Главная · Освещение · Расчет пальцев. Практические приемы расчета на сдвиг и смятие. Расчет болтовых и заклепочных соединений Подставляя числовые значения, получим

Расчет пальцев. Практические приемы расчета на сдвиг и смятие. Расчет болтовых и заклепочных соединений Подставляя числовые значения, получим

Детали соединений (болты, штифты, шпонки, заклепки) рабо­тают так, что можно учитывать только один внутренний силовой фактор - поперечную силу. Такие детали рассчитываются на сдвиг.

Сдвиг (срез)

Сдвигом называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - поперечная сила рис. 23.1).

При сдвиге выполняется закон Гука, который в данном случав записывается следующим образом:

где - напряжение;

G - модуль упругости сдвига;

Угол сдвига.

При отсутствии специальных испытаний G можно рассчитать по формуле,

гдеЕ - модуль упругости при растяжении, [G ] = МПа.

Расчет деталей на сдвиг носит условный характер. Для упрощения расчетов принимается ряд допущений:

При расчете на сдвиг изгиб деталей не учитывается, хотя силы, действующие на деталь, образуют пару;

При расчете считаем, что силы упругости распределены по сечению равномерно;

Если для передачи нагрузки используют несколько деталей, считаем, что внешняя сила распределяется между ними равномерно.

Условие прочности при сдвиге (срезе)

где - допускаемое напряжение сдвига, обычно его определяют по формуле

При разрушении деталь перерезается поперек. Разрушение детали под действием поперечной силы называют срезом.

Довольно часто одновременно со сдвигом происходит смятие боковой поверхности в месте контакта в результате передачи нагрузки одной поверхности к другой. При этом на поверхности возникают сжимающие напряжения, называемые напряжениями смятия, .

Расчет также носит условный характер. Допущения подобны принятым при расчете на сдвиг, однако при расчете боковой цилиндрической поверхности напряжения по поверхности распределены не равномерно, поэтому расчет проводят для наиболее нагруженной точки. Для этого вместо боковой поверхности цилиндра в расчете используют плоскую поверхность, проходящую через диаметр.

Условие прочности при смятии

гдеА см - расчетная площадь смятия

d - диаметр окружности сечения;

Наименьшая высота соединяемых пластин;

F - сила взаимодействия между деталями

Допускаемое напряжение смятия

= (0,35 + 0,4)

Тема 2.5. Кручение

Кручение – вид нагружения бруса, при котором в его поперечных сечениях возникает один внутренний силовой фактор – крутящий момент М кр.

Крутящий момент М кр в произвольном поперечном сечении бруса равен алгебраической сумме моментов, действующих на отсеченную часть бруса.

Крутящий момент считается положительным, если кручение происходит против часовой стрелки и отрицательны – по часовой стрелке.

При расчете валов на прочность при кручении используется условие прочности:

,

где - полярный момент сопротивления сечения, мм 3 ;

– допускаемое касательное напряжение.

Крутящий момент определяется по формуле:

где Р – мощность на валу, Вт;

ω – угловая скорость вращения вала, рад/с.

Полярный момент сопротивления сечения определяется по формулам:

Для круга

Для кольца

.

При кручении бруса его ось испытывает скручивание на некоторый угол φ, который называется углом закручивания . Его величина определяется по формуле:

где l – длина бруса;

G – модуль сдвига, МПа (для стали G=0,8·10 5 МПа);

Полярный момент инерции сечения, мм 4 .

Полярный момент инерции сечения определяется по формулам:

Для круга

Для кольца

.

Тема 2.6. Изгиб

Многие элементы конструкций (балки, рельсы, оси всех колес и т.д.) испытывают деформацию изгиба.

Изгибом называется деформация от момента внешних сил, действующих в плоскости, проходящей через геометрическую ось балки.

В зависимости от места приложения действующих сил различают прямой и косой изгиб.

Прямой изгиб – внешние силы, действующие на балку, лежат в главной плоскости сечения.

Главная плоскость сечения – плоскость, проходящая через ось балки и одну из главных центральных осей сечения.

Косой изгиб - внешние силы, действующие на балку, не лежат в главной плоскости сечения.

В зависимости от характера ВСФ, возникающих в поперечных сечениях балки, изгиб может быть чистым и поперечным .

Изгиб называется поперечным , если в поперечном сечении балки возникают два ВСФ – изгибающий момент М х и поперечная сила Q y .

Изгиб называется чистым , если в поперечном сечении балки возникает один ВСФ – изгибающий момент М х.

Изгибающий момент в произвольном сечении равен алгебраической сумме моментов внешних сил, действующих на отсеченную часть балки:

Поперечная сила Q равна алгебраической сумме проекций внешних сил, действующих на отсеченную часть балки:

При определении знаков поперечных сил используют правило «Часовой стрелки» : поперечная сила считается положительной, если «вращение» внешних сил происходит по часовой стрелке; отрицательной – против часовой стрелки.

При определении знаков изгибающих моментов используют правило «Сжатых волокон» (правило «ЧАШИ»): изгибающий момент считается положительным, если сжимаются верхние волокна балки («вода не выливается»); отрицательным, если сжимаются нижние волокна балки («вода выливается»).

