Главная · Электробезопасность · Показатель качества воздуха в закрытых помещениях. Источники загрязнения воздуха закрытых помещений. Показатели санитарного состояния воздуха жилых и общественных зданий. Самые загрязненные регионы

Показатель качества воздуха в закрытых помещениях. Источники загрязнения воздуха закрытых помещений. Показатели санитарного состояния воздуха жилых и общественных зданий. Самые загрязненные регионы

3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.

Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.

Основными источниками загрязнения воздуха закрытых помещений являются атмосферный воздух, проникающий в помещение через оконные проемы и неплотности строительных конструкций, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные, токсичные для человека вещества, многие из которых являются высокоопасными (бензол, толуол, циклогексан, ксилол, ацетон, бутанол, фенол, формальдегид, ацетальдегид, этиленгликоль, хлороформ), продукты жизнедеятельности человека и его бытовых занятий (антропотоксины: угарный газ, аммиак, ацетон, углеводороды, сероводород, альдегиды, органические кислоты, диэтиламин, метилацетат, крезол, фенол и др.), накапливающиеся в воздухе невентилируемых помещений с большим числом людей. Многие вещества являются высокоопасными, относящимися ко 2-му классу опасности. Это диметиламин, сероводород, диоксид азота, окись этилена, индол, скатол, меркаптан. Наибольший суммарный риск имеют бензол, хлороформ, формальдегид. Присутствующие одновременно даже в небольших количествах, они свидетельствуют о неблагополучии воздушной среды, оказывающей отрицательное воздействие на состояние умственной трудоспособности людей, находящихся в этих помещениях.

Кроме того, выдыхаемый людьми воздух по сравнению с атмосферным содержит меньше кислорода (до 15,1-16%), в 100 раз больше углекислого газа (до 3,4-4,7%), насыщен водяными парами, нагрет до температуры тела человека и деионизирован в процессе его прохождения через системы приточной вентиляции из-за задержки легких положительных и отрицательных аэроионов в воздуховодах.

В воздух поступает значительное количество микробов, среди которых могут быть и патогенные. Чем больше в воздухе поме- щений пыли, тем обильнее в нем микробное загрязнение. Пыль является фактором передачи инфекционных болезней с аэрозольным механизмом распространения и бактериальных инфекций (например, туберкулеза). Пыль, содержащая плесневые грибы родов Penicillium и Mukor, вызывает аллергические заболевания.

Воздействие различных факторов на человека внутри помещения может вызвать нарушения состояния его здоровья, т.е. заболевания, связанные со зданием», например, парами формальдегида, выделяющегося из полимерных и древесно-стружечных материалов.

Симптомы заболевания сохраняются долго, даже после устранения источника вредного воздействия. «Синдром больного здания» проявляется в виде острых нарушений состояния здоровья и дискомфорта (головной боли, раздражения глаз, носа и органов дыхания, сухого кашля, сухости и зуде кожи, слабости, тошноте, повышенной утомляемости, восприимчивости к запахам), возникающих в конкретных помещениях и почти полностью исчезающих при выходе из него. Развитие этого синдрома связывается с комбинированными и сочетанными действиями химических, физических (температура, влажность) и биологических (бактерии, неизвестные вирусы и др.) факторов. Его причинами чаще всего является недостаточная естественная и искусственная вентиляция помещений, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные токсичные для человека вещества, нерегулярная уборка помещений.

Качество воздушной среды принято оценивать косвенно по интегральному санитарному показателю чистоты воз- духа - содержанию углекислого газа (показателю Петтенкофера), а в качестве предельно допустимого норматива (ПДК) использовать его концентрацию в помещениях - 1,0%с или 0,1% (1000 см3 в 1 м3). Углекислый газ постоянно выделяется в воздух закрытых помещений при дыхании, наиболее доступен простому определению и имеет достоверную прямую корреляцию с суммарным загрязнением воздуха. Показатель Петтенкофера является не предельно допустимой концентрацией самого диоксида углерода, а показателем вредности концентраций многочисленных метаболитов человека, накопившихся в воздухе параллельно с диоксидом углерода. Более высокое содержание СО2 (>1,0%о) сопровождается суммарным изменением химического состава и физическим свойством воздуха в помещении, которые неблагоприятно влияют на состояние находящихся в нем людей, хотя сам по себе диоксид углерода и в значительно более высоких концентрациях не проявляет токсические для человека свойства. При оценке качества воздуха и проектировании систем вентиляции помещений с большим количеством людей содержание диоксида углерода служит основной расчетной величиной.

Мерами предупреждения загрязнения воздуха помещений является их проветривание, если это возможно, соблюдение чистоты путем регулярной влажной уборки помещений, соблюдение установленных норм площади и кубатуры помещений, санация воздуха с помощью дезинфицирующих средств и бактерицидных ламп.

В результате в воздухе увеличивается концентрация углекислоты, появляются аммиак, альдегиды, кетоны и другие дурно пахнущие газы, увеличивается влажность, пылевая и микробная загрязненность воздуха, что в целом характеризуется как душный (жилой) воздух, оказывающий влияние на самочувствие, работоспособность и здоровье людей. Поконцентрации углекислоты в таком воздухе можно определить степень общей его загрязненности. Поэтому углекислый газ служит санитарным показателем чистоты воздуха в жилых и общественных помещениях. Воздух считается свежим, если концентрация углекислоты в нем не превышает 0,1%. Эта величина и считается предельно допустимой для воздуха в жилых и общественных помещениях.

Кроме того, следует учитывать тот фактор, что углекислый газ тяжелее воздуха и может скапливаться в нижних частях замкнутых пространств, не подвергающихся интенсивной вентиляции. Наиболее важно это для тех мест, где происходят усиленные окислительные процессы (бродильные чаны, заброшенные шахты или колодцы, на дне которых находятся гниющие или бродящие отбросы и т. д.). В таких местах концентрация углекислоты может достигать больших величин и представлять опасность для здоровья и существования человека. Если концентрация углекислого газа во вдыхаемом воздухе превышает 3% то существование в такой атмосфере становится опасным для здоровья. Концентрация СО2 порядка 10 % считается опасной для жизни (потеря сознания наступает через несколько минут дыхания таким воздухом). При концентрации 20 % происходит паралич дыхательного центра в течение нескольких секунд.

Чистый атмосферный воздух у поверхности Земли - это ме­ханическая смесь различных газов, среди которых в порядке их убывания по объему содержатся азот, кислород, аргон, диоксид углерода и ряд других газов, суммарное количество которых не превышает 1 %.

Состав чистого сухого атмосферного воздуха в объемных процентах представлен на рис. 1,2,

За сутки в состоянии покоя взрослый человек пропускает че­рез легкие 13-14 м3 воздуха - значительный объем, увеличи­вающийся при выполнении физических нагрузок. Это значит, что для организма небезразлично, воздухом какого химическо­го состава он дышит.

Кислород - самый важный для жизнедеятельности газ воз­духа. Он расходуется в организме на окислительные процессы, поступая через легкие в кровь, и доставляется тканям и клеткам организма в составе оксигемоглобина,

Рис. 1.2. Химический состав атмосферного воздуха при нормальных условиях.

В окружающей природе кислород также необходим для окис­ления органических веществ, находящихся в воде, воздухе и почве, а также для поддержания процессов горения.

Источником кислорода в атмосфере являются зеленые рас­тения, образующие его под действием солнечной радиации в процессе фотосинтеза и выделяющие в воздух в процессе ды­хания, Речь идет о фитопланктоне морей и океанов, а также растениях тропических лесов и вечнозеленой тайги, которые образно называют "легкими планеты".

Зеленые растения образуют кислород в очень больших коли­чествах, и вследствие постоянного перемешивания слоев ат­мосферного воздуха его содержание в атмосферном воздухе повсюду остается практически постоянным - около 21 %. Низ­кие концентрации кислорода, существенные для жизнедеятель­ности организма человека, наблюдаются при подъеме на высоту и при пребывании людей в герметически замкнутых помеще­ниях в случае аварийных ситуаций, когда нарушены техничес­кие средства поддержания жизнедеятельности. Повышенное содержание кислорода отмечается в условиях высокого атмос­ферного давления (в кессонах). При парциальном давлении свыше 600 мм рт.ст. он ведет себя как токсичное вещество, вы­зывая отек легких и пневмонию.

В атмосферном воздухе содержится динамический изомер кислорода - трехатомный кислород озон, являющийся силь­нейшим окислителем. Он образуется в природных условиях в верхних слоях атмосферы под влиянием коротковолнового ультрафиолетового излучения Солнца, при грозовых разрядах, в процессе испарения воды.

Озон играет важнейшую роль в защите биологических объ­ектов планеты от губительного воздействия жесткого ультрафи­олета, задерживая его в стратосфере на высоте 20-30 км.

Озон обладает своеобразным приятным запахом свежести, и его присутствие можно легко обнаружить в лесу после грозы, в горах, в чистой природной среде, где он считается показате­лем чистоты воздуха. Однако избыток озона неблагоприятен для жизнедеятельности организма, и начиная с концентрации 0,1 мг/м3 он действует как раздражающий газ.

Присутствие же озона в воздухе крупных промышленных горо­дов, загрязненном выбросами автотранспорта и промышленных объектов, в свете последних научных данных считается неблаго­приятным признаком, поскольку в этих условиях он образуется в результате фотохимических реакций при формировании смога.

Высокая окислительная способность озона используется при обеззараживании воды.

Диоксид углерода, или углекислый газ, поступает в воздух в процессе дыхания людей, животных, растений (в ночное вре­мя), окисления органических веществ при горении, брожении, гниении, находясь в окружающей среде в свободном и связан­ном состояниях.

Постоянство содержания этого газа на уровне 0,03 % в ат­мосфере обеспечивается его поглощением на свету зелеными растениями, растворением в воде морей и океанов, удалением с атмосферными осадками.

Значительные количества СО2 образуются в результате работы промышленных предприятий и автотранспорта, сжигающих ог­ромные количества топлива, вследствие чего в последние годы появились данные о том, что содержание углекислого газа в воздухе крупных современных городов приближается к 0,04 %, что вызывает тревогу у экологов по поводу образования "пар­никового эффекта", о котором более подробно будет сказано дальше.

Диоксид углерода участвует в обменных процессах организма, являясь физиологическим возбудителем дыхательного центра.

Вдыхание больших концентраций СОг нарушает окислительно­восстановительные процессы, и его накопление в крови и тканях ведет к тканевой аноксии. Длительное пребывание людей в за­крытых помещениях (жилых, производственных, общественных) сопровождается выделением в воздух продуктов их жизнеде­ятельности: углекислоты с выдыхаемым воздухом и летучих ор­ганических соединений (аммиак, сероводород, индол, меркап­тан), называемых антропотоксинами, с поверхности кожных покровов, грязной обуви и одежды. Происходит и некоторое снижение содержания в воздухе кислорода. В этих условиях у людей могут появиться жалобы на ухудшение самочувствия, снижение работоспособности, сонливость, головную боль и дру­гие функциональные симптомы. Чем же объясняется этот симптомокомплекс? Можно предположить, что причина лежит в не­хватке кислорода, количество которого, как уже говорилось, несколько снижается по сравнению с его содержанием в атмос­ферном воздухе. Однако было установлено, что его снижение в самых неблагоприятных условиях не превышает I %, так как вследствие негерметичности этих помещений кислород легко проникает из атмосферы в воздух помещений, пополняя его за­пас. Организм человека не реагирует на такое снижение содер­жания кислорода. Больные люди отмечают снижение кислорода в воздухе, если оно составляет 18 %, здоровые - 16 %. Жизнь не­возможна при концентрации кислорода в воздухе, равной 7-8 %. Однако названных концентраций кислорода в негерметичных помещениях никогда не бывает, но они могут быть в затонувшей подводной лодке, обрушившейся шахте и других герметичных пространствах. Следовательно, в негерметичных помещениях снижение содержания кислорода не может стать причиной ухуд­шения самочувствия людей. Тогда не заключается ли эта причи­на в накоплении избытка углекислоты в воздухе помещений? Однако известно, что неблагоприятная концентрация СО2 для здоровья человека составляет 4-5 %, когда появляются голо­вная боль, шум в ушах, сердцебиение и т.д. При содержании в воздухе 8 % углекислоты наступает смерть. Указанные же концентрации характерны только для герметичных помещений с неисправной системой жизнеобеспечения. В обычных закры­тых помещениях таких концентраций углекислого газа быть не может вследствие имеющегося постоянного воздухообмена с окружающей средой.

И все же содержание С02 в воздухе закрытых помещений имеет санитарное значение, являясь косвенным показателем чистоты воздуха. Дело в том, что параллельно с накоплением С02, обычно не выше 0,2 %, ухудшаются другие свойства воз­духа: повышаются температура и влажность, запыленность, со­держание микроорганизмов, число тяжелых ионов, появляются антропотоксины. Вот этот комплекс изменившихся физичес­ких свойств воздуха наряду с химическим загрязнением и вы­зывает ухудшение самочувствия людей. Такому изменению свойств воздуха соответствует содержание углекислоты, равное ОД %, и поэтому данная концентрация считается предельно до­пустимой для воздуха закрытых помещений.

В последние годы было установлено, что для оценки санитар­ного состояния воздуха закрытых помещений этого показателя недостаточно, так как требуется определение содержания неко­торых токсичных химических веществ, выделяющихся в воздух из полимерных строительных материалов, широко приме­няемых для внутренней отделки помещений (фенол, аммиак, формальдегид и др.).

Азот и другие инертные газы. Азот по количественному со­держанию является наиболее существенной частью атмосфер­ного воздуха, составляя 78,1 % и разбавляя другие газы, в пер­вую очередь кислород. Азот физиологически индифферентен, не поддерживает процессы дыхания и горения, содержание его в атмосфере постоянное, одинаково его количество во вдыха­емом и выдыхаемом воздухе. В условиях повышенного атмос­ферного давления азот может оказать наркотическое действие, а также известна его роль в патогенезе кессонной болезни.

Известен круговорот азота в природе, осуществляемый с по­мощью определенных видов почвенной микрофлоры, растений и животных, а также электрических разрядов в атмосфере, в ре­зультате чего азот связывается биологическими объектами, а за­тем вновь поступает в атмосферу.

В выдыхаемом воздухе, найдено более 200 различных соединений, главным образом органических продуктов метаболизма (табл. 5.1). Интегральным количественным показателем содержания этих соединений в воздухе может быть так называемая окисляемость воздуха , т.е. количество миллиграммов 02, которая необходима для окисления недоокисленных веществ ВИЧ воздуха (г / м3). Окисляемость выдыхаемого здоровым человеком, в норме составляет 15-20 мг / л. Воздух жилых помещений считается чистым, если окисляемость не превышает 5 .мг / л, умеренно загрязненным - при окисляемости 6-9 мг / л, загрязненным - если окисляемость составляет 10 мг / л и более.

Таблица 5.1

Специальные исследования (IL Никберг, 1987) показали, что количество отдельных ингредиентов (двуокиси углерода, аммиака), а также суммарное количество недоокисленных веществ в выдыхаемом воздухе (то есть, его окисляемость) существенно зависят от состояния здоровья человека, характера заболевания и степени его тяжести, курение табака, особенности обменных процессов и т.п.

Среди химических составляющих воздуха в помещении большое гигиеническое значение имеет двуокись углерода (СO 2 ). Этот газ относится к физиологически активных соединений, является возбудителем дыхательного центра и антагонистом O2, не имеет запаха и цвета, плохо растворяется в воде, вдвое тяжелее воздуха. В крови нормальный парциальное давление СО2 составляет 10 мм, а это на 8-10 мм.рт.ст, выше, чем в вдыхаемом воздухе, в котором его концентрация составляет 3,5-4,5%.

В зависимости от концентрации СО, в выдыхаемом воздухе, реакция организма человека может быть разной. Если концентрация СО2 менее 0,1%, человек чувствует себя нормально, субъективные или объективные нарушения отсутствуют. Именно эту концентрацию (0,1%) установлено как предельно допустимую для воздуха жилых помещений. ПДК диоксида углерода в воздухе лечебных учреждений равна 0,07%.

Если концентрация СО2 колеблется в пределах 0,1-0,5%. Ухудшается условно-рефлекторная деятельность (увеличивается время латентного периода реакции на зрительный или слуховой раздражитель), появляется ощущение дискомфорта, могут быть обнаружены некоторые изменения на ЭКГ.

При вдыхании воздуха, в котором концентрация СО, более 0,5% (0,5-1%), появляются первые проявления ацидоза, изменения электролитных свойств крови (увеличивается содержание Na, уменьшается содержание К в эритроцитах). Однако физическая и умственная деятельность существенно не ухудшаются, поэтому пребывание людей при такой концентрации иногда разрешается (на подводных лодках и т.п.).

Если концентрация СО2 увеличивается до 2% - нарастает ацидоз, снижается работоспособность, появляются признаки гипоксии. При таких условиях на производстве можно работать только в течение ограниченного времени - до 3-4 часов.

Если концентрация СО2 более 2% (2-7%), наблюдаются четкие субъективные и объективные проявления токсического воздействия СО2 в виде наркотического действия, неадекватного психического возбуждения, возникает тахипноэ, головные боли, головокружение, одышка. При таких условиях длительное пребывание в помещениях недопустимо (оно может быть вынужденным только в случае аварийных ситуаций, продолжаться до 60 минут и сопровождаться строгим медицинским контролем).

Пребывание в помещении с концентрацией СО2 в воздухе более 7% быстро приводит к потере сознания и смерти.

Доминирующим по токсичности компонентом среди основных источников загрязнения воздуха жилых помещений является окись углерода (СО).

Окись углерода СО представляет собой продукт неполного сгорания топлива и входит в состав всех горючих смесей. Окись углерода, проникая через легочные альвеолы в кровь, образует с гемоглобином карбоксигемоглобин. А это вызывает глубокие количественные и качественные изменения процессов транспорта кислорода к тканям, усиливает гипоксические состояния, негативно влияет на биохимические процессы организма, может привести к хроническим и острым отравлениям. Острые отравления окисью углерода в свободной атмосфере и в жилых помещениях обычно не наблюдаются. Хронические отравления возможны при концентрации, превышающей 20-30 мг / м3. Для них характерно: появление головной боли, снижение памяти, повышение утомляемости, нарушения сна и др. Предельно допустимая средняя суточная концентрация окиси углерода в атмосфере составляет 1 мг / м 3, а максимальная разовая - 3 мг / м 3.

В воздухе жилых помещений окись углерода может появляться при печном отоплении, особенно при преждевременно закрытой дымовой трубе. В современных газифицированных кухнях и ванных комнатах в результате утечки газа из сети или его неполном сгорании во время эксплуатации. На производстве окись углерода может образовываться и накапливаться в рабочих помещениях в результате технологических процессов. В табачном даме содержится около 0,5-1,0% окиси углерода. По данным ИЛ. Даценко и Р. Д. Габовича (1999г.), В газифицированных квартирах содержание СО в воздухе не только кухонь, но и в жилых комнатах может превышать предельно допустимый для атмосферного воздуха (10 мг / м3).

Источником загрязнения СО атмосферы служат выбросы промышленных предприятий, выхлопные газы автотранспорта и др. В обычном даме содержится около 3% окиси углерода в выхлопных газах при нормальном режиме работы двигателя - 7,7%. На городских улицах с интенсивным движением автомобилей и в домах, расположенных на этих улицах, при открытых окнах концентрация окиси углерода повышается до 10-20 мг / м3.

В связи с широким внедрением в народное хозяйство двигателей внутреннего сгорания, развитием автомобильного движения, авиации, использованием в сельском хозяйстве разного рода самоходных машин борьбе с загрязнением воздуха окисью углерода уделяется большое внимание.

Классификация химических факторов производственной среды:

а) по агрегатному состоянию: газы, пары, аэрозоли и смеси;

б) по происхождению (химическими классами): органические, неорганические, элементоорганическими и др.;

в) по характеру воздействия на организм человека: общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию, эмбриотоксические и тератогенные;

г) в зависимости от поражения органов и систем: яда политропный, нейротропного, нефротоксического и кардиотоксического влияния, а также яды крови

д) по степени токсичности: чрезвычайно токсичны, высокотоксичные, умеренно токсичные и малотоксичные;

е) по степени воздействия на организм в целом: чрезвычайно опасные (1-й класс), высокоопасные (2-й класс), умеренно опасные (3-й класс) и малоопасные (4-й класс).

> Углекислота

Ученые обнаружили, что избыток углекислого газа в помещении очень вреден для здоровья. Углекислота сегодня чуть ли не главное действующее лицо многих катастрофических сценариев, которыми нас пугают многие ученые. Ему приписывают вину за глобальное потепление и все связанные с этим грядущие катаклизмы.

Но, как выяснилось, данный газ уже давно делает свое "черное дело". И вовсе не в масштабе планеты, а в любой душной комнате. Не хватает кислорода, говорим мы в таком случае. Особенно если начинает болеть голова, краснеют глаза, резко снижается внимание, появляется чувство усталости. Однако, как показали последние исследования зарубежных ученых, причина вовсе не в недостатке кислорода. Виноват избыток углекислого газа, который каждый из нас выдыхает. Кстати, от 18 до 25 литров этого газа в час.

Чем же опасна углекислота? Индийские ученые пришли к совершенно неожиданным выводам. Даже в относительно низких концентрациях этот газ является токсичным и по своей "ядовитости" близок к двуокиси азота, что может привести к заболеванию сердечно-сосудистой системы, гипертонии, усталости и т.д.

Чистый воздух за городом содержит около 0,04 процента углекислого газа. Еще недавно в Европе и США считалось, что газ опасен для человека только в больших концентрациях. Однако в последнее время начали изучать, как он влияет на человека при концентрации выше чем 0,1 процента. Оказалось, если содержание превышает этот уровень, то, например, у многих учеников снижается внимание, ухудшается успеваемость, они пропускают уроки из-за болезней легких, бронхов, носоглотки и т.д. Особенно это касается детей, больных астмой. Поэтому требования к воздуху во многих странах очень высоки. В России подобные исследования источников загрязнения воздуха никогда не проводились. Однако комплексное обследование московских детей и подростков показало, среди обнаруженных болезней преобладают заболевания органов дыхания.

Очень важно поддерживать высокие показатели качества воздуха в спальне, где люди проводят треть своей жизни. Чтобы хорошо выспаться, гораздо важнее качественный воздух в спальне, чем продолжительность сна, а уровень углекислоты в спальнях и детских комнатах должен быть ниже 0,08 процента.

Финские ученые нашли способ решения проблемы. Ими создан прибор, который удаляет из воздуха помещений избыток углекислого газа. В итоге содержание газа не больше, чем за городом. Принцип основан на абсорбции (поглощении) углекислого газа специальным веществом. В России о существовании проблемы негативного влиянии повышенного уровня углекислоты в помещении знают пока единицы.

Ирина Меднис

19.03.2008 | Российская газета

Другие интересные статьи раздела: