Главная · Прочее · Как определить тепловую нагрузку на отопление? Расчет тепловой энергии на отопление Расчет тепла на отопление по объему

Как определить тепловую нагрузку на отопление? Расчет тепловой энергии на отопление Расчет тепла на отопление по объему

На начальном этапе обустройства системы теплоснабжения любого из объектов недвижимости выполняется проектирование отопительной конструкции и соответствующие вычисления. Обязательно следует произвести расчет тепловых нагрузок, чтобы узнать объемы потребления топлива и тепла, необходимые для обогрева здания. Эти данные требуются, чтобы определиться с покупкой современного отопительного оборудования.

Тепловые нагрузки систем теплоснабжения

Понятие тепловая нагрузка определяет количество теплоты, которое отдают приборы обогрева, смонтированные в жилом доме или на объекте другого назначения. До того, как установить оборудование, данный расчет выполняют, чтобы избежать излишних финансовых расходов и других проблем, которые могут возникнуть в процессе эксплуатации отопительной системы.

Зная основные рабочие параметры конструкции теплоснабжения можно организовать эффективное функционирование обогревательных приборов. Расчет способствует реализации задач, стоящих перед отопительной системой, и соответствие ее элементов нормам и требованиям, прописанным в СНиПе.

Когда вычисляется тепловая нагрузка на отопление, даже малейшая ошибка может привести к большим проблемам, поскольку на основании полученных данных в местном отделении ЖКХ утверждают лимиты и другие расходные параметры, которые станут основанием для определения стоимости услуг.



Общая величина тепловой нагрузки на современную отопительную систему включает в себя несколько основных параметров:

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Характеристики объекта для расчета тепловых нагрузок

Правильно расчетная тепловая нагрузка на отопление может быть определена при условии, что в процессе вычислений будут учтены абсолютно все, даже малейшие нюансы.



Перечень деталей и параметров довольно обширен:

  • назначение и тип объекта недвижимости . Для расчета важно знать, какое здание будет обогреваться - жилой или нежилой дом, квартира (прочитайте также: " "). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности . Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме . Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: " ");
  • особенности конструкции наружных ограждений , включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений . Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания . Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя . Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме . От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта . Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Расчет нагрузок тепла

Выполняется расчет тепловой нагрузки здания относительно отопления на этапе, когда проектируется объект недвижимости любого назначения. Это требуется для того, чтобы не допустить лишние денежные траты и правильно выбрать отопительное оборудование.

При проведении расчетов учитывают нормы и стандарты, а также ГОСТы, ТКП, СНБ.

В ходе определения величины тепловой мощности во внимание принимают ряд факторов:

Расчет тепловых нагрузок здания с определенной степенью запаса необходимо, чтобы не допустить в дальнейшем лишних финансовых расходов.

Наиболее необходимость таких действий важна при обустройстве теплоснабжения загородного коттеджа. В таком объекте недвижимости монтаж дополнительного оборудования и других элементов отопительной конструкции обойдется невероятно дорого.

Особенности расчета тепловых нагрузок

Расчетные величины температуры и влажности воздуха в помещениях и коэффициенты теплопередачи можно узнать из специальной литературы или из технической документации, прилагаемой производителями к своей продукции, в том числе и к теплоагрегатам.

Стандартная методика расчета тепловой нагрузки здания для обеспечения его эффективного обогрева включает последовательное определение максимального потока тепла от обогревательных приборов (радиаторов отопления), максимального расхода тепловой энергии в час (прочитайте: " "). Также требуется знать общий расход тепловой мощности в течение определенного периода времени, например, за отопительный сезон.

Расчет тепловых нагрузок, в котором учитывается площадь поверхности приборов, участвующих в тепловом обмене, применяют для разных объектов недвижимости. Такой вариант вычислений позволяет максимально правильно рассчитать параметры системы, которая обеспечит эффективный обогрев, а также произвести энергетическое обследование домов и зданий. Это идеальный способ определить параметры дежурного теплоснабжения промышленного объекта, подразумевающего снижение температуры в нерабочие часы.



Методы вычисления тепловых нагрузок

На сегодняшний день расчет тепловых нагрузок производится при помощи нескольких основных способов, среди которых:

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Укрупненный расчет тепловой нагрузки

Укрупненный расчет тепловой нагрузки здания используется в тех случаях, когда информации о проектируемом объекте недостаточно или требуемые данные не соответствуют действительным характеристикам.

Для проведения подобных вычислений отопления используется несложная формула:

Qmax от.=αхVхq0х(tв-tн.р.) х10-6, где:

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 - удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»). Читайте также: "Как рассчитывается удельная отопительная характеристика здания – теория и практика ";
  • V – наружный объем постройки.

Исходя из вышеприведенных данных, выполняют укрупненный расчет тепловой нагрузки.

Виды тепловых нагрузок для расчетов

При осуществлении расчетов и выборе оборудования во внимание принимают разные тепловые нагрузки:

  1. Сезонные нагрузки , имеющие следующие особенности:

    Им присущи изменения в зависимости от температуры окружающего воздуха на улице;
    - наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
    - изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
    - расходы тепла вентиляционной системы в зависимости от времени суток.

  2. Постоянные тепловые нагрузки . В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  3. Сухое тепло . Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  4. Скрытое тепло . Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    Численность людей, одновременно находящихся в помещении;
    - наличие технологического или другого оборудования;
    - потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.



Регуляторы тепловых нагрузок

В комплект современных котлов промышленного и бытового назначения входят РТН (регуляторы тепловых нагрузок). Эти устройства (см. фото) предназначаются для поддержки мощности теплоагрегата на определенном уровне и не допускают скачков и провалов во время их работы.

РТН позволяют экономить на оплате за отопление, поскольку в большинстве случаев существуют определенные лимиты и их нельзя превышать. Особенно это касается промпредприятий. Дело в том, что за превышение лимита тепловых нагрузок следует наложение штрафных санкций.

Самостоятельно сделать проект и произвести расчеты нагрузки на системы, обеспечивающие отопление, вентиляцию и кондиционирование в здании, довольно сложно, поэтому данный этап работ, как правило, доверяют специалистам. Правда, при желании можно выполнить вычисления самостоятельно.

Gср - средний расход горячей воды.

Комплексный расчет тепловой нагрузки

Помимо теоретического решения вопросов, касающихся тепловых нагрузок, при проектировании выполняется ряд практических мероприятий. В состав комплексных теплотехнических обследований входит термографирование всех конструкций здания, включая перекрытия, стены, двери, окна. Благодаря данной работе удается определить и зафиксировать различные факторы, оказывающие влияния на потери тепла дома или промышленной постройки.

Тепловизионная диагностика наглядно показывает, каким будет реальный перепад температур при прохождении конкретного количества теплоты через один «квадрат» площади ограждающих конструкций. Также термографирование помогает определить

Благодаря теплотехническим обследованиям получают самые достоверные данные, касающиеся тепловых нагрузок и потерь тепла для конкретного здания в течение определенного временного периода. Практические мероприятия позволяют наглядно продемонстрировать то, что теоретические расчеты не могут показать – проблемные места будущего сооружения.

Из всего вышеизложенного можно сделать вывод, что расчеты тепловых нагрузок на ГВС, отопление и вентиляцию, аналогично гидравлическому расчету системы отопления, очень важны и их непременно следует выполнить до начала обустройства системы теплоснабжения в собственном доме или на объекте другого назначения. Когда подход к работе выполнен грамотно, безотказное функционирование отопительной конструкции будет обеспечено, причем без лишних затрат.

Видео пример расчета тепловой нагрузки на систему отопления здания:


Чтобы выяснить, какой мощностью должно располагать теплосиловое оборудование частного дома, нужно определить общую нагрузку на систему отопления, для чего и выполняется тепловой расчет. В данной статье мы не станем говорить об укрупненной методике подсчетов по площади или объему здания, а представим более точный способ, используемый проектировщиками, только в упрощенном виде для лучшего восприятия. Итак, на систему отопления дома ложится 3 вида нагрузок:

  • компенсация потерь тепловой энергии, уходящей сквозь строительные конструкции (стены, полы, кровлю);
  • нагрев воздуха, потребного для вентиляции помещений;
  • подогрев воды для нужд ГВС (когда в этом задействован котел, а не отдельный нагреватель).

Определение потерь тепла через наружные ограждения

Для начала представим формулу из СНиП, по которой производится расчет тепловой энергии, теряемой через строительные конструкции, отделяющие внутреннее пространство дома от улицы:

Q = 1/R х (tв – tн) х S, где:

  • Q – расход тепла, уходящего через конструкцию, Вт;
  • R – сопротивление передаче тепла сквозь материал ограждения, м2ºС / Вт;
  • S – площадь этой конструкции, м2;
  • tв – температура, которая должна быть внутри дома, ºС;
  • tн – средняя уличная температура за 5 самых холодных дней, ºС.

Для справки. Согласно методике расчет теплопотерь выполняется отдельно для каждого помещения. С целью упростить задачу предлагается взять здание в целом, приняв приемлемую среднюю температуру 20-21 ºС.

Площадь для каждого вида наружного ограждения вычисляется отдельно, для чего измеряются окна, двери, стены и полы с кровлей. Так делается, потому что они изготовлены из разных материалов различной толщины. Так что расчет придется делать отдельно для всех видов конструкций, а результаты потом просуммировать. Самую холодную уличную температуру в своем районе проживания вы наверняка знаете из практики. А вот параметр R придется рассчитать отдельно по формуле:

R = δ / λ, где:

  • λ – коэффициент теплопроводности материала ограждения, Вт/(мºС);
  • δ – толщина материала в метрах.

Примечание. Значение λ – справочное, его нетрудно отыскать в любой справочной литературе, а для пластиковых окон этот коэффициент вам подскажут производители. Ниже приводится таблица с коэффициентами теплопроводности некоторых стройматериалов, причем для вычислений надо брать эксплуатационные значения λ.

В качестве примера подсчитаем, сколько тепла потеряет 10 м2 кирпичной стены толщиной 250 мм (2 кирпича) при разнице температур снаружи и в доме 45 ºС:

R = 0.25 м / 0.44 Вт/(м · ºС) = 0.57 м2 ºС / Вт.

Q = 1/0.57 м2 ºС / Вт х 45 ºС х 10 м2 = 789 Вт или 0.79 кВт.

Если стена состоит из разных материалов (конструкционный материал плюс утеплитель), то их тоже надо считать отдельно по приведенным выше формулам, а результаты суммировать. Таким же образом просчитываются окна и кровля, а вот с полами дело обстоит иначе. Первым делом необходимо нарисовать план здания и разбить его на зоны шириной 2 м, как это сделано на рисунке:

Теперь следует вычислить площадь каждой зоны и поочередно подставить в главную формулу. Вместо параметра R нужно взять нормативные значения для зоны I, II, III и IV, указанные ниже в таблице. По окончании расчетов результаты складываем и получаем общие потери тепла через полы.

Расход на подогрев вентиляционного воздуха

Малосведущие люди часто не учитывают, что приточный воздух в доме тоже надо подогревать и эта тепловая нагрузка тоже ложится на отопительную систему. Холодный воздух все равно попадает в дом извне, хотим мы того или нет, и на его нагрев нужно затратить энергию. Больше того, в частном доме должна функционировать полноценная приточно-вытяжная вентиляция, как правило, с естественным побуждением. Воздухообмен создается благодаря наличию тяги в вентиляционных каналах и дымоходе котла.

Предлагаемая в нормативной документации методика определения тепловой нагрузки от вентиляции достаточно сложна. Довольно точные результаты можно получить, если просчитать эту нагрузку по общеизвестной формуле через теплоемкость вещества:

Qвент = cmΔt, здесь:

  • Qвент – количество теплоты, потребное для нагрева приточного воздуха, Вт;
  • Δt – разница температур на улице и внутри дома, ºС;
  • m – масса воздушной смеси, поступающей извне, кг;
  • с – теплоемкость воздуха, принимается 0.28 Вт / (кг ºС).

Сложность расчета этого типа тепловой нагрузки заключается в правильном определении массы нагреваемого воздуха. Выяснить, сколько его попадает внутрь дома, при естественной вентиляции сложно. Поэтому стоит обратиться к нормативам, ведь здания строят по проектам, где заложены потребные воздухообмены. А нормативы говорят, что в большинстве комнат воздушная среда должна меняться 1 раз в час. Тогда берем объемы всех помещений и прибавляем к ним нормы расхода воздуха на каждый санузел – 25 м3/ч и кухонную газовую плиту – 100 м3/ч.

Чтобы произвести расчет тепловой нагрузки на отопление от вентиляции, полученный объем воздуха надо пересчитать в массу, узнав его плотность при разных температурах из таблицы:

Предположим, что общее количество приточного воздуха составляет 350 м3/ч, температура снаружи – минус 20 ºС, внутри – плюс 20 ºС. Тогда его масса составит 350 м3 х 1.394 кг/м3 = 488 кг, а тепловая нагрузка на отопительную систему - Qвент = 0.28 Вт / (кг ºС) х 488 кг х 40 ºС = 5465.6 Вт или 5.5 кВт.

Тепловая нагрузка от нагрева воды для ГВС

Для определения этой нагрузки можно воспользоваться той же простой формулой, только теперь надо посчитать тепловую энергию, расходуемую на подогрев воды. Ее теплоемкость известна и составляет 4.187 кДж/кг °С или 1.16 Вт/кг °С. Учитывая, что семье из 4 человек на все потребности достаточно 100 л воды на 1 сутки, нагретой до 55 °С, подставляем эти цифры в формулу и получаем:

QГВС = 1.16 Вт/кг °С х 100 кг х (55 – 10) °С = 5220 Вт или 5.2 кВт теплоты в сутки.

Примечание. По умолчанию принято, что 1 л воды равен 1 кг, а температура холодной водопроводной воды равна 10 °С.

Единица мощности оборудования всегда отнесена к 1 часу, а полученные 5.2 кВт – к суткам. Но делить эту цифру на 24 нельзя, ведь горячую воду мы хотим получать как можно скорее, а для этого котел должен располагать запасом мощности. То есть, эту нагрузку надо прибавить к остальным как есть.

Заключение

Данный расчет нагрузок на отопление дома даст гораздо более точные результаты, нежели традиционный способ по площади, хотя потрудиться придется. Конечный результат нужно обязательно умножить на коэффициент запаса – 1.2, а то и 1.4 и по рассчитанному значению подбирать котельное оборудование. Еще один способ укрупненного расчета тепловых нагрузок по нормативам показан на видео:

Отопительная система в частном доме – это, чаще всего, комплект автономного оборудования, использующего в качестве энерго- и теплоносителя наиболее соответствующие конкретному региону вещества. Поэтому для каждой конкретной схемы отопления требуется индивидуальный расчет тепловой мощности системы отопления, который учитывает множество факторов, таких, как минимальный расход тепловой энергии для дома, расход тепла для помещений – всех и каждого, помогает определить расход энергоносителей в сутки и за время отопительного сезона, и т.д.

Формулы и коэффициенты для теплового расчета

Номинальная тепловая мощность системы отопления для частного объекта определяется по формуле (все результаты выражаются в кВт):

  • Q = Q 1 x b 1 x b 2 + Q 2 – Q 3 ; где:
  • Q 1 – общие потери тепла в здании согласно расчетам, кВт;
  • b 1 – коэффициент дополнительной тепловой энергии от радиаторов сверх того, что показал расчёт. Значения коэффициента отражены в таблице ниже:

Необходимость тепловых расчетов для всего дома и отдельных отапливаемых помещений обосновывается экономией энергоносителей и семейного бюджета. В каких случаях проводят подобные вычисления:

  1. Чтобы точно вычислить мощность котельного оборудования для наиболее эффективного обогрева всех подключенных к отоплению помещений. Приобретая котел без предварительных расчетов можно установить совершенно неподходящее по параметрам оборудование, которое не справится со своей задачей, и деньги будут потрачены впустую. Тепловые параметры всей системы отопления определяются, как результат сложения всех расходов тепловой энергии в подключенных и неподключенных к котлу отопления помещениях, если трубопровод проходит по ним. Также необходим запас мощности по расходам тепла, чтобы уменьшить износ отопительного оборудования и минимизировать появление аварийных ситуаций при высоких нагрузках в морозы;
  2. Расчеты тепловых параметров системы отопления необходимы для получения на руки технического удостоверения (ТУ), без которого не получится согласовать проект по газификации частного дома, так как в 80% случаев монтажа автономного отопления устанавливают газовый котел и соответствующее оборудование. Для остальных типов отопительных агрегатов технические условия и документация на подключение не нужны. Для газового оборудования необходимо знать годовой расход газа, и без соответствующих вычислений точную цифру получить не удастся;
  3. Получить тепловые параметры отопительной системы также нужно для покупки правильного оборудования – труб, радиаторов, фитингов, фильтров, и т.д.

Точные расчеты мощности и расхода тепла для жилых помещений

Уровень и качество утепления зависят от качества работ и архитектурных особенностей помещений ми всего дома. Бо́льшая часть тепловых потерь (до 40%) при отоплении здания происходит через поверхность наружных стен, через окна и двери (до 20%), а также через кровлю и пол (до 10%). Оставшиеся 30% тепла могут уходить из дома через вентиляционные отверстия и каналы.

Для получения уточненных результатов применяют следующие справочные коэффициенты:

  1. Q 1 – используется при расчетах для помещений с окнами. Для ПВХ окон с двухкамерными стеклопакетами Q 1 =1, для окон с однокамерным остеклением Q 1 =1,27, для трехкамерного окна Q 1 =0,85;
  2. Q 2 – используется при расчетах коэффициента утепления внутренних стен. Для пенобетона Q 2 = 1, для бетона Q 2 – 1,2, для кирпича Q 2 = 1,5;
  3. Q 3 применяется при расчетах соотношений площадей пола и оконных проемов. Для 20% площади остекления стены коэффициент Q3 = 1, для 50% остекления Q3 принимается, как 1,5;
  4. Значение коэффициента Q 4 варьируется в зависимости от минимальной уличной температуры за весь годовой отопительный период. При наружной температуре -20 0 C Q 4 = 1, далее – для каждых 5 0 C в ту или иную сторону добавляют или отнимают 0,1;
  5. Коэффициент Q 5 применяется при расчетах, учитывающих общее количество стен здания. При одной стене в расчетах Q 5 = 1, при 12-х и 3-х стенах Q 5 = 1,2, для 4-х стен Q 5 = 1,33;
  6. Q 6 используют, если при расчетах потерь тепла учитывается функциональное назначение помещения под той комнатой, для которой делаются вычисления. Если наверху находится жилой этаж, то коэффициент Q 6 = 0,82, если отапливаемый или утепленный чердак, то Q 6 – 0,91, для холодного чердачного помещения Q 6 = 1;
  7. Параметр Q 7 колеблется в зависимости от высоты потолков обследуемого помещения. При высоте потолка ≤ 2,5 м коэффициент Q 7 = 1,0, если потолок выше 3-х м, то Q 7 принимается, как 1,05.

После определения всех необходимых поправок проводят расчет тепловой мощности и тепловых потерь в отопительной системе для каждого отдельно взятого помещения по следующей формуле:

  • Q i = q х Si х Q 1 х Q 2 х Q 3 х Q 4 х Q 5 х Q 6 х Q 7 , где:
  • q =100 Вт/м²;
  • Si – площадь обследуемого помещения.

Результаты параметров будут увеличиваться при применении коэффициентов ≥ 1, и уменьшаться, если Q 1- Q 7 ≤1. После расчетов конкретного значения результатов расчетов для конкретного помещения можно рассчитать общую тепловую мощность частного автономного отопления по следующей формуле:

Q = Σ х Qi, (i = 1…N), где: N – общее количество помещений в здании.

Метод теплового расчета являет собой определение площади поверхности каждого отдельного отопительного прибора, который отдает в помещение тепло. Расчет тепловой энергии на отопление в данном случае учитывает максимальный уровень температуры теплоносителя, который предназначен для тех отопительных элементов, для которых и проводится теплотехнический расчет системы отопления. То есть, в случае если теплоноситель – вода, то берется средняя ее температура в отопительной системе. При этом учитывается расход теплоносителя. Точно также, в случае если теплоносителем является пар, то расчет тепла на отопление использует значение высшей температуры пара при определенном уровне давления в отопительном приборе.

Методика расчета

Чтобы осуществить расчет теплоэнергии на отопление, необходимо взять показатели теплопотребности отдельного помещения. При этом из данных следует вычесть теплоотдачу теплопровода, который расположен в данном помещении.

Площадь поверхности, отдающей тепло, будет зависеть от нескольких факторов – прежде всего, от типа используемого прибора, от принципа соединения его с трубами и от того, как именно он располагается в помещении. При этом следует отметить, что все эти параметры влияют также на плотность потока тепла, исходящего от прибора.

Расчет отопительных приборов системы отопления – теплоотдачу отопительного прибора Q можно определить по следующей формуле:

Q пр = q пр* A p .

Однако воспользоваться ею можно только в том случае, если известен показатель поверхностной плотности теплового прибора q пр (Вт/м 2).

Отсюда же можно вычислить и расчетную площадь А р. При этом важно понимать, что расчетная площадь любого отопительного прибора не зависит от типа теплоносителя.

А р = Q np /q np ,

в которой Q np – уровень требуемой для определенного помещения теплоотдачи прибора.

Тепловой расчет отопления учитывает, что для определения теплоотдачи прибора для определенного помещения используется формула:

Q пp = Q п - µ тр *Q тр

при этом показатель Q п – это теплопотребность комнаты, Q тр – суммарная теплоотдача всех элементов отопительной системы, расположенной в комнате. Расчет тепловой нагрузки на отопление подразумевает, что сюда относится не только радиатор, но и трубы, которые к нему подведены, и транзитный теплопровод (если есть). В данной формуле µ тр – коэффициент поправки, который предусматривает частичную теплоотдачу системы, рассчитанную на поддержание постоянной температуры в помещении. При этом размер поправки может колебаться в зависимости от того, как именно прокладывались трубы отопительной системы в помещении. В частности – при открытом методе – 0,9; в борозде стены – 0,5; вмурованные в бетонную стену – 1,8.

Расчет необходимой мощности отопления, то есть – суммарная теплоотдача (Q тр - Вт) всех элементов отопительной системы определяется при помощи следующей формулы:

Q тр = µk тр *µ*d н *l*(t г - t в)

В ней k тр – показатель коэффициента теплоотдачи определенного отрезка трубопровода, расположенного в помещении, d н - наружный диаметр трубы, l – длинна отрезка. Показатели t г и t в показывают температуру теплоносителя и воздуха в помещении.

Формула Q тр = q в *l в + q г *l г используется для определения уровня теплоотдачи теплопровода, присутствующего в помещении. Для определения показателей следует обратиться к специальной справочной литературе. В ней можно найти определение тепловой мощности системы отопления – определение теплоотдачи вертикально (q в) и горизонтально (q г) проложенного в помещении теплопровода. Найденные данным показывают теплоотдачу 1м трубы.

Перед тем, как рассчитать гкал на отопление, на протяжении многих лет вычисления, производимые по формуле A p = Q np /q np и измерения теплоотдающих поверхностей отопительной системы, проводились с использованием условной единицы – эквивалентных квадратных метрах. При этом экм был условно равен поверхности прибора отопления с теплоотдачей 435 ккал/ч (506 Вт). Расчет гкал на отопление предполагает, что при этом разность температур теплоносителя и воздуха (t г - t в) в помещении составляла 64,5°С, а относительный расход воды в системе равнялся показателю G отн = l,0.

Расчет тепловых нагрузок на отопление подразумевает, что при этом гладкотрубные и панельные отопительные приборы, которые имели большую теплоотдачу, чем эталонные радиаторы времен СССР, имели площадь экм, которая значительно отличалась от показателя их физической площади. Соответственно, площадь экм менее эффективных отопительных приборов была значительно ниже, чем их площадь физическая.

Впрочем, такой двойственный замер площади приборов отопления в 1984 году было упрощено, и экм отменили. Таким образом, с того момента площадь отопительного прибора измерялась только в м 2 .

После того, как будет просчитана необходимая для помещения площадь отопительного прибора и расчет тепловой мощности системы отопления, можно приступать к подбору необходимого радиатора по каталогу отопительных элементов.

При этом получается, что чаще всего площадь приобретаемого элемента получается несколько больше той, которая была получена путем вычислений. Это довольно легко объяснить – ведь подобная поправка учитывается заранее посредством введения в формулы повышающего коэффициента µ 1 .

Сегодня весьма распространены секционные радиаторы. Их длина напрямую зависит от количества используемых секций. Для того чтобы произвести расчет количества тепла на отопление – то есть, высчитать оптимальное количество секций для определенного помещения, используется формула:

N = (A p /a 1)(µ 4 / µ 3)

В ней а 1 – это площадь одной секции радиатора, выбранного для установки в помещении. Измеряется в м 2 . µ 4 –коэффициент поправки который вносится на способ установки отопительного радиатора. µ 3 – коэффициент поправки, который указывает реальное количество секций в радиаторе (µ 3 - 1,0 при условии, что А р = 2,0 м 2). Для стандартных радиаторов типа М-140 данный параметр определяется по формуле:

µ 3 =0,97+0,06/А р

При тепловых испытаниях используются стандартные радиаторы, состоящие в среднем, из 7-8 секций. То есть, определенный нами расчет расхода тепла на отопление – то есть, коэффициент теплопередачи, является реальным только для радиаторов именно такого размера.

Следует отметить, что при применении радиаторов с меньшим количеством секций наблюдается незначительное увеличение уровня теплоотдачи.

Это связано с тем, что в крайних секциях тепловой поток несколько более активен. Кроме того, открытые торцы радиатора способствуют большей теплоотдаче в воздух помещения. В случае если количество секций больше – наблюдается ослабление тока в крайних секциях. Соответственно, для достижения необходимого уровня теплоотдачи наиболее рациональным является незначительное увеличение длины радиатора за счет добавления секций, что не повлияет на мощность системы отопления.

Для тех радиаторов, площадь одной секции в которых составляет 0,25 м 2 , существует формула для определения коэффициента µ 3:

µ 3 = 0,92 + 0,16 /А р

Но следует учитывать, что крайне редко при использовании данной формулы получается целое число секций. Чаще всего искомое количество оказывается дробным. Расчет нагревательных приборов системы отопления предполагает, что для получения более точного результата допустимо незначительное (не более чем на 5%) снижение коэффициента А р. Такое действие приводит к ограничению уровня отклонения температурного показателя в помещении. Когда произведен расчет тепла на отопление помещения, после получения результата устанавливается радиатор с максимально близким к полученному значению количеством секций.

Расчет мощности отопления по площади предполагает, что определенные условия на установку радиаторов накладывает и архитектура дома.

В частности, если имеется внешняя ниша под окном, то длина радиатора должна быть менее длины ниши – не менее чем на 0,4 м. Такое условие действительно лишь при прямой подводке трубы к радиатору. В случае если применена подводка с уткой, разница длины ниши и радиатора должна составлять минимум 0,6 м. При этом лишние секции следует выделить как отдельный радиатор.

Для отдельных моделей радиаторов формула расчета тепла на отопление – то есть, определения длины, не применяется, поскольку данный параметр заранее определен производителем. Это в полной мере относится к радиаторам типа РСВ или РСГ. Однако нередки случаи, когда для увеличения площади прибора отопления данного типа используется просто параллельная установка двух панелей рядом.

Если панельный радиатор определен как единственный допустимый для данного помещения, то для определения количества необходимых радиаторов используется:

N = A p / a 1 .

При этом площадь радиатора – известный параметр. В случае если будет установлено два параллельных блока радиаторов, показатель А р увеличивают, определяя сниженный коэффициент теплопередачи.

В случае использования конвекторов с кожухом расчет мощности отопления учитывает, что их длина также определяется исключительно существующим модельным рядом. В частности, напольный конвектор «Ритм» представлен в двух моделях с длиной кожуха 1 м и 1,5 м. Настенные конвекторы также могут незначительно отличатся друг от друга.

В случае применения конвектора без кожуха существует формула, помогающая определить количество элементов прибора, после чего можно реализовать расчет мощности системы отопления:

N = A p / (n*a 1)

Здесь n – количество рядов и ярусов элементов, которые и составляют площадь конвектора. При этом a 1 – площадь одной трубы или элемента. При этом при определении расчетной площади конвектора необходимо учитывать не только количество его элементов, но и метод их соединения.

В случае применения в отопительной системе гладкотрубного прибора продолжительность его греющей трубы вычисляется следующим образом:

l = А р *µ 4 / (n*a 1)

µ 4 - это коэффициент поправки, который вносится при наличии декоративного укрытия трубы; n – количество рядов или ярусов греющих труб; а 1 – параметр, характеризующий площадь одного метра горизонтальной трубы при определенном заранее диаметре.

Для получения более точного (а не дробного числа), допускается незначительное (не более чем на 0,1 м 2 или же 5%) снижение показателя А.

Пример №1

Необходимо определить правильное количество секций для радиатора М140-А, который будет установлен в помещении, расположенном на верхнем этаже. При этом стена наружная, под подоконником ниша отсутствует. А расстояние от него до радиатора составляет всего 4 см. Высота помещения 2,7 м. Q n =1410 Вт, а t в =18 °С. Условия подключения радиатора: подсоединения к однотрубному стояку проточно-регулируемого типа (D y 20, кран КРТ с подводкой 0,4 м); разводка отопительной системы верхняя, t г = 105°С, а расход теплоносителя по стояку составляет G ст = 300 кг/ч. Разница температуры теплоносителя подающего стояка и рассматриваемого составляет 2°С.

Определяем средний показатель температуры в радиаторе:

t ср = (105 - 2) - 0,5х1410х1,06х1,02х3,6 / (4,187х300) = 100,8 °С.

Опираясь на полученные данные, вычисляем плотность теплового потока:

t ср = 100,8 - 18 = 82,8 °С

При этом следует отметить, что произошло незначительное изменение уровня расхода воды (360 до 300 кг/ч). Данный параметр практически никак не влияет на q np .

Q пр =650(82,8/70)1+0,3=809Вт/м2.

Далее определяем уровень теплоотдачи горизонтально (1г = 0,8 м) и вертикально (1в = 2,7 - 0,5 = 2,2 м) расположенных труб. Для этого следует воспользоваться формулой Q тр =q в хl в + q г хl г.

Получаем:

Q тр = 93х2,2 + 115х0,8 = 296 Вт.

Рассчитываем площадь требуемого радиатора по формуле A p = Q np /q np и Q пp = Q п - µ тр хQ тр:

А р =(1410-0,9х296)/809=1,41м 2 .

Рассчитываем необходимое количество секций радиатора М140-А, учитывая, что площадь одной секции составляет 0,254 м 2:

м 2 (µ4=1,05, µ 3 = 0,97 + 0,06 / 1,41= 1,01, воспользуемся формулой µ 3 = 0,97 + 0,06 / А р и определяем:

N=(1,41/0,254)х(1,05/1,01)=5,8.
То есть, расчет потребления тепла на отопление показал, что в помещении для достижения максимально комфортной температуры следует установить радиатор, состоящий из 6 секций.

Пример №2

Необходимо определить марку открытого настенного конвектора с кожухом КН-20к «Универсал-20», который устанавливается на однотрубный стояк проточного типа. Кран возле устанавливаемого прибора отсутствует.

Определяет среднюю температуру воды в конвекторе:

tcp = (105 - 2) - 0,5х1410х1,04х1,02х3,6 / (4,187х300) = 100,9 °С.

В конвекторах «Универсал-20» плотность теплового потока равна 357 Вт/м 2 .имеющиеся данные: µt cp =100,9-18=82,9°С, Gnp=300кг/ч. По формуле q пр =q ном (µ t ср /70) 1+n (G пр /360) p пересчитываем данные:

q np = 357(82,9 / 70)1+0,3(300 / 360)0,07 = 439 Вт/м 2 .

Определяем уровень теплоотдачи горизонтальных (1 г -=0,8 м) и вертикальных (l в =2,7 м) труб (с учетом D y 20) используя формулу Q тр = q в хl в +q г хl г. Получаем:

Q тр = 93х2,7 + 115х0,8 = 343 Вт.

Воспользовавшись формулой A p = Q np /q np и Q пp = Q п - µ тр хQ тр, определяем расчетную площадь конвектора:

А р =(1410 - 0,9х343) / 439 = 2,51 м 2 .

То есть, к установке принят конвектор «Универсал-20» длина кожуха которого составляет 0,845 м (модель КН 230-0,918, площадь которой 2,57м 2).

Пример №3

Для системы парового отопления необходимо определить количество и длину чугунных ребристых труб при условии, что установка открытого типа и производится в два яруса. При этом избыточное давление пара составляет 0,02 Мпа.

Дополнительные характеристики: t нac = 104,25 °С, t в =15 °С, Q п = 6500 Вт, Q тр = 350 Вт.

Воспользовавшись формулой µ t н = t нас - t в, определим разность температур:

µ t н = 104,25- 15 = 89,25 °С.

Определяем плотность теплового потока, воспользовавшись известным коэффициентом передачи данного типа труб в случае, когда они устанавливаются параллельно одна над другой - к=5,8 Вт/(м2-°С). Получаем:

q np = k np х µ t н = 5,8-89,25 = 518 Вт/м 2 .

Формула A p = Q np /q np помогает определить необходимую площадь прибора:

А р = (6500 - 0,9х350) / 518 = 11,9м 2 .

Чтоб определить количество необходимых труб, N = A p / (nхa 1). При этом следует воспользоваться такими данными: длина одной тубы – 1,5 м, площадь нагревательной поверхности – 3м 2 .

Вычисляем: N= 11,9/(2х3,0) = 2 шт.

То есть, в каждом ярусе необходимо установить по две трубы длиной 1,5 м. каждая. При этом вычислим общую площадь данного отопительного прибора: А = 3,0х*2х2 = 12,0 м 2 .

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,...

Энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности .

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия , которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q , подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1 , нагреваем до температуры Tпл , затрачивая на этот процесс количество теплоты равное Q1 .

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1 .

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп , затрачивая на это количество теплоты равное Q3 -Q2 .

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4 -Q3 .

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2 . При этом затраты количества теплоты составят Q5 -Q4 . (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5 , переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5 , пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1 . Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q = m * c *(Т2 -Т1 )

m масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q = m * λ

λ удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q = m * r

r удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q = m * q

q удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q =t *I *U =t *R *I ^2=(t/ R) *U ^2

t время в с

I действующее значение тока в А

U действующее значение напряжения в В

R сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c , λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N =Q /t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc .

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице « ».

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7 =20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23 =3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8) =9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8) =41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8) =9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8 =60,0

7. Начальную температуру всех веществ T 1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T 2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку H10: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000 =75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000 = 1561

для плавления льда в ячейке F12: =F7*F6/1000 = 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000 = 1508

для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000 = 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900

В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60) =21,083

для нагрева льда в ячейке E16: =E12/(E8*60) = 2,686

для плавления льда в ячейке F16: =F12/(F8*60) = 2,686

для нагрева воды в ячейке G16: =G12/(G8*60) = 2,686

для нагрева воздуха в ячейке H16: =H12/(H8*60) = 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда - в папку « Спам» )!

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.

Жду вопросы и комментарии на статью!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.