплые.
  • Тип 21. Между двумя панелями находится одна пластина оребрения.
  • Тип 22. Конструкция предполагает наличие двух панелей и двух гофрированных пластин. Характеризуется большей теплоотдачей, чем модель 21.
  • Тип 33. Самая мощная и большая батарея. Как следует из номерного обозначения, содержит три панели и столько же гофрированных пластин.

Подбирать панельную батарею несколько сложнее, чем секционную. Чтобы определиться с конфигурацией, нужно произвести расчет тепла по приведенной выше формуле, а затем найти соответствующее значение в таблице. Табличная сетка поможет выбрать число панелей и необходимые габариты.

Например, площадь помещения равна 18 кв.м. При этом высота потолков, согласно норме, составляет 2,7 м. Коэффициент необходимой теплоотдачи составляет 100 Вт. Следовательно, 18 нужно умножить на 100, затем найти максимально близкое значение (1800 Вт) в таблице:

Тип 11 12 22
Высота 300 400 500 600 300 400 500 600 300 400 500 600
Длина, мм Показатели теплоотдачи, Вт
400 298 379 459 538 372 473 639 745 510 642 772 900
500 373 474 574 673 465 591 799 931 638 803 965 1125
600 447 568 688 808 558 709 958 1117 766 963 1158 1349
700 522 663 803 942 651 827 1118 1303 893 1124 1351 1574
800 596 758 918 1077 744 946 1278 1490 1021 1284 1544 1799
900 671 852 1032 1211 837 1064 1437 1676 1148 1445 1737 2024
1000 745 947 1147 1346 930 1182 1597 1862 1276 1605 1930 2249
1100 820 1042 1262 1481 1023 1300 1757 2048 1404 1766 2123 2474
1200 894 1136 1376 1615 1168 1418 1916 2234 1531 1926 2316 2699
1400 1043 1326 1606 1884 1302 1655 2236 2607 1786 2247 2702 3149
1600 1192 1515 1835 2154 1488 1891 2555 2979 2042 2558 3088 3598
1800 1341 1705 2065 2473 1674 2128 2875 3352 2297 2889 3474 4048
2000 1490 1894 2294 2692 1860 2364 3194 3724 2552 3210 3860 4498

Читайте также: Радиаторы отопления или теплый пол

Расчет по объему

Более точным считается метод расчета по объему. Кроме того, его следует использовать, если помещение нестандартное, например, если высота потолков значительно больше общепринятых 2,7 метров. Формула калькуляции теплоотдачи такая:

Q = S × h× 40 (34)

  • S – площадь помещения.
  • h – высота стен от пола до потолка в метрах.
  • 40 – коэффициент для панельного дома.
  • 34 – коэффициент для кирпичного дома.

Принципы вычисления необходимых размеров батареи остаются теми же как для секционных (биметаллических, алюминиевых, чугунных), так и для панельных (стальных).

Делаем поправку

Для максимально точных вычислений нужно добавить к стандартной формуле несколько коэффициентов, влияющих на эффективность обогрева.

Тип подключения

От того, как расположены трубы ввода и вывода теплоносителя, зависит теплоотдача батареи. Существуют следующие типы подключений и повышающие коэффициенты (I) для них:

  1. Диагональное, когда подача осуществляется сверху, отток снизу (I=1,0).
  2. Одностороннее подключение с верхней подачей и нижней обраткой (I=1,03).
  3. Двустороннее, где вход-выход расположены снизу, но с разных сторон (I=1,13).
  4. Диагональное, когда подача осуществляется снизу, отток сверху (I=1,25).
  5. Одностороннее, при котором вход находится снизу, выход сверху (I=1,28).
  6. Подача и обратка находятся снизу, с одной стороны батареи (I=1,28).

Место расположения

Расположение радиатора на ровной стене, в нише или за декоративным кожухом – это важный показатель , который может значительно повлиять на тепловые показатели.

Варианты расположения и их коэффициенты (J):

  1. Батарея находится на открытой стене, подоконник не нависает сверху (J=0,9).
  2. Сверху над отопительным прибором находится полка или подоконник (J=1,0).
  3. Радиатор закреплен в стенной нише, а сверху прикрыт выступом (J=1,07).
  4. Над обогревателем нависает подоконник, а с фронтальной стороны его частично закрывает декоративная панель (J=1,12).
  5. Радиатор находится внутри декоративного кожуха (J=1,2).

Стены и кровля

Тонкие или хорошо утепленные стены, характер верхних помещений, крыши, а также ориентация квартиры по сторонам света – все эти показатели только кажутся малозначимыми. На деле они могут сохранить львиную долю тепла или вовсе выстудить квартиру. Поэтому следует их тоже включить в формулу.

Коэффициент A – количество внешних стен в комнате :

  • 1 наружная стена (A=1,0).
  • 2 внешних стены (A=1,2).
  • 3 внешних стены (A=1,3).
  • Все стены наружные (A=1,4).

Следующий показатель – ориентация по сторонам света (В). Если комната северная или восточная, то В=1,1. В южных или западных помещениях солнце пригревает сильнее, следовательно, повышающий коэффициент не нужен, В=1.

В вопросе поддержания оптимальной температуры в доме главное место занимает радиатор.

Выбор просто поражает: биметаллические, алюминиевые, стальные самых разных размеров.

Нет ничего хуже, чем неправильно рассчитанная необходимая тепловая мощность в помещении. Зимой такая ошибка может стоить очень дорого.

Тепловой расчет радиаторов отопления подходит для биметаллических, алюминиевых, стальных и чугунных радиаторов. Специалисты выделяют три способа, каждый из которых основан на определенных показателях.

Здесь существует три метода, которые базируются на общих принципах:

  • стандартная величина мощности одной секции может варьироваться от 120 до 220 Вт, поэтому берется средняя величина
  • для корректировки погрешностей в расчетах при покупке радиатора следует заложить 20% резерв

Теперь обратимся непосредственно к самим методам.

Метод первый – стандартный

Исходя из строительных правил, для качественного отопления одного квадратного метра требуется 100 ватт мощности радиатора. Займемся подсчетами.

Допустим, площадь помещения составляет 30 м², мощность одной секции возьмем равной 180 ватт, тогда 30*100/180 = 16,6. Округлим значение в большую сторону и получим, что для комнаты площадью в 30 квадратных метров необходимо 17 секций радиатора отопления.

Однако, если помещение является угловым, то полученное значение следует умножить на коэффициент 1,2. В таком случае, количество необходимых секций радиаторов будет равно 20

Метод второй – примерный

Данный метод отличается от предыдущего тем, что основан не только на площади помещения, но и на его высоте. Обратите внимание, что метод работает только для приборов средней и большой мощности.

При малой мощности (50 ватт и менее) подобные расчеты будут неэффективны ввиду слишком большой погрешности.

Итак, если принять во внимание, что средняя высота помещения равна 2,5 метра (стандартная высота потолков большинства квартир), то одна секция стандартного радиатора способна обогреть площадь в 1,8 м².

Расчет секций для комнаты в 30 «квадратов» будет следующим: 30/1,8=16. Снова округляем в большую сторону и получим, что для обогрева данной комнаты нужно 17 секций радиатора.

Метод третий – объемный

Как видно из названия, подсчеты в этом методе базируются на объеме комнаты.

Условно принимается, что для обогрева 5 кубических метров помещения нужна 1 секция мощностью 200 ватт. При длине в 6 м, ширине 5 и высоте 2,5 м формула для расчета будет следующей: (6*5*2,5)/5 =15. Следовательно, для комнаты с такими параметрами нужно 15 секций радиатора отопления мощностью 200 ватт каждая.

Если радиатор планируется расположить в глубокой открытой нише, то количество секций нужно увеличить на 5%.

В случае, если радиатор планируется полностью закрыть панелью, то увеличение следует сделать на 15%. В противном случае будет невозможно добиться оптимальной теплоотдачи.

Альтернативный метод расчета мощности радиаторов отопления

Расчет количества секций радиаторов отопления далеко не единственный способ правильной организации обогрева помещения.

Посчитаем объем предполагаемой комнаты площадью 30 кв. м и высотой в 2,5 м:

30 х 2,5 = 75 куб.м.

Теперь нужно определиться с климатом.

Для территории европейской части России, а так же Белоруссии и Украины стандартом является 41 ватт тепловой мощности на кубический метр помещения.

Для определения необходимой мощности умножаем объем помещения на норматив:

75 х 41 = 3075 Вт

Округлим полученное значение в большую сторону – 3100 вт. Для тех людей, кто проживает в условиях очень холодных зим, данную цифру можно увеличить на 20%:

3100 х 1,2 = 3720 Вт.

Придя в магазин и уточнив мощность радиатора отопления, можно посчитать, сколько секций радиатора потребуется для поддержания комфортной температуры даже в самую суровую зиму.

Расчет количества радиаторов

Метод расчета представляет собой выдержки из предыдущих пунктов статьи.

После того, как Вы подсчитаете необходимую мощность для обогрева помещения и количество секций радиатора, Вы приходите в магазин.

Если число секций вышло внушительное (такое бывает в помещениях с большой площадью), то резонно будет приобрести не один, а несколько радиаторов.

Данная схема применима и к тем условиям, когда мощность одного радиатора ниже необходимой.

Но существует еще один быстрый способ посчитать количество радиаторов. Если в Вашей комнате стояли старые с высотой около 60 см, и зимой Вы чувствовали в этом помещении себя комфортно, то посчитайте количество секций.

Полученную цифру умножьте на 150 Вт – это и будет необходимой мощностью новых радиаторов.

В случае выбора или , можете покупать их из расчета 1 к 1- на одно ребро чугунного радиатора 1 ребро биметаллического.

Разделение на «теплая» и «холодная» квартира давно уже пришло в нашу жизнь.

Многие люди сознательно не хотят заниматься выбором и установкой новых радиаторов, объясняя это тем, что «в этой квартире всегда будет холодно». Но это не так.

Правильный выбор радиаторов вкупе с грамотным расчетом необходимой мощности способен сделать тепло и уют за Вашими окнами даже в самую холодную зиму.