Условие прочности при изгибе: рабочее напряжение должно быть меньше или равно допускаемому напряжению, т.е.

где W х – осевой момент сопротивления (величина, характеризующая способность элементов конструкции сопротивляться деформации изгиба), мм 3 .

Осевой момент сопротивления определяется по формулам:

Для круга

Для кольца

;

Для прямоугольника

При прямом поперечном изгибе изгибающий момент обуславливает возникновение нормального напряжения, а поперечная сила – касательного напряжения, которое определяется по формуле:

где А – площадь поперечного сечения, мм 2 .

Расчеты на срез и смятие

Пример № 1

Круглый стержень, растягиваемый силой F = 180 кН укреплен на детали с помощью чеки прямоугольного сечения (рис.1). Из условий прочности на растяжение, срез и смятие стали определить диаметр стержня d , необходимую длину а хвостовой его части, а также размеры поперечного сечения чеки t и h без учета ее работы на изгиб. Допускаемые напряжения принять: [σ р ] = 160 МПа, [τ ср ] = 100 МПа, [σ см ] = 320 МПа.

Рис.1

Решение.

Стержень под действием силы F испытывает растяжение, ослабленным сечением будет сечение стержня, которое проходит через чеку. Его площадь определяется как разность площадей круга и прямоугольника, у которого одна сторона равна ширине чеки t , а вторую можно принять равной диаметру стержня d .. Эта площадь показана на (рис. 1, ж).

По условию прочности на растяжения

определяем площадь растяжения, подставляя N = F , имеем:

приравнивая(1) получаем первое уравнение. В хвостовике стержня под давлением чеки может произойти срез по площади А ср = 2(a - h )∙ d . Из условия прочности на срез

определим площадь среза хвостовика

отсюда 2(a - h d = 1800(2) получаем второе уравнение.

Исходя из условия равно прочности насрез стержня и чеки определяем площадь среза чеки, которая определяется как A 2ср = 2h t и равны A 1ср т.е. A 2ср = A 1ср , поэтому получаем третье уравнение 2h t = 1800(3).

Под действием силы F чека, оказывая давление на внутреннюю часть стержня вызывает смятие стержня по площади A см = d · t .

определяем площадь смятия:

Таким образом, получим четыре уравнения для определения диаметра стержня d , длины хвостовика а и размеров поперечного сечения чеки t и h :

2(a - h )∙ d = 1800(4)

2h t = 1800

d t = 56,25

подставим в первое уравнение системы (4) вместо d t = 56,25, получим:

– 56,25 = 1125 или = 1125 + 56,25 = 1687,5

отсюдат.е. d = 46,4мм

т.к. d t =56,25,;t = 12,1 мм .

Из третьего уравнения системы (4) определяем h .

2h t = 1800, отсюда ;h = 74,3 мм .

Из второго уравнения системы (4) определяем а .

2(a - h ) ∙ d = 1800

(a - h ) = 900, отсюда

Итак, а = 93,7 мм.

Пример № 2

Проверить прочность тяги на растяжение, а болта на срез и смятие, если к тяге приложена сила F = 60 кН , размеры даны на (рис.2), при допускаемых напряжениях: на растяжение [σ р ] = 120 МПа, на срез [τ ср ] = 80 МПа, на смятие [σ см ] = 240 МПа.

Рис. 2

Решение.

Устанавливаем, какие виды деформаций испытывают детали соединения. Под действием силы F стальная тяга диаметром d и проушина с наружным диаметром D 1 и внутренним D 2 будут испытывать растяжение, площадка тяги представляет собой окружность с площадью

в проушине, ослабленной отверстием D 2 разрыв может произойти по площади A 2р = (D 1 – D 2 )∙ в . Используя условия прочности при растяжении

проверяем прочность тяги на растяжение; т.к.N = F , то

т.е. тяга удовлетворяет условию прочности.

Растягивающее напряжение в проушине;

Прочность проушине обеспечена.

Болт диаметром D 2 испытывает срез по двум плоскостям, каждая из которых равна площади поперечного сечения болта, т.е.

Из условия прочности на срез:

Внутренняя часть проушины оказывает давление на поверхность болта, поэтому смятию подвергается цилиндрическая поверхность болта по площади А см = D 2 ·в.

выполняем проверку прочности болта на смятие

Пример № 3

Болт диаметром d = 100мм , работающий на растяжение, опирается головкой на лист (рис. 3). Определить диаметр головки D и высоту ее h , если растягивающее напряжение в сечении болта σ р = 100 Н/мм 2 , напряжение смятия по площади опирания головки σ см = 40Н/мм 2 и напряжения среза головки τ ср = 50 Н/мм 2 .

Рис.3

Решение.

Приступая к решению задачи, нужно установить какие виды деформаций испытывает стержень болта и его головка, чтобы затем использовать соответствующие расчетные зависимости. Если уменьшать диаметр болта d , то это может привести к разрыву, так как стержень болта испытывает растяжение. Площадь поперечного сечения, по которой может произойти разрыв (рис. 3,в). Уменьшение высоты головки h , если прочность головки стержня окажется недостаточной, повