Главная · На заметку · Защитить ее от испарений влаги. Как защитить подвал от влаги. Раздражение от использования увлажняющих средств

Защитить ее от испарений влаги. Как защитить подвал от влаги. Раздражение от использования увлажняющих средств

Каждый представитель царства флоры испаряет внушительные объемы влаги. Вода необходима растениям для осуществления процессов жизнедеятельности и поглощается ими через корневую систему. По стеблям она перекачивается в листья, откуда, следовательно, и испаряется. Как показывают научные исследования, растения усваивают только 3% поступающей к ним воды, а остальное - испаряют.

Процесс испарения воды с поверхности растений называется транспирацией. Фактически, это избавление живого организма от излишков воды, а также аналог потоотделения у представителей царства животных. Основная часть растений испаряет воду обратной стороной листьев, где находятся особые зеленые клетки (устьица), образующие между собой небольшие щели.

Роль испарения воды в жизни растений

  • Когда растение всасывает воду, оно поглощает различные минеральные компоненты из жидкости. В самой воде их не очень много, поэтому через стебли прогоняется большой объем жидкости за сутки. Постепенно из-за корневого давления уровень воды в растении поднимается, и она поступает в листья, откуда и испаряется.
  • Благодаря испарению жидкости растение может охлаждать себя. Это связано с эффектом максимальной теплоемкости воды. Если представитель флоры долгое время находится на солнце, начинается автоматическая транспирация, и водяной пар уносит лишнее тепло с собой.
  • Испарение влаги является также необходимостью для растений, поскольку вода должна подниматься вверх для осуществления разных биохимических процессов, например, фотосинтеза.

Для окружающей среды, и в частности, для человека, испарение воды растениями тоже весьма значимо. Интенсивность этого явления, например, снижает питательность и вкусовые качества сельскохозяйственных культур. Чем чаще испаряется влага, тем скуднее становится почва, постоянно отдающая воду, обогащенную минеральными компонентами. Отсюда возникает необходимость регулярного облагораживания земель и их удобрения.

Процесс испарения воды растением

Как уже было обозначено, испарение воды возможно за счет наличия устьиц на листьях. Их количество у каждого организма неодинаковое и определяется ареалом обитания и характеристиками того или иного представителя флоры (уровнем воды в клетках, возрастом, осмотическим давлением клеточного сока). Интенсивность испарения влаги также зависит от наличия тени, воздушных масс и уровня воды в грунте.

Когда растение накапливает излишки воды, устьица расширяются, и их клетки образуют отверстия, откуда выходит водяной пар. В межклетниках жидкость всегда пребывает в состоянии пара, но выйти за пределы листа она может только при открытии устьиц. Обычно процесс транспирации происходит днем, когда устьица автоматически открыты. Но если растение страдает от засухи, оно меняет свой режим и минимизирует испарение воды.

Растения, которые произрастают в теплом климате, например, в тропиках, всегда имеют большие листья, чтобы с их поверхности испарялся максимальный объем воды в короткие сроки. В холодном или засушливом климате, соответственно, наоборот. Также, если растение не заинтересовано в регулярном избавлении от избытков воды, его листья в процессе эволюции покрываются восковым налетом или мелкими ворсинками. Нередки случаи, когда листья скручиваются при солнечном освещении, чтобы испарение уменьшилось.

Покрытосеменные растения испаряют воду не только с обратной, но и лицевой стороны листовых пластин. Это связано с тем, что устьица размещены по обеим сторонам, однако изнанка листа практически всегда находится в воде и испарение невозможно.

Одним из главнейших факторов водного режима почв является процесс испарения влаги. Испарение воды из почвы протекает при любой температуре, возрастая с увеличением температуры и сухости воздуха. Испарение воды из почвы происходит преимущественно с ее поверхности, однако в почвах, имеющих влажность меньше максимальной гигроскопичности, испарение происходит и внутри почвенных и грунтовых горизонтов. Скорость внутрипочвенного испарения воды значительно меньшая, чем с поверхности почв. Глубокая трещиноватость почв способствует усилению внутрипочвенного испарения.
Неровности рельефа и поверхности почвы способствуют также увеличению расхода влаги на испарение. Удаление парообразной воды под влиянием ветра увеличивает скорость испарения. Скорость испарения всегда тем большая, чем выше влажность почвы. Поэтому в условиях степи, полупустынь и пустынь, если поддерживается высокая влажность почв (путем орошения или от грунтовых вод), величина фактического испарения достигает высоких величин:


В орошаемых почвах поливы, поддерживая высокую влажность, наряду с близкими к поверхности грунтовыми водами способствуют чрезвычайно большому расходу почвенной воды на испарение. Суммарное испарение (включая транспирацию) почвенно-грунтовых вод в орошаемых районах Средней Азии достигает 15-20 тыс. м3/га (Ферганская долина, долина р. Вахш). Наибольший расход воды на испарение имеет место в первые часы и дни после полива. В июле и августе непосредственно после полива может испариться 70-100 м3/га в день.
Если принять испарение воды в 1-й день после полива за 100%, то уменьшение интенсивности испарения выразится следующим рядом цифр:

Испарение воды из почв в земледелии является процессом, в высшей степени отрицательным, так как создает недостаток влаги для развития сельскохозяйственных растений, вызывает их угнетение и даже гибель. В условиях орошаемых почв испарение влаги из почвы приводит к бесполезной трате воды, на получение и доставку которой к полю затрачено много средств и усилий. Потери воды на испарение из почвы заставляют увеличивать число поливов и приводят к дополнительной загрузке ирригационной системы и рабочего персонала. Самое же главное заключается в том, что господство процессов испарения сопровождается накоплением избытка легкорастворимых солей в пахотном горизонте, образованием засоленных почв и потерей ими плодородия. Поэтому одной из основных задач земледелия является систематическое применение мероприятий по уменьшению испарения воды из почвы.
Приемы уменьшения испарения влаги из почвы. Создание ветрозащитных лесных полос на полях, рыхление почвы и увеличение в ней некапиллярной скважности и агрегированности являются древнейшими способами борьбы с бесполезным испарением влаги. Мульчирование почвы рыхлым материалом, отражающим свет и тепло (белым), или не проницаемым для водяных паров (бумажным, пластмассовым) покровом способствует уменьшению испарения и сохранению в ней влаги.
В этом же направлении действуют гидрофобные добавки и поверхностно-активные вещества, нарушающие капиллярно-менисковые системы в почве. Все эти приемы уменьшения процессов испарения влаги из почв все больше внедряются в практику современного земледелия. Этими способами возможно сохранить в почвах до 50-100 мм физиологически доступной воды; а это значит, что больший урожай растений можно получать в степях и лесостепях без строительства дорогих оросительных сооружений. Столь же важно бороться с испарением влаги и в орошаемых почвах.
Борьбу с бесполезной тратой воды на испарение необходимо начинать уже при производстве поливов. Это должно достигаться максимально возможным уменьшением числа поливов и уменьшением их продолжительности. Уменьшение продолжительности поливов возможно в том случае, если агрофизические свойства пахотного и подпахотного горизонтов почвы достаточно благоприятны, т. е. почвы обладают водоустойчивой структурой, повышенной некапиллярной скважностью и удовлетворительной водопроницаемостью. Структурность почвы и повышенная некапиллярная скважность будут способствовать уменьшению числа поливов.
Исключительно большое значение в борьбе с испарением имеет своевременное и тщательное рыхление почвы после полива, что может быть иллюстрировано данными Е. Петрова (табл. 15).


В борьбе с испарением воды из почвы велика также роль растительного покрова. Под пологом люцерны и хлопчатника температура воздуха обычно на 1-3° ниже, чем на открытой пашне. Влажность воздуха в приземном слое сильно повышена, а в некоторых случаях близка к точке росы (95-100%). Благодаря этому при хорошем травостое люцерны или в случае густого покрова хорошо развитого хлопчатника непосредственное испарение влаги с поверхности почвы значительно снижено. Этому способствует также и притеняющее влияние растительного покрова.
Еще больше косвенная роль растительного покрова в уменьшении процессов испарения влаги с поверхности почвы. Сельскохозяйственные растения и древесные насаждения транспирируют большое количество воды - 10-15 тыс. м3/га. Вследствие этого под их пологом обычно влажность почвы значительно уменьшается, уровень грунтовых вод снижается на 0,5-1 м, и транспорт капиллярной воды к поверхности замедляется. В итоге процесс испарения влаги почвой замещается биологическим испарением - транспирацией почвенной воды через листву растений.
В числе планомерных мероприятий по уменьшению испарения почвенной влаги с поверхности почвы обязательно должны быть многолетние травы в севообороте (улучшение структуры, притенение, ослабление испарения, снижение уровня грунтовых вод) и древесные полосные насаждения вдоль ирригационных каналов, дорог и на усадьбах (ветрозащитная роль, снятие капиллярной воды, биологическое снижение уровня грунтовых вод).

Испарение влаги с водных поверхностей в условиях крытых аквапарков.

Генеральный директор

«Стройинженерсервис»

Главный специалист

«Стройинженерсервис»

Профессор кафедры ВИТУ

докт. техн. наук

В условиях крытых аквапарков различные бассейны и развлекательные водные аттракционы являются основными источниками значительных влагопоступлений, которые необходимо учитывать при проектировании их систем вентиляции и кондиционирования воздуха. Недостаточный учет влагопоступлений от указанных источников может привести в период эксплуатации крытых аквапарков к постоянному возникновению конденсации влаги из воздуха на внутренних поверхностях различных строительных конструкций и к несоблюдению допустимого температурно-влажностного режима воздушной среды в зоне пребывания купающихся. Наш опыт проектирования систем вентиляции и кондиционирования воздуха крытых аквапарков показал, что для оценки их влагопоступлений требуется проведение тщательного анализа:

технологических режимов использования бассейнов и водных аттракционов;

В этой связи следует отметить, что наибольшие затруднения возникли с установлением (обоснованным выбором) расчетных зависимостей для определения влагопоступлений с водных поверхностей.

В настоящее время имеется множество формул, рекомендуемых для оценки испарения влаги, которые основаны на результатах лабораторных экспериментов. Возникло сомнение, что лабораторные эксперименты учитывают всю полноту условий, при которых происходит испарение влаги с водных поверхностей бассейнов и аттракционов в условиях крытых аквапарков. Поэтому было решено проанализировать расчетные зависимости для определения интенсивности испарения влаги с водных поверхностей, рекомендуемые различными нормативными документами, существующими в отечественной и зарубежной практике. При проведении анализа особое внимание было обращено на условия получения и возможные области применения рекомендуемых расчетных зависимостей для оценки испарения с водных поверхностей.

В отечественной практике для расчета количества влаги, испаряющейся с открытой водной поверхности, широкое применение получила зависимость, предложенная сушильной лабораторией Всесоюзного Теплотехнического Института (г. Москва), которая базируется на результатах обширных опытов, проведенных при следующих условиях:

– температура воздуха – t=40÷225 0С;

– скорость движения воздуха – υ=1÷7,5 м/с.

В опытах обеспечивались условия испарения близкие к адиабатическому процессу. Разработанная при этом зависимость была включена в «Указания по проектированию отопления и вентиляции» (СН 7-57), а затем в «Справочник проектировщика. Вентиляция и кондиционирование воздуха» кн. 1, изд. 1992 г. (СПВ) в следующем виде:

G=7,4(аt+0.017∙υ)∙(Pн-Рв)∙∙F, (1)

где G – количество испаряющейся влаги с открытой водной поверхности площадью F (м2), кг/ч;

υ – относительная скорость движения воздуха над водной поверхностью, м/с. Для залов бассейнов, согласно СНиП 2.08.02-89*, можно рекомендовать не более 0,2 м/с;

аt – коэффициент, зависящий от температуры воды в бассейне (0,022÷0,028 при tводы=28-40 0С);

Pв – парциальное давление водяного пара в воздухе рабочей зоны помещения, кПа;

Pн – давление насыщенного водяного пара в воздухе при температуре, равной температуре воды, кПа;

Как отмечает проф. в книге «Вентиляция, увлажнение и отопление на текстильных фабриках» (изд. 1953г.) формула (1) представляет собой модифицированную формулу Дальтона, которая имеет следующий вид:

G= , (2)

где С – коэффициент испарения (0,86 – при сильном движении воздуха; 0,71 – при умеренном движении воздуха; 0,55 – при спокойном состоянии воздуха).

Эта зависимость была получена Дальтоном в результате проведения им многочисленных опытов по испарению воды, которая подогревалась в круглых чашах ø8,25 и ø15,24 см на жаровнях до различной температуры. При этом в опытах скорость движения воздуха над поверхностью испарения изменялась произвольно. Поэтому в формуле Дальтона не указывается количественные характеристики скорости движения воздуха над поверхностью испарения. В книге «Вентиляция» (изд. 1959 г.) проф. дана оценка возможных скоростей движения воздуха в опытах Дальтона:

– при сильном движении воздуха скорость воздуха могла составлять 1,57 м/с;

– при умеренном движении воздуха - 1,13 м/с;

– при спокойном состоянии воздуха - 0,58 м/с.

На основании этих данных было установлено значение коэффициента испарения С=0,4 при скорости движения воздуха над поверхностью испарения равной 0,2 м/с.

В зарубежной практике для расчета испаряющейся влаги с водной поверхности бассейнов применяются формулы, приведенные в «Руководстве по проектированию» фирмы Dantherm, которые дают возможность учитывать влияние занятости бассейна купающимися и их активности на испарение влаги. В Руководстве отмечается, что в Германии используется для расчета испарения воды с водяной поверхности крытых плавательных бассейнов формула стандарта VDI 2086, разработанная обществом немецких инженеров:

G=ε∙F ∙(Pн-Рв)∙10-3 , (3)

где ε – эмпирический коэффициент испарения воды с водной поверхности бассейна, г/м2∙ч∙мбар, зависящий от подвижности водной поверхности, количества купающихся и их активности.

e=35 – для бассейнов с горками и значительным волнообразованием;

e=28 – при средней подвижности водной поверхности для общественных бассейнов и нормальной активности купающихся (бассейны для отдыха и развлечений);

e=13 – при малоподвижной водной поверхности для небольших плавательных бассейнов с ограниченным количеством купающихся;

e=5,0 – для неподвижной воды в бассейнах;

e=0,5 – закрытая поверхность воды в бассейнах.

Следует отметить, что формула (3) является также модификацией формулы Дальтона, а ее эмпирический коэффициент e отражает влияние на процесс испарения влаги, как скорости движения водной поверхности, так и скорости движения воздуха ввиде относительной скорости движения указанных сред.

В Великобритании для расчета количества испаряющейся влаги с водной поверхности бассейнов, как отмечается в «Руководстве по проектированию» фирмы Dantherm, чаще используются формулы Бязина-Крумме, которые установлены на основе натурных измерений интенсивности испарения влаги, проведенных в действующих бассейнах. Для дневного периода (период использования бассейна) рекомендуется формула Бязина-Крумме в следующем виде:

G= ∙F , (4)

где А – коэффициент занятости бассейна купающихся, зависящий от количества купающихся n (чел) и от площади бассейна F (м2);

DР – разность между давлением водяных паров насыщенного воздуха при температуре воды в бассейне и парциальным давлением водяных паров в воздушной среде бассейна, мбар.

Для ночного периода (в период бездействия бассейна) рекомендуемая формула Бязина-Крумме имеет вид:

G= [-0,059+0,0105∙]∙F (5)

Нами были выполнены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их использования (в дневное время) по формулам (1÷4). При этом были рассмотрены три типа бассейнов и водных аттракционов в зависимости от температуры применяемой воды:

тип 1 – общие бассейны водных аттракционов, tводы=30 0С;

тип 2 – детские бассейны, tводы=35 0С;

тип 3 – бассейны «Джакузи», tводы=40 0С.

В качестве исходных данных в расчетах интенсивности испарения влаги при использовании бассейнов были приняты:

Рн – давление насыщенных водяных паров в воздухе при температуре воды в бассейнах (для бассейнов 1 типа - 37,8 мбар; 2 типа - 42,4 мбар; 3 типа - 73,7 мбар);

Рв – парциальное водяного пара при допустимых параметрах воздуха для всех типов бассейнов. В теплый период года Рв=25,4 мбар (tдоп=30 0С и jдоп=60%), в холодный период года Рв=20,1 мбар (tдоп=29 0С и jдоп=50%).

Таким образом, расчетные значения DР=(Рн- Рв) для различных типов бассейнов составляют для бассейнов 1 типа от 12 до 18 мбар; 2 типа - от 18 до 23 мбар; 3 типа - от 48 до 54 мбар.

При расчетах интенсивности испарения влаги были приняты:

– в формуле (1) среднее значение коэффициента аt=0,025 при скоростях движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с и Рбар=101,3кПа;

– в формуле (2) скорости движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с, а значение Рбар=760 мм. рт. ст.;

– в формуле (3) значения коэффициента e=35 ; 28 и 19;

– в формуле (4) значения занятости бассейнов купающимися: А=0,5 ; 1,0.

Результаты расчетов интенсивности испарения влаги с водных поверхностей по формулам (1÷4) представлены на графиках рис. 1, сопоставление которых позволяет отметить следующее.

Результаты расчетов испарения влаги с водной поверхности по формулам стандартаVDI (при e=35; 28 и 19) и СПВ (при скорости движения воздуха над водной поверхностью υ=1,5; 0,9 и 0,2 м/с) совпадают с результатами расчетов по формуле Дальтона (при скоростях движения воздуха υ=1,5; 0,9 и 0,2 м/с). Это свидетельствует о том, что указанные формулы получены на основании результатов лабораторных опытов, аналогичных опытам Дальтона. Для этих лабораторных опытов характерны следующие условия:

– спокойная гладкая (без волнообразования) водная поверхность испарения, над которой при движении воздуха постоянно существует неразрушаемый пограничный слой воздуха с давлением насыщенного водяного пара при температуре поверхности воды;

– температура поверхности воды ниже температуры основной массы воды на несколько градусов, т. е. процесс тепломассообмена между водной поверхностью и движущемся над ней воздухом «стремиться» к адиабатическому процессу.

Область результатов расчетов интенсивности испарения влаги с водной поверхности по формуле Бязина-Крумме (при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0) «лежит» ниже области результатов интенсивности испарения влаги, установленных по формулам Дальтона, СПВ и стандарта VDI. Это указывает на наличие принципиальных отличий процесса тепломассообмена между водной поверхностью и воздушной средой действующих бассейнов от процесса тепломассообмена при проведении опытов в лабораторных условиях. К этим принципиальным отличиям процесса тепломассообмена в действующих бассейнах и водных аттракционах следует отнести:

– постоянное разрушение водной поверхности (образование волн, брызг и капель), интенсивность которого зависит от занятости бассейнов купающимися и их активности;

– постоянное разрушение над водной поверхностью пограничного слоя воздуха с давлением насыщенного водяного пара при температуре, равной температуре воды в бассейне, которая устанавливается в результате ее перемешивания купающимися. Поэтому процесс тепломассообмена между водной поверхностью и движущимся над ней воздухом в этом случае не «стремится» к адиабатическому процессу, а по существу является некоторым политропическим процессом, «направленным» на температуру воды, устанавливающуюся во всей ее массе в бассейне.

Результаты расчетов интенсивности испарения влаги, полученные по формулам Дальтона, СПВ и стандарта VDI при скорости движения воздуха υ=0,2 м/с, пересекают область результатов расчетов интенсивности испарения влаги, полученных по формуле Бязина-Крумме при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0. Характер пересечения этих результатов подчеркивает отмеченное выше принципиальное отличие условий испарения влаги при проведении лабораторных опытов от условий испарения влаги в действующих бассейнах.

Вышеизложенное позволяет сделать вывод о том, что наиболее объективные данные об интенсивности испарения влаги с водных поверхностей бассейнов и аттракционов аквапарков в период их использования можно получить при их оценке по формуле Бязина-Крумме (формула 4). При этом необходимо принимать значения занятости бассейнов купающимися А, исходя из существующих норм их использования. В соответствии с данными «Руководства по проектированию» фирмы Dantherm значения занятости бассейнов купающимися А определяются по формуле:

где 6,0 – нормативное значение площади бассейна, приходящейся на одного купающегося, (м2/чел) при коэффициенте занятости А=1.

Для большинства общественных бассейнов в качестве расчетной величины рекомендуется принимать значение коэффициента занятости бассейна А=0,5.

Нами были произведены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их бездействия (в ночное время) по формулам (1÷3 и 5). В этом случае исходные данные были приняты те же, что и для периода использования бассейнов. При этом при в расчетах интенсивности испарения влаги были приняты:

– в формуле (1) скорость движения воздуха υ=0;

– в формуле (2) при скорости движения воздуха υ=0 коэффициент испарения С=0,3;

– в формуле (3) значение коэффициента испарения e=5,0.

Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам (1÷3 и5) представлены на графиках рис. 2, сопоставление которых позволяет отметить следующее.

Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам Дальтона и СПВ значительно превосходят результаты расчетов интенсивности испарения влаги с водных поверхностей бассейнов по формулам стандарта VDI и Бязина-Крумме. Это обстоятельство можно объяснить тем, что формулы стандарта VDI и Бязина-Крумме более строго учитывают реальные температурно-влажностные условия взаимодействия воздуха с поверхностью воды в период бездействия бассейнов, тогда как формулы Дальтона и СПВ, основанные на результатах лабораторных опытов, эти условия не отражают. Поэтому для расчетов интенсивности испарения влаги с водных поверхностей бассейнов в период их бездействия следует отдавать предпочтение последним формулам и, прежде всего, формуле Бязина-Крумме.

1. Для крытых аквапарков не могут быть рекомендованы зависимости «Справочника проектировщика. Вентиляция и кондиционирование воздуха» по определению интенсивности испарения влаги с водных поверхностей, основанные на результатах опытов, которые не учитывают условия эксплуатации действующих бассейнов и водных аттракционов.

2. При проектировании систем вентиляции и кондиционирования воздуха крытых аквапарков для определения влагопоступлений от водных поверхностей бассейнов и водных аттракционов (в период их использования и бездействия) целесообразно применять формулы Бязина-Крумме, как наиболее полно отражающие процессы испарения влаги в условиях действующих бассейнов.

Постоянно притененная несколькими культурами почва теряет в несколько раз меньше воды.

Чем крупнее частицы песка в почве вашего участка, тем труднее удержаться в ней влаге. Вода проходит сквозь такую почву, как через решето. Плодородная и структурированная земля гораздо лучше ее накапливает и удерживает.

Итак, что можно предпринять, чтобы как-то сохранить дольше в почве влагу.

-Для увеличения влагоудерживающей способности песка в него добавляют размельченную глину и различные органические удобрения.

Так как на песчаной почве вода быстро просачивается вглубь, не задерживаясь в верхних слоях, то поливать ее надо не так обильно, как глинистую, зато гораздо чаще.

Во время засухи старайтесь по возможности не беспокоить почву: любое рыхление способствует дополнительному испарению влаги.

Если почва сильно пересохла, производите полив в несколько заходов : сначала увлажните поверхностный слой и подождите несколько минут, затем полейте еще раз – вода просочится ниже, не растекаясь по поверхности.

Материалы к теме:


Если надумали строиться...Читать...
Главное прочный фундамент...Читать...
Строим баню...Читать...

Из чего строить стены... Читать
Строим забор по правилам..Читать...
Чтобы не поехала крыша... Читать...

В жаркие весенние дни, когда в глубине почвы еще много влаги, можно применять так называемый обратный полив: почву около растений накрыть черной полиэтиленовой пленкой и присыпать слоем земли в 2–3 см. Днем пленка нагревается, и влага поднимается из нижних слоев почвы в верхние. Она конденсируется на остывшей за ночь пленке и поступает обратно в почву.

Поздней осенью, когда испарение уменьшается, необходимо производить влагозарядные поливы, чтобы защитить от мороза корневую систему растений в случае бесснежных зим.

Для увлажнения почвы растений в контейнерах наполните широкую емкость водой, в которую по очереди ставьте на некоторое время горшки и подвесные корзины. Таким образом, вся почва в контейнере промокает насквозь, и растение получает большое количество влаги.

Это также отличный способ срочной реанимации уже пострадавших растений с пересохшим земляным комом. Такой способ увлажнения не вреден даже в самые знойные часы, потому что вода не попадает на листья. После подобной процедуры воду из емкости можно вылить под какой-нибудь куст, ведь в ней накопились полезные вещества из почвы контейнеров.

Если вам по карману поливальные системы, вложите средства в современную капельную или струйную вместо традиционной разбрызгивающей. Вода в таких системах благодаря таймеру на кране появляется в нужное время (например, поздним вечером) даже в ваше отсутствие, попадает к корням растений и впитывается до последней капли, не расходуясь на полив соседних сорняков.

Обратите на это: