Главная · Сети · Астрофизики уточнили предельную массу нейтронных звезд. Белый карлик, нейтронная звезда, черная дыра

Астрофизики уточнили предельную массу нейтронных звезд. Белый карлик, нейтронная звезда, черная дыра

Были предсказаны в начале 30-х гг. XX в. советским физиком Л. Д. Ландау, астрономами В. Бааде и Ф. Цвикки. В 1967 г. были открыты пульсары, которые к 1977 г. были окончательно отождествлены с нейтронными звёздами.

Нейтронные звёзды обра-зовываются в результате взрыва сверхновой на последней стадии эволюции звезды большой массы.

Если масса остатка сверхновой (т. е. то, что остаётся пос-ле сброса оболочки) больше 1,4 M ☉ , но меньше 2,5 M ☉ , то сжатие его продолжается и после взрыва до тех пор, пока плотность не достигнет ядерных значений. Это приведёт к то-му, что электроны будут «вдавлены» в ядра, и образуется ве-щество, состоящее из одних нейтронов. Возникает нейтронная звезда.

Радиусы нейтронных звёзд, как и радиусы белых карли-ков, уменьшаются при увеличении массы. Так, нейтронная звезда массой 1,4 M ☉ (минимальная масса нейтронной звезды) имеет радиус 100—200 км, а при массе 2,5 M ☉ (максималь-ная масса) — всего 10—12 км. Материал с сайта

Схематический разрез нейтрон-ной звезды показан на рисунке 86. Наружные слои звезды (рис. 86, III) состоят из железа, образующего твёрдую ко-ру. На глубине примерно 1 км начинается твёрдая кора из железа с примесью нейтронов (рис. 86), которая перехо-дит в жидкое сверхтекучее и сверхпроводящее ядро (рис. 86, I). При массах, близких к предельным (2,5—2,7 M ☉), в центральных областях нейтронной звезды появля-ются более тяжёлые элементарные частицы (гипероны).

Плотность нейтронной звезды

Плотность вещества в нейтронной звезде сравнима с плот-ностью вещества в атомном ядре: она достигает 10 15 —10 18 кг/м 3 . При таких плотностях самостоятельное существование элек-тронов и протонов невозможно, и вещество звезды состоит практически из одних нейтронов.

Картинки (фото, рисунки)

На этой странице материал по темам:

Kevin Gill / flickr.com

Немецкие астрофизики уточнили максимально возможную массу нейтронной звезды, опираясь на результаты измерений гравитационных волн и электромагнитного излучения от . Оказалось, что масса невращающейся нейтронной звезды не может быть больше 2,16 масс Солнца, говорится в статье, опубликованной в Astrophysical Journal Letters .

Нейтронные звезды - это сверхплотные компактные звезды, которые образуются во время вспышек сверхновых. Радиус нейтронных звезд не превышает нескольких десятков километров, а масса может быть сравнима с массой Солнца, что приводит к огромной плотности вещества звезды (порядка 10 17 килограмм на кубический метр). В то же время, масса нейтронной звезды не может превышать определенный предел - объекты с большими массами коллапсируют в черные дыры под действием собственной гравитации.

По различным оценкам, верхняя граница для массы нейтронной звезды лежит в диапазоне от двух до трех масс Солнца и зависит от уравнения состояния вещества, а также от скорости вращения звезды. В зависимости от плотности и массы звезды ученые выделяют несколько различных типов звезд, схематичная диаграмма изображена на рисунке. Во-первых, не вращающиеся звезды не могут иметь массу, большую M TOV (белая область). Во-вторых, когда звезда вращается с постоянной скоростью, ее масса может быть, как меньше M TOV (светло-зеленая область), так и больше (ярко-зеленая), но все же не должна превышать еще один предел, M max . Наконец, нейтронная звезда с переменной скоростью вращения теоретически может иметь произвольную массу (красные области разной яркости). Впрочем, всегда следует помнить, что плотность вращающихся звезд не может быть больше определенной величины, иначе звезда все равно коллапсирует в черную дыру (вертикальная линия на диаграмме отделяет стабильные решения от нестабильных).


Диаграмма различных типов нейтронных звезд в зависимости от их массы и плотности. Крестом отмечены параметры объекта, образовавшегося после слияния звезд двойной системы, пунктирными линиями - один из двух вариантов эволюции объекта

L. Rezzolla et al. / The Astrophysocal Journal

Группа астрофизиков под руководством Лучиано Реццолла (Luciano Rezzolla) установила новые, более точные ограничения на максимально возможную массу не вращающейся нейтронной звезды M TOV . В своей работе ученые использовали данные предыдущих исследований, посвященных процессам, которые происходили в системе двух сливающихся нейтронных звезд и привели к излучению гравитационных (событие GW170817) и электромагнитных (GRB 170817A) волн. Одновременная регистрация этих волн оказалось очень важным событием для науки, подробнее про него можно прочитать в нашей и в материале .

Из предыдущих работ астрофизиков следует , что после слияния нейтронных звезд образовалась гипермассивная нейтронная звезда (то есть ее масса M > M max), которая в дальнейшем развивалась по одному из двух возможных сценариев и через небольшой промежуток времени превратилась в черную дыру (пунктирные линии на диаграмме). Наблюдение за электромагнитной компонентой излучения звезды указывает на первый сценарий , в котором барионная масса звезды остается практически постоянной, а гравитационная масса относительно медленно уменьшается за счет излучения гравитационных волн. С другой стороны, гамма-всплеск от системы пришел практически одновременно с гравитационными волнами (всего на 1,7 секунды позже), а значит, точка превращения в черную дыру должна лежать близко к M max .

Поэтому если проследить эволюцию гипермассивной нейтронной звезды обратно до начального состояния, параметры которого были с хорошей точностью рассчитаны в предыдущих работах, можно найти значение интересующей нас M max . Зная M max , несложно уже найти M TOV , поскольку эти две массы связаны соотношением M max ≈ 1,2 M TOV . В этой статье астрофизики выполнили такие вычисления, используя так называемые «универсальные соотношения» , которые связывают параметры нейтронных звезд различной массы и не зависят от вида уравнения состояния их вещества. Авторы подчеркивают, что их вычисления используют только простые предположения и не опираются на численное моделирование. Конечный результат для максимально возможной массы составил от 2,01 до 2,16 масс Солнца. Нижняя граница для нее была получена раньше в результате наблюдений за массивными пульсарами в двойных системах - проще говоря, максимальная масса не может быть меньше 2,01 масс Солнца, поскольку астрономы в действительности наблюдали нейтронные звезды с такой большой массой.

Ранее мы писали о том, как астрофизики с помощью компьютерных симуляций на массу и радиус нейтронных звезд, слияние которых привело к событиям GW170817 и GRB 170817A.

Дмитрий Трунин

Остаток сверхновой Корма-А, в центре которой находится нейтронная звезда

Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.

Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.

После такого взрыва внешние слои выбрасываются в космос, ядро остается, но она больше не в состоянии поддерживать ядерный синтез. Без внешнего давления от вышележащих слоев, она коллапсирует и катастрофически сжимается.

Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.

Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны – этот процесс называется нейтронизацией.

Состав

Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.
Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.

Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.

Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.

Радиопульсары

Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.

Схематическое изображение вращения нейтронной звезды

Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.

После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.

Радиопульсар в Крабовидной туманности

Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.

Ветер от Пульсара, видео телескопа Чандра

Радиопульсар в Крабовидной туманности, сфотографированный с помощью космического телескопа Хаббла через фильтр 547nm (зеленый свет) с 7 августа 2000 года по 17 апреля 2001 года.

Магнетары

Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.

Планеты у нейтронных звезд

На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.

Двойные системы

Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.

Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.

Конечным продуктом эволюции звезд называют нейтронные звезды. Размерами и массой они просто поражают воображение! Имея размер до 20 км в диаметре, но массой как . Плотность вещества у нейтронной звезды во много раз превышает плотность атомного ядра. Появляются нейтронные звезды во время вспышек сверхновых.

Большинство известных нейтронных звезд имеют вес приблизительно 1,44 массы Солнца и равно пределу массы по Чандрасекара. Но теоретически возможно они могут иметь и до 2,5 масс . Самые тяжелые из открытых на сегодняшний момент имеет вес 1,88 Солнечной массы, и называется она – Vele X-1, и вторая с массой 1,97 Солнечной — PSR J1614-2230. При дальнейшем увеличение плотности звезда превращается уже в кварковую.

Магнитное поле у нейтронных звезд очень сильное и достигает 10 в12 степени Гс , у Земли поле равно 1Гс. Некоторые нейтронные звезды с 1990 года отождествлены как магнетары – это звезды у которых магнитные поля уходят далеко за пределы 10 в 14 степени Гс. При таких критических магнитных полях меняется и физика, появляются релятивистские эффекты (отклонение света магнитным полем), и поляризация физического вакуума. Нейтронные звезды были предсказаны, а уже за тем открыты.

Первые предположения были сделаны Вальтером Бааде и Фрицем Цвикки в 1933 году , они сделали предположение, что нейтронные звезды рождаются в результате взрыва сверхновой. По расчетам излучение этих звезд очень маленькое, его просто невозможно обнаружить. Но в 1967 году аспирантка Хьюиша Джоселин Белл открыла , который испускал регулярные радиоимпульсы.

Такие импульсы получались в результате быстрого вращения объекта, но обычные звезды от столь сильного вращения просто разлетелись бы, и поэтому решили, что это нейтронные звезды.

Пульсары в порядке убывания скорости вращения:

Эжектор это — радиопульсар. Малая скорость вращения и сильное магнитное поле. У такого пульсара магнитное поле и звезда вращается вместе с равной угловой скоростью. В определенный момент линейная скорость поля достигает скорости света и начинает превосходить ее. Дальше уже дипольное поле не может существовать, и линии напряженности поля рвутся. Двигаясь по этим линиям заряженные частицы достигают обрыва и срываются, таким образом они покидают нейтронную звезду и могут улетать на любое расстояние вплоть до бесконечности. Поэтому эти пульсары называют эжекторы (отдавать, извергать)- радиопульсары.

Пропеллер , у него уже нет такой скорости вращения как у эжектора, чтобы разгонять частицы до послесветовой скорости, по-этому быть радиопульсаром он не может. Но скорость вращения у него еще очень высока, вещество, захваченное магнитным полем не может еще упасть на звезду, то есть аккреция не происходит. Такие звезды изучены очень плохо, потому как наблюдать их практически невозможно.

Аккретор это — рентгеновский пульсар. Звезда вращается уже не так быстро и вещество начинает падать на звезду, падая по линия магнитного поля. Падая в районе полюса на твердую поверхность вещество разогревается до десятков миллионов градусов, в результате получается рентгеновское излучение. Пульсации происходя в результате того, что звезда еще вращается, а так как область падения вещества всего около 100 метров, то пятно это периодически пропадает из вида.

27 декабря 2004 года, всплеск гамма-лучей, прибывших в нашу солнечную систему от SGR 1806-20 (изображено в представлении художника). Взрыв был настолько мощным, что воздействовал на атмосферу Земли на расстоянии свыше 50 000 световых лет

Нейтронная звезда - космическое тело, являющийся одним из возможных результатов эволюции , состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой , но типичный радиус нейтронное звезды составляет лишь 10-20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·10 17 кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, - до тысячи оборотов в секунду. Нейтронные звёзды возникают в результате вспышек звёзд.

Массы большинства нейтронных звёзд с надёжно измеренными массами составляют 1,3-1,5 массы Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс, однако значение верхней предельной массы в настоящее время известно весьма неточно. Самые массивные нейтронные звёзды из известных - Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Строение нейтронной звезды.

Магнитное поле на поверхности нейтронных звёзд достигает значения 10 12 -10 13 Гс (для сравнения - у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары - звёзды, обладающие магнитными полями порядка 10 14 Гс и выше. Такие магнитные поля (превышающие «критическое» значение 4,414·10 13 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec²) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2012 году открыто около 2000 нейтронных звёзд. Порядка 90% из них - одиночные. Всего же в нашей могут существовать 10 8 -10 9 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака нейтронная звезда может быть в этом ситуации видна с в разных спектральных диапазонах, включая оптический, на который приходится около 0,003% излучаемой энергии (соответствует 10 звёздной величине).

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды - одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звёзда может образоваться в результате взрыва сверхновой. Теоретические расчёты того времени показали, что излучение нейтронной звёзды слишком слабое, и ее невозможно обнаружить. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирант Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта - своеобразный «космический раиомаяк». Но любая обычная звёзда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Взаимодействие нейтронной звездой с окрружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В.М. Липунова. Поскольку теория магнитосфер пульсаров все еще в состоянии в развитии, существуют альтернативные теоретические модели.

Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвездное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter - извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

Пропеллер

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается до такого уровня, что веществу теперь ничего не препятсвует падать на такую нейтронную звезду. Падая вещество уже будучи в состоянии плазмы движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе ее полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм рабатает в магнитосфере Земли, из-за чего данный тип нейтронных звезд и получил своё название.

Магнетар

Нейтронная звезда, обладающая исключительно сильным магнитным полем (до 10 11 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнетаров составляет около 1 000 000 лет. У магнетаров сильнейшее магнитное поле во .

Магнетары являются малоизученным типом нейтронных звёзд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20-30 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Наблюдаются в гамма-излучении, близком к рентгеновскому, радиоизлучение не испускает. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно 10 000 лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров. Магнетары образуются из массивных звёзд с начальной массой около 40 М☉.

Толчки, образованные на поверхности магнетара, вызывают огромные колебания в звезде; колебания магнитного поля, которые сопровождают их, часто приводят к огромным выбросам гамма-излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах.

По состоянию на май 2007 года было известно двенадцать магнетаров, и ещё три кандидата ожидали подтверждения. Примеры известных магнетаров:

SGR 1806-20, расположенный на расстоянии 50 000 световых лет от Земли на противоположной стороне нашей галактики Млечный Путь в созвездии Стрельца.
SGR 1900+14, отдалённый на 20 000 световых лет, находящийся в созвездии Орла. После длительного периода низких эмиссионных выбросов (существенные взрывы только в 1979 и 1993) активизировался в мае-августе 1998, и взрыв, обнаруженный 27 августа 1998 г., имел достаточную силу, чтобы заставить выключить космический аппарат NEAR Shoemaker в целях предотвращения ущерба. 29 мая 2008 года телескоп НАСА «Спитцер» обнаружил кольца материи вокруг этого магнетара. Считается, что это кольцо образовалось при взрыве, наблюдавшемся в 1998 году.
1E 1048.1-5937 - аномальный рентгеновский пульсар, расположенный в 9000 световых лет в созвездии Киль. Звезда, из которой сформировался магнетар, имела массу в 30-40 раз больше, чем у Солнца.
Полный список приведён в каталоге магнетаров.

По состоянию на сентябрь 2008, ESO сообщает об идентификации объекта, который изначально считали магнетаром, SWIFT J195509+261406; первоначально он был выявлен по гамма-всплескам (GRB 070610)