Главная · Бытовая техника · Первые подводные аппараты. Некоторые технические проблемы. Больше и тяжелее

Первые подводные аппараты. Некоторые технические проблемы. Больше и тяжелее

Акриловые изделия

На сегодняшний день человек успел исследовать только 5% океанических глубин на Земле. Ученые, конструкторы, разработчики прикладывают максимум усилий для того, чтобы эта цифра постоянно росла. Именно поэтому в мире активно развивается направление создания различных подводных аппаратов, с помощью которых исследование океанических просторов становится простым и доступным процессом.

Все современные подводные аппараты имеют схожий принцип работы. Их назначение - проведение научных исследований и подводных экскурсий, сбор качественного фото- и видеоматериала, измерение различных параметров, составление карт подводного мира. Субмарины оснащены системами навигации, регулировки уровня кислорода и освещения, связи с сушей, эхолокации, видео- и фотосъемки. Компас, спидометр, термостат, датчики давления, глубины, курса, высоты, вращения, наклона, местоположения, влажности, скорости погружения - все это оборудование работает в автоматическом режиме. Чтобы батискаф не сбился с курса, включается планировщик маршрутов.

Одна из самых интересных функций - автофотографирование. Специальные инфракрасные датчики точно определяют местоположение проплывающих подводных обитателей и делают снимки в наилучшем качестве и с правильного ракурса. Также система оснащена оборудованием для создания трехмерных панорамных визуализаций окружения. Созданные панорамы могут использоваться для организации последующих виртуальных путешествий. Батискафы разрабатываются таким образом, чтобы внутри кабины поддерживалось стандартное атмосферное давление. Поэтому никаких особых требований к состоянию здоровья экипажа и пассажиров не предъявляется.

Акриловое остекление кабин подводных аппаратов

Техническая реализация данных проектов стала возможной во многом благодаря акриловому остеклению. Акрил эффективно и безопасно работает там, где другие материалы попросту бессильны. Большинство подводных аппаратов сегодня оснащаются прозрачными сферическими кабинами из акрила. Выбор в пользу сферической формы вполне обоснован по следующим причинам:

Обтекаемые сферические конструкции выдерживают большое давление, легко маневрируют на глубине и гарантируют полную безопасность для экипажа и пассажиров.

Акриловые сферы способны работать под огромным давлением на глубине в несколько километров. Для обеспечения максимальной надежности проводятся специальные расчеты толщины остекления. Этот параметр подбирается с большим запасом прочности.

Прозрачные полусферы придают подводным аппаратам просто невероятный внешний вид. Батискафы и субмарины становятся похожими на корабли пришельцев или аппараты из далекого будущего.

Акриловое стекло обладает высочайшей прозрачностью, которая не снижается при постоянной эксплуатации в воде. Кабина обеспечивает отличный панорамный обзор без искажения форм, размеров и цветов.

Перед наблюдателем открывается реальная картина подводного мира.Точность передаваемого изображения позволяет вести фото- и видеосъемку непосредственно из кабины и получать яркие, красочные снимки.

На поверхности акриловых сфер не появляется зелень и грибок, поскольку акрил устойчив к воздействию любых биологических факторов.

Находясь в прозрачной акриловой «капсуле», человек ощущает эффект полного погружения в подводные красоты. Создается впечатление, будто между наблюдателем и морскими глубинами нет никакого барьера.


Персональный батискаф Manatee

Конструктор Эдуардо Гальвани разработал модель персонального бакискафа Manatee, с помощью которого каждый желающий при минимальной подготовке сможет исследовать океанические глубины. Аппарат оснащен надежными аккумуляторами и мощными двигателями, за счет чего упрощается его маневренность. Управлять этим чудом техники несложно - для этого достаточно освоить функционал главного джойстика и панели со встроенной операционной системой и сенсорным дисплеем. В кабину батискафа подается кислород из расчета 12-часовой работы плюс 100 резервных часов на случай аварии. Максимальная глубина погружения аппарата - более 9 километров. Кабина рассчитана на 4 человека. Максимальная скорость перемещения - 25 километров в час. Внешнее и внутреннее освещение организовано с помощью высокоинтенсивных светодиодов. Для остекления кабины пилота использовано устойчивое к высокому давлению акриловое стекло сферической формы, сквозь которое наблюдатель может рассмотреть подводный мир в деталях.


Подводная лодка Тритон 3300/3

Подводный аппарат Тритон 3300/3 стоимостью в три миллиона долларов рассчитан на погружение на глубину до одного километра. Кабина выполнена в виде огромного пузыря, для изготовления которого использовано акриловое стекло. Сквозь стекло открывается роскошный панорамный вид на подводные красоты. Для освещения глубоководного ландшафта используются светодиодные прожекторы.

Аппарат для подводных исследований C-Researcher 3

Голландская компания U-Boat Worx представила миру новинку - подводный аппарат C-Researcher 3, раотающий на глубине 1,7 км. Батискаф предназначен для проведения научных подводных исследований и рассчитан на 16 часов непрерывной работы. Восьмитонный аппарат оснащен специальными инструментами для видеосъемки, фотосъемки и создания трехмерных и двухмерных карт. С помощью роботизированных манипуляторов можно брать образцы растений, фауны или грунта со дна океана. Кабина аппарата - огромная прозрачная сфера из высокопрочного акрилового стекла, придающая субмарине восхитительный футуристичный вид. Кабина вмещает до 3 человек (пилот и два пассажира). Аппарат оснащен по последнему слову техники. Управление осуществляется при минимальном участии человека. Направление, маршрут, скорость, режим проведения исследований - все эти параметры можно регулировать с помощью сенсорного дисплея и эргономичной приборной панели.

Подводный аппарат C-Explorer 2

Еще один продукт компании U-Boat Worx предназначен для проведения исследований на глубине до 100 метров и проведения сеансов безопасного дайвинга. Подводный аппарат C-Explorer 2 весит 3 тонны, вмещает двух человек - пилота и пассажира. Время автономной работы на глубине - 8 часов. Несмотря на меньшую мощность и небольшие доступные глубины, аппарат выполняет такие же функции, как и вышеописанный C-Researcher 3. Несмотря на то, что основное назначение аппарата заключается в проведении серьезных научных исследований, это не мешает ему служить отличным инструментом для развлекательных экскурсий. Кабина аппарата изготовлена из прозрачной акриловой полусферы, благодаря которой панорамный обзор открывается на все 360 градусов.


Частная субмарина SeaBird

Компания AquaVenture изобрела самую быструю в мире частную субмарину SeaBird. Для этого разработчикам не пришлось устанавливать мегамощный двигатель и оснащать подводную лодку сверхсовременным оборудованием. Более того, в субмарине SeaBird вообще нет двигателя! Как удается подводной лодке разгоняться для высоких скоростей без двигателя? Очень просто. Аппарат прикрепляется толстым тросом к катеру, который плывет по поверхности воды. Скорость перемещения субмарины может достигать 40 километров в час, когда самые новые модификации полноценных аналогов перемещаются со скоростью 20-25 км/ч. Наличие тросового соединения ограничивает маневренность лодки, но при необходимости аппарат может работать под водой на глубине 90 метров в течение трех суток. Две кабины для пилота и пассажиров выполнены из прозрачных акриловых полусфер. Безусловно, такая конструкция вряд ли подойдет для проведения серьезных научных исследований, но как развлекательный экстрим-аттракцион она не имеет равных.


Подводная лодка на солнечных батареях
Reef Explorer

Дизайнер Герт-Ян ван Брегель создал концепцию подводной лодки, работающей на солнечных батареях. Данная модель предназначена не для научных исследований, а для развлечения. Лодка будет погружаться в воду не полностью, а лишь частично. Но даже такого погружения вполне достаточно, чтобы приблизиться к прекрасному подводному миру. Для беспрепятственного наблюдения за океаническими красотами корпус аппарата также планируется оснастить прочным акриловым остеклением.

Новейшие подводные аппараты проектируются таким образом, чтобы подводные исследования, экскурсии и путешествия были максимально безопасными и эффективными. Жесткие требования предъявляются к надежности и внешнему виду таких конструкций. Субмарины и батискафы с акриловым остеклением соответствуют всем этим требованиям.

Компания «АкрилШик» занимается изготовлением полусфер и сфер из качественного акрилового стекла. Мы производим конструкции различных размеров, в том числе экстремально большие. Мы гарантируем качество поверхности, надежность и прочность изготовленной продукции. Для получения более детальной информации о продукции и услугах компании свяжитесь с нашим менеджером.

Дата создания: 18 ЯНВ 2017 Автор "Акрилшик"

Реализованые работы


Изготовление акрилового плантографа

Изготовление плантографа для сети аптек «Себа»

Выставочный образец из акрила

Выставочный образец из акрила для Международной выставки AQUA SALON


Первые подводные аппараты (ПА) были построены в чисто научных целях. Последующие их конструкции разрабатываются в основном для производства различных инженерно-технических работ. Весьма разнообразны задачи, решаемые с помощью подводных обитаемых аппаратов, начиная с монтажа глубоководных конструкций, прокладки кабелей и трубопроводов и кончая наблюдением за их эксплуатацией и ремонтными работами.
В связи с большим разнообразием подводные аппараты можно классифицировать, например, в зависимости от глубины погружения, на три группы.
К первой группе относятся наиболее многочисленные аппараты для работ на континентальном шельфе с глубиной погружения до 1000 м.
Ко второй - аппараты, рассчитанные на глубину 2000-4000 м и используемые в пределах материкового склона. Третья группа аппаратов, предназначенная для максимальных глубин, представлена лишь несколькими образцами.
Для подводного строительства представляет особый интерес первая группа обитаемых подводных аппаратов, предназначенных для выполнения подводно-технических работ на сравнительно небольших глубинах (-300-900 м).
Основными критериями сравнительной оценки подводных обитаемых аппаратов являются: рабочая глубина погружения, численность экипажа, параметры системы жизнеобеспечения, количество манипуляторов, транспортабельность.
В табл. 6.5 приведены основные характеристики некоторых современных обитаемых подводных аппаратов.
Аппарат PC-1202 с блочной конструкцией корпуса, снабженной водолазным отсеком и опорами регулируемой длины, используется для осмотра дна, размещения зарядов взрывчатых веществ, отбора кернов и образцов грунта, обеспечения работы электроинструментов и видеосвязи.
Конструкция ПА ’’Бивер MK-IV” отличается большой надежностью и предусматривает аварийный сброс манипуляторов, батарей, якорей и др., а также возможность перемещения вдоль всех осей координат. Манипуляторы, гидролокатор бокового обзора, иллюминатор диаметром 1 м обеспечивают фотодокументирование, осмотр дна, замывание в грунт кабелей и стыковку с подводными объектами. Для транспортирования ПА ’’Бивер MK-IV” используют самолет С-141.
Основные характеристики обитаемых подводных

Тип,страна

Рабочая
глубина,
м

Экипаж, ПА, чел.

Экипаж судна обеспечения, чел.

Система
жизнеобес
печения,
чел.-ч


„Бивер MK-IV”,

800

3

12

144


США






„Джонсон - Си Линк”, США

300

4

4

Данные
отсутству
ют


РС-1202, США

900

4

4

52


„Бэта” и „Гам

300

2

2

144


ма”, США






„Пайсиз-VU”,

900

со
1
lt;N

6

336


Канада





Аппарат ’’Джонсон - Си Линк” служит для водолазных работ, а также для фото- и видеорегистрации. Он оборудован устройством для стыковки водолазного отсека с палубной декомпрессионной камерой судна обеспечения.
Однотипные аппараты ’’Бэта” и ’’Гамма” используются для наблюдения и поиска под водой, замывания в грунт кабелей, размещения зарядов взрывчатых веществ и подъема тяжелого оборудования со дна.
Канадский ПА ’’Пайсиз -VII” применяют для контроля за состоянием трубопроводов, замывания в грунт кабелей и аварийно-спасательных работ. Аппарат транспортируется самолетом С-130 ’’Геркулес”.
Подводные аппараты широко используются для подводного строительства; однако для них требуются обеспечивающие суда. Поэтому применение подводных аппаратов в значительной степени зависит от гидрометеорологических условий.
Установлено, что коэффициент использования автономных подводных систем в Северном море в три раза выше по сравнению с системами, имеющими надводный носитель. Одни и те же работы автономными подводными системами выполняются в 10-15 раз быстрее. Так, в ФРГ разработана обитаемая глубоводная система DSWS для производства различных подводных работ. Система состоит из подводного носителя аппаратуры и устройств UWAG, обеспечивающего буя, передающего устройства и двух сменных капсул - буровой и водолазной (рис. 6.18). Система DSWS предназначена для подводного обследования; прокладки кабелей и трубопроводов; отбора проб грунта; измерения рельефа дна; бурения скважин глубиной до 200 м; монтажа, технического обслуживания и ремонта подводных сооружений; транспортирования и установки тяжелых
аппаратов
Таблица 6.5

подводных конструкций; глубоководных погружений четырех-пяти водолазов на глубину до 500 м.
Энергоснабжение обитаемого носителя осуществляется от двух дизель-генераторов, установленных на обеспечивающем буе, выполненном в виде судна. С помощью силового и трансляционного кабелей дости-

Рис. 6.18. Обитаемая глубоководная система для производства подводных работ.
1 - обеспечивающий буй; 2 - силовой и трансляционный кабели; 3 - подводный носитель.
гается бесперебойная подача тока напряжением 3,3 кВ на носитель при волнении моря. Кабельная лебедка с тяговым усилием 3000 даН и скоростью намотки кабеля 0,5 м/с приводится от электродвигателя постоянного тока мощностью 30 кВт.
Для обеспечения маневренности носителя буй следует за ним на заданной дистанции и одновременно служит носителем знака ограждения для оповещения проходящих судов о проведении подводных работ.

Рабочая глубина погружения, м 600
Водоизмещение, т:
надводное 225
подводное 290
Скорость, уз 5
Подводная автономность, ч 336
Длина, м 22,2
Ширина, м 8,3
Высота, м 10,9
Мощность ходовых электродвигателей, кВт 4x30
Мощность электродвигателей подруливающего устройства, кВт 2x18,5
Полезная грузоподъемность, т 25
Грузоподъемность с дополнительной плавучестью, т 50
Экипаж, чел 6-8
Количество водолазов, чел 2-4
Корпус носителя состоит из трех сфер, соединенных между собой прочными наклонными шахтами. В верхней сфере диаметром 4 м расположен пост управления, а между носовой и кормовой сферами находится рабочая шахта размером 5,5х3,6x5 м. Для подводно-технических работ в шахте имеется грузовая траверса, лебедки, телевизионные камеры, поворотные прожекторы, манипуляторы, контейнеры с инструментами.
Носитель доставляет к рабочему месту водолазную капсулу, обеспечивающую работу водолазов в течение 800 мин на глубине 300 м, и буровую капсулу массой 22 т, выполненную в виде цилиндра диаметром 3 и длиной 5,6 м с коническим днищем и стыковочным устройством в верхней части. С помощью буровой капсулы с набором буровых штанг можно пробурить скважину глубиной 200 м, диаметром 120,6 иЛи 152,4 мм и взять керн за три-восемь дней.
Буровая установка снабжена независимым гидравлическим приводом и обслуживается двумя-тремя операторами.
В конструкции рассмотренных аппаратов наблюдается четкая взаимосвязь наибольшей глубины погружения, скорости, автономности, полезной нагрузки, объема и массы подводного аппарата.
Глубина погружения определяет избыточное давление на ПА, а следовательно, конструкцию всех устройств и массу аппарата в целом. Массовое водоизмещение аппарата на плаву W складывается из массы капсулы WK, полезной нагрузки Wn, а также массы экипажа, механизмов и систем обеспечения работы механизма Wp:
W = WK + Wn +Wp.

В результате анализа имеющихся данных была выведена формула для установления взаимосвязи между основными конструктивными параметрами ПА :


где W - массовое водоизмещение аппарата на плаву, фунты; R - радиус действия аппарата, мили; Wn - полезная нагрузка, фунты; Н-глубина погружения, футы.
Зависимость между глубиной погружения и различными техническими характеристиками современных ПА иллюстрируется графиками и диаграммами на рис. 6.19 и 6.20.
Развитие подводных нефтяных и газовых промыслов, строительство глубоководных портов, прокладка подводных кабелей и трубопроводов требуют создания высокопроизводительных подводных аппаратов, работающих по принципу наземных строительных машин .
Японская фирма ’’Коматцу” , входящая в финансируемую правительством Группу подводных исследований, разработала подводный бульдозер для глубин до 60 м, управление которым осуществляется

либо водолазом, либо по кабелю с обеспечивающего судна. В основу конструкции подводного бульдозера положен береговой бульдозер Д155А, широко используемый в ряде стран. Вместо установленного на бульдозере Д155А дизеля на подводном бульдозере смонтирован герметичный электродвигатель, связанный кабелем с обеспечивающим судном. Площадь, обслуживаемая бульдозером, составляет 100 м2. Более подробно конструкции подводных бульдозеров, в том числе и управляемых по радио, рассмотрены в § 6.5. .
В Хьюстоне (США) переоборудован обычный гусеничный экскаватор с ковшом емкостью 0,58 м3 для рытья подводной траншеи по трассе морского выпуска сточных вод. С экскаватора демонтированы дизель, гидравлический насос, электрооборудование и кабина. Ввиду отсутствия в районе работ необходимого обеспечивающего судна двигатель и насос установили на берегу, а на экскаваторе закрепили силовой и другие кабели длиной 135 м. Для повышения устойчивости экскаватора со снятым оборудованием в качестве контргруза использовали свайный молот массой 1 т.
Перед началом работ был проложен направляющий трос, вдоль которого экскаватор прошел до места предполагаемой установки оголовка выпуска. После этого экскаватор начал рыть траншею со стороны моря к берегу. Глубина траншеи изменялась от 1 до 1,5 м, а ширина от 1,8 м на дне до 7,2 м в верхней части.
Переоборудование экскаватора было выполнено в течение трех дней с затратами около 2 тыс. долл, а затраты на устройство кабельной линии составили около 5 тыс. долл. Подводная траншея была отрыта за 2,5 дня. После окончания работ экскаватор был дооборудован и снова использован на сухопутных земляных работах.
Для механизации подводных буровых работ в Великобритании использовали гусеничную буровую установку с пневматическим приводом. Установка типа ”Инджесол-Ронд” оборудована удлиненным в пять раз, по сравнению с обычным воздушным шлангом, специальными уплотнительными устройствами и возвышением для управления установкой. Для подачи воздуха к буру под давлением 84 МПа используется шланг длиной 54,9 м. В зависимости от рабочей глубины давление воздуха снижается до 56-63 МПа.
Буровая установка опускается под воду краном, установленным на барже. Бурильщики, обученные водолазному делу, осуществляют эксплуатацию буровой установки. Во избежание быстрого износа буровую установку после окончания дневных работ поднимают из воды, смазывают бур и проверяют систему привода и управления.
Таким образом, за несколько десятилетий человек перешел от робкого прощупывания глубин Мирового океана к его планомерному исследованию и освоению при помощи подводных аппаратов и их разновидности - подводных строительных машин.

Принято делить беспилотные (необитаемые) аппараты, используемые на флотах (военно-морскими силами) на телеуправляемые и автономные. В 2016 году широко представлены и те, и другие виды аппаратов.

По форм-фактору можно различать устройства, схожие с подводными лодками, батискафами, торпедами, глайдерами, а также роботизированные всплывающие капсулы. Существуют также роботизированные подводные мины, "настроенные" на ту или иную военную технику, например, на корабль определенного классаа или даже на конкретную модель.

По назначению подводные военные аппараты делятся на устройства для обследования морского дна и других объектов - автономно или в режиме телеуправления. Одна из основных задач - противодействие минированию, обнаружение, классификация и локализация мин. Также идут разработки ударных подводных роботов. Есть гибридные разработки - робот сам по себе не вооружен, но в необходимый момент может активировать полезную нагрузку того или иного типа (как, например, робокапсулы над которыми работают по заказу DARPA).

Терминология

, Россия

Перспективная разработка, инициированная ФПИ. Подводная платформа, которая должна иметь возможность решать задачи на всех глубинах мирового океана. На данной платформе планируется отработать технологию дистанционного зондирования дна мирового океана. Закладка аппарата намечена на лето 2017. Это не будет изолированный аппарат, для его эксплуатации понадобится комплекс, который обеспечит передачу информации в реальном времени от основных датчиков, для чего в составе аппарата предусматривается базовая станция-ретранслятор, которая ставится в районе "приземления" аппарата, обеспечивая его связь с поверхностью.

(Gavia), Teledyne (создан в компании Harfmynd, Исландия), США / (адаптация Тетис-Про)

, Корпорация космических систем специального назначения "Комета", Россия

Подводная система гидроакустического слежения, разворачиваемая Россией на базе подводных роботизированных комплексов. Предназначена для обнаружения кораблей, подводных лодок и низколетящих самолетов и вертолетов в различных районах Мирового океана.

(Морская тень), Океанос, Россия


фото: ЗАО "Научно-производственное предприятие подводных технологий Океанос"

Автономный необитаемый подводный планер. Может вести поисковые работы, глубоководную разведку. Аппарат двойного назначения. Испытывается в составе перспективных подводных комплексов ВМФ РФ в 2016 году. Тип аппарата - подводный глайдер.

Дельфин, ОАО Тетис Про, Россия

АНПА. Создан до 2013 года. Принят на вооружение. Степень "российскости" - под вопросом.

, Россия

Комплекс на базе этого НПА по состоянию на 2016 год уже несколько лет стоит на вооружении ВМФ, используется в исследовательских и разведывательных целях. Может снимать и картографировать дно, искать затонувшие объекты.

, Россия

Необитаемый подводный аппарат с поддержкой автономности (АНПА). Роботизированный комплекс, предназначенный для подводных работ - обслуживание буровых установок, изучение морского дня, наблюдение за линиями подводных коммуникаций. Для работы на глубинах до 6000 метров.

, ОАО Тетис Про, Россия

ТНПА. Используется в гражданских и в военных целях.

2017.03.14 До конца 2017 года "поисково-спасательные силы" ВМФ РФ примут в свой состав 12 роботов-подводников Марлин-350.

2016.10.14 Робот Марлин-350 задействовали при обследовании самого глубокого в России карстового Голубого озера. При осмотре одной из глубоководных пещер, робот достиг глубины 279 метров - теперь это считается самой глубокой точкой озера. Опуститься глубже пока не получается из-за нулевой видимости. / kbpravda.ru

(Глайдер), Россия

Подводный комплекс планерного типа "Морская тень". В состав комплекса входят: исследовательский глайдер, глайдер-носитель мини-аппаратов, глайдер-ретранслятор, корабельный пункт управления и средства ретрансляции. Впервые представлен в 2017 году.

Нерпа, ЦНИИточмаш и МАКО (предприятия Ростех), Россия

В августе 2018 года Ростех продемонстрировал прототип подводного беспилотного аппарата, оснащенного стрелковым оружием (АПС). Робот уже прошел первые испытания (без оружия на борту). Стоимость разработки в корпорации обозначили в 10 млн руб. В Ростехе ищут заказчика на свое изделие, чтобы доработать его под реальные потребности. Декларируется, что аппарат предназначен для охраны мостов и боевых кораблей от террористов. Предполагается, что максимальная глубина погружения аппарата будет достигать 50 м, дальность устойчивой связи с ним - до 80 метров. Вес аппарата - менее 30 кг, скорость хода - 1 узел, запас хода - 4 часа. | 2018.08.21 tass.ru (есть фото)

Обзор, ОАО Тетис Про, Россия

ТНПА. Создан до 2013 года. Принят на вооружение. Степень "российскости" - под вопросом.

Пантера Плюс, ОАО Тетис Про, Россия

ТНПА. Создан до 2013 года. См. Seaeye Panther Plus , SAAB, Швеция. Не является российской разработкой. Закупался в Швеции Россией в начале 2000-х.
Принят на вооружение ВМФ РФ, например, такой робот эксплуатирует судно "Коммуна", спасательное судно Черноморского флота в 2017.06.

, МАКО (НПГ МАКО), Россия

фото: Научно-производственная группа МАКО

Автономный надводно-подводный роботизированный комплекс.

, Океанприбор, Россия, С.Петербург

Система навигации и связи. Построена на базе АНПА и гидроакустических буев, подключающихся через спутники Гонец-Д1М к командному центру. Буи будут плавающими, подводными и вмораживаемыми. Буи работают с ГЛОНАСС, что позволяет им определять свое точное местоположение, а также уточнять местоположение АНПА, которые якобы способны патрулировать глубины до 8 км. Эта информация нуждается в уточнении. Буи оборудованы поддержкой связи с АНПА. Буй может работать в одном из трех режимов:
1. Получать информацию от спутника и передавать его по требованию АПА.
2. Буй может связать различные центры управления (наземные, воздушные, морски и т.п.) с АНПА в режиме реального времени. В таком режиме можно непосредственно управлять АНПА (режим телеуправления)
3. АНПА действует автономно, но способен сверяться с буями для коррекции курса. При необходимости АНПА может подать через буй сигнал тревоги.
Система готова к развертыванию. В декабре 2016 года заявляется о готовности системы и планах ее развертывания на арктическом шельфе.

Скиф, Россия ()

Canyon в классификации НАТО. Российская беспилотная ударная подводная лодка стратегического назначения. Может нести на борту ядерное вооружение, преодолевать большие расстояния. Информация не является достоверной, т.к. проект засекречен по состоянию на октябрь 2016 года.

Подводная многоцелевая система, вооруженная в том числе самоходными подводными аппаратами с ЯО на борту. Обитаемая подводная лодка, оснащенная несколькими (до 6) СПА (самоходными подводными объектами), каждый из которые может нести ЯО мегатонного класса в качестве полезной нагрузки. На декабрь 2016 распростарняется информация о проведенных испытаниях.

, Рубин (ЦКБ "Рубин"), Россия

Подводный АНПА, робот-цель, способный имитировать различные подводные лодки. На декабрь 2016 года - в статусе "в разаботке". Призван позволить отказаться от использования в качестве учебных целей действующих подводных лодок, что является избыточно дорогим. Будет способен имитировать атомную и дизель-электрическую подводные лодки, воспроизводя, в частности, их маневрирования.

, ОАО Тетис Про, Россия (Seaside Tiger, SAAB, Швеция)

ТНПА. Создан до 2013 года. Принят на вооружение. Не является российской разработкой.

(Фалькон), ОАО Тетис Про, Россия (Seaeye Falcon, SAAB, Швеция)

Seaeye Falcon, SAAB

ТНПА (ROV). Seaeye Falcon используется в мире с 2002 года. Принят на вооружение в ВМФ РФ. Не является российской разработкой.

Фугу, МАКО, Россия

Беспилотный роботизированный комплекс с автономными необитаемыми подводными аппаратами глайдерами, предназначенный для передачи сигналов боевого управления стратегическим и ракетным атомным подводным лодкам, сбор информации об условиях мореплавания в районах боевого патрулирования. Аппарат состоит из подводной и надводной частей. Свободно поворачивающиеся плавники, используя энергию набегающей волны двигают подводную и буксируют надводную части устройств. На надводной части стоит система спутниковой связи, станция для сбора океанографических и метеорологических данных. Питание аккумуляторы аппарата получают от "солнечной батареи". Подводная часть оснащена миниатюрными гидролокаторами, а также гидроакустическим модемом, способным обеспечивать канал связи с АПЛ.

2016.10.14 ВМФ начал получать новейшие комплексы для связи с подлодками в океане. Основная партия комплексов будет поставлена в 2018 году в рамках перехода на технологии связи 6-го поколения. / vz.ru

2016.09 Российские атомные подлодки оснастят роботами-беспилотниками. Статус - испытывается Главным научно-исследовательским испытательным центром робототехники Минобороны РФ (ГНИИЦ РТ) / vz.ru

Цефалопод, Россия

, Bluefin Robotics (General Dynamics), США

Подводный военный беспилотник "Голубой тунец". 4.9 м. Может запускать небольших подводных роботов Sand Sharks.

Echo Ranger, Boeing, США

Echo Seeker, Boeing, США

АНПА, созданный в Исландии компанией Hafmynd ehf. Создан до 2010 года. Использовался ВМФ РФ под названием "Гавиа". Закупался в РФ через ОАО "Тетис Про".

, OceanServer, США

Разработан в 2005 году. Выпускался в различных модификациях: EP32, EP35, EP42, отличающихся мощностью аккумуляторной батареи и длиной корпуса. Закупался различными странами, включая Россию, Хорватию и т.п. в гражданских и военных целях. Базовая цена составляла $50 тысяч, с полной комплектацией (ГБО + система навигации по допплеровскому лагу) - порядка $150 тысяч. К 2009 году было продано более 100 комплексов на базе Iver 2.

K-STER C

Одноразовый подводный робот - камикадзе, служащий для уничтожения морских мин путем их подрыва в воде. Головная часть робота - боевая часть с кумулятивным зарядом.

, Kongsberg Defence Systems, Норвегия

Необитаемый подводный беспилотный аппарат - "камикадзе" для обнаружения мин и уничтожения их самоподрывом. OSMDWS (One-Shot Mine Disposal Weapon System) - одноразовые системы для уничтожения мин. Оснащен видеокамерой, сонаром и навигационной системой. Команду на подрыв выдает оператор. По результатам тестирования, приняты на вооружение ВМС Норвегии и НАТО в 2016 году.

Mod 1 Swordfish, AUVAC, США

Аппараты в 2016 году задействованы на 5-м флоте ВМС США.

Mod 2 Kingsfish, AUVAC, США

Аппараты в 2016 году задействованы на 5-м флоте ВМС США. По неподтвержденной информации робот может находиться под водой в течение 24 часов. Информацию робот собирает с помощью подводной фотосъемки.

Poseidon, США

Poseidon, подводный аналог системы глобальной навигации GPS, которая позволит подводным лодкам и АНПА обмениваться информацией между собой и с центрами управления. Как ожидается, ее испытания начнутся в 2018 году. Разрабатывается по заказу DARPA.

, Kongsberg Maritime, Норвегия

Морской подводный автономный робот.

2015.07 Remus-600 успешно запустили и возвратили на борт подводной лодки класса Вирджиния (SSN-784)

RHMS, Lockheed Martin, США


Система RHMS включает в себя многоцелевой автономный подводный аппарат RMMV Lockheed Martin, оборудованный сонаром бокового обзора Raytheon. Аппарат способен погружаться на небольшие глубины и вести поиск мин. Возможно решение и других задач, необходимых ВМС США. Это по-задумке. Все же разработка, которая идет более 10 лет, похоже, оказалась не слишком удачной. В ходе испытаний, которые были продлены, система слишком часто выходила из строя. Вместе с тем, она находила мины даже быстрее, чем того требовало техзадание.

Sand Shark, Bluefing Robotics (General Dynamics), США

Подводный разведывательный робот. Запускается с борта подводного военного беспилотника Bluefin-21. Вес - 6.8 кг.

, SAAB, Швеция

Seaeye Falcon, SAAB

Seaeye Panther Plus, SAAB, Швеция

В России известен также как Пантера Плюс, "локализованный" ОАО Тетис Про, Россия

ТНПА. Создан до 2013 года. Принят на вооружение ВМФ РФ, например, такой робот эксплуатирует судно "Коммуна", спасательное судно Черноморского флота.

, SAAB, Швеция

Телеуправляемый подводный аппарат класса ROV семейства "Морской глаз" для наблюдений и инспектирования объектов.

, Atlas Elektronik, Германия

Подводное телеуправляемое по оптоволоконному кабелю устройство для полуавтоматического уничтожения морских мин за счет самоподрыва. OSMDWS (One-Shot Mine Disposal Weapon System) - одноразовые системы для уничтожения мин.

Sea Glider

подводный планер (глайдер)

Seascan

Подводный робот "точной идентификации". С помощью гидролокаторов и камер высокой четкости может определять размеры и тип объектов в воде. Радиус действия - до 2 км, глубина погружения - до 3000 м.

Sea WASP, SAAB, Швеция

подводный дрон для обнаружения и первичного осмотра подводных взрывных устройств. WASP расшифровывается как Waterborne Aini-IED Security Platform. Дроном управляют 2 оператора по кабелю длиной до 500 футов. Достижимые глубины - до 200 футов. Длина робота 5.5 футов, вес около 200 фунтов. Оборудован передним сонаром, несколькими датчиками, необходимыми для измерения глубины и навигации. И двумя камерами - большой на передней части устройства и небольшой на "руке". Может спускаться на воду с причала или с пляжа, а также с различного типа надводных кораблей и резиновых лодок. Анонсирован в мае 2016 года / popsci.com

Slocum

подводный планер (глайдер)

Spray

подводный планер (глайдер)

UFP (Upward Falling Payloads), DARPA, США

2016.05.18 , которая может содержать в качестве полезной нагрузки беспилотник, ракету или другое военное оборудование. Капсулы длиной порядка 4.5 м предназначены для размещения по всему пространству Мирового океана. Активировать спящую капсулу можно будет радиосигналом, получив который капсула всплывет на поверхность океана и высвободит полезную нагрузку. Бортовой БЛА капсулы может быть воздушным или с возможностью взлета и посадки с воды. DARPA уже испытала систему подъема капсулы со дна и систему связи. Как ожидается, агентство продолжит разработку и тестирование полезной нагрузки для капсулы.

Прошедший в конце июня Международный военно-морской салон дал множество интересных новостей. Среди них были сообщения о разработках российских специалистов в области строительства глубоководных аппаратов. Сайт телеканала «Звезда» собрал пять самых интересных исследовательских и спасательных глубоководных аппаратов, которые используются Военно-морским флотом РФ.Глубоководный аппарат «Русь» и его модернизированная версия «Консул» Первым глубоководным аппаратом третьего поколения, построенным в России, стал аппарат «Русь». Ему долгое время принадлежал рекорд по погружению среди российских аппаратов. Он смог опуститься на 6180 метров.Аппарат принадлежит ВМФ РФ и предназначен для проведения исследований и подводных работ. Он может выполнять подводные технические работы с помощью манипуляторного устройства, обследовать подводные сооружения и объекты, доставлять на грунт или поднимать на поверхность предметы массой до 200 кг.Кроме того, он может перемещаться не только вертикально, но и горизонтально со скоростью до 3 узлов.На его борту находятся: гидроакустический комплекс с антенными устройствами, специализированный манипуляторный комплекс, забортная телекамера в прочном боксе, станция звукоподводной связи. Аппарат оборудован надежной системой безопасности. Впервые в мире предусмотрен отстрел нижней части аппарата при его аварийном прилипании к илу или грунту дна.Российские специалисты разработали модернизированную версию аппарата, который получил название «Консул» от слов «конкреции сульфида». Хоть аппарат и схож с батискафом проекта «Русь» по основным характеристикам, но предназначен для проведения геолого-геофизических исследований морского шельфа. «Консул» 14 мая 2011 года смог опуститься на глубину 6270 м.Батискафы «Мир-1» и «Мир-2» Два российских научно-исследовательских глубоководных обитаемых аппарата внесли огромный вклад в исследование мирового океана и озера Байкал. Батискафы могут погружаться до 6 км.В настоящее время аппарат «Мир-1» находится в качестве экспоната в калининградском Музее Мирового океана, а «Мир-2» базируется на борту научно-исследовательского судна «Академик Мстислав Келдыш».
«Миры» использовались во время экспедиции к затонувшей атомной подлодке «Комсомолец». Тогда аппараты 70 раз опускались на глубину 1700 м. В 2000 году опускались к АПЛ «Курск», чтобы установить причину гибели субмарины.С применением ГОА «Мир-1» и «Мир-2» в период 1987 по 1991 год проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, а 2 августа 2007 года впервые в мире было достигнуто дно Северного Ледовитого океана на Северном полюсе, где был размещён Российский флаг и капсула с посланием будущим поколениям.АС-30 Военно-морской флот России использует глубоководные аппараты проекта 1855 шифр «Приз».Одним из самых современных аппаратов этой серии считается аппарат АС-30. Недавно он прошел модернизацию, в ходе которой на нем полностью было заменено морально устаревшее специальное оборудование на системы цифрового поколения.В отличие от «Миров» этот в задачу аппарата не входят научные и океанографические исследования, он предназначен для спасения экипажей с аварийных подводных лодок путем стыковки к аварийным выходам подлодок.
Эксперты считают аппараты этого проекта самыми эффективными аппаратами спасения в российском флоте.Аппарат был оснащен телекамерами, манипуляторами способными перерезать металлические тросы диаметром до 10 мм, вести подводные сварочные работы, закручивать и выкручивать гайки. Он обладает специальным устройство для стыковки с комингс-площадкой подводной лодки, через которую подводники покидают аварийную субмарину.АС-34 Еще один аппарат этой серии АС-34 находится в строю ВМФ РФ. Он располагается на борту спасательного судна «Георгий Титов». Модернизация, которую недавно прошел АС-34, позволила продлить срок службы батискафа до 2032 года.
Корпус спасательного судна выполнен из титана. И хотя рабочая глубина СГА 500 метров, но при необходимости аппарат может опускаться и на глубину 1000 метров и эвакуировать подводников с аварийной лодки при повышенной задымленности, и с повышенным давлением. Второй отсек АС-34 используется как барокамера. Данный аппарат может принять на борт до 20 подводников.Обычно экипаж батискафа - три человека. Запас кислорода для работы трех человек рассчитан на 120 часов. На ситуацию со спасенными людьми - на 10 часов.Бестер-1 Еще одним новейшим глубоководным спасательным аппаратом является АС-40 «Бестер-1». В прошлом году он заступил на боевое дежурство во Владивостоке. Уникальный батискаф, превосходящий зарубежные аналоги, способен с глубины более 700 метров «сухим» путем эвакуировать экипаж терпящей бедствие подводной лодки.Он находится на борту головного спасательного судна Тихоокеанского флота «Игорь Белоусов», не имеющего ограничений по мореходности.
Отличительной особенностью «Бестера» является также то, что он быстро может стать мобильным. По словам экспертов, аппарат может использоваться не только с борта «Игоря Белоусова», но и с других спасательных судов, после того как будет оперативно переброшен грузовым самолетом на любой из флотов.

– это специальные технические средства, предназначенные для проведения подводных научных исследований, поисковых операций, всевозможных ремонтных и спасательных работ.

К глубоководным подводным аппаратам относятся аппараты с глубиной погружения свыше 600 м.

По функциональному назначению глубоководные подводные аппараты могут быть разделены на океанографические для научно-исследовательских наблюдений и аппараты для поисково-спасательных и монтажно-демонтажных работ .

В зависимости от предназначения они оборудуются системами поиска и наведения на объект, различного рода захватами и инструментами для выполнения работ.

Глубоководные подводные аппараты бывают обитаемые и необитаемые

Обитаемые глубоководные подводные аппараты управляются экипажем (2-6 чел.), находящимся в прочном герметическом корпусе, имеют системы жизнеобеспечения, средства связи и навигации, органы управления манипуляторами, средства энергоснабжения (аккумуляторы) и средства аварийного спасения. Форма прочного корпуса глубоководного подводного аппарата в зависимости от глубины погружения и предназначения бывает цилиндрической (гидростаты) с подкреплением наружной обшивки шпангоутами, сферической или полусферической (батисферы). В качестве материала корпуса используются сталь, алюминий, титан, а также армированный стеклопластик. Прочный корпус глубоководного подводного аппарата имеет входной люк, иллюминаторы, а у спасательных аппаратов в нижней части корпуса есть стыковочный узел и шлюзовая камера. С ростом глубины использования глубоководного подводного аппарата меняются конструкция и форма прочного корпуса, растет его масса. До глубины 2000 м оболочка корпуса подкреплена шпангоутами. Глубоководные подводные аппараты для больших глубин имеют толстостенный прочный корпус, выполненный из легированной стали методом ковки. Так, толщина стенок батискафа «Триест», на котором 23 января 1960 года была достигнута рекордная глубина 10919 м, составляет 105 мм. Для придания положительной плавучести прочному корпусу глубоководного подводного аппарата, предназначенному для погружения на глубину свыше 6000 м, необходимо наличие дополнительного объема, заполненного легковесным заполнителем (чаще всего бензин с плотностью 0,7-3).

Автономность обитаемых глубоководных подводных аппаратов от 8-12 ч до 2-4 недель, скорость 6-12 км/ч, на некоторых имеется всплывающая рубка для аварийного спасения экипажа. Прочный корпус глубоководного подводного аппарата снаружи закрыт проницаемым легким корпусом, служащим для придания аппарату гидродинамических характеристик, размещения движительно-рулевого комплекса, исполнительных устройств манипуляторов, светильников, телевизионной и научной аппаратуры. Между прочным и легким корпусами находятся балластные цистерны и сбрасываемый в аварийных ситуациях балласт.

Необитаемые глубоководные подводные аппараты - привязные, буксируемые – управляются по кабель-тросу с пульта, расположенного на судне-носителе. Они двигаются в толще воды либо перемещаются по дну. Оборудованы телевизионной аппаратурой, светильниками, имеют стабилизацию глубины, манипуляторы, их навигационная система связана с навигационной системой судна-носителя, передача электроэнергии – по кабель-тросу (погружение до 100 м). Самоходные аппараты снабжены движительно-рулевыми комплексами, управляющимися по заданной программе. Необитаемые глубоководные подводные аппараты используются в основном при поиске и обследовании затонувших объектов и для подводного бурения. Развитие глубоководных подводных аппаратов идет по пути создания специализированных необитаемых аппаратов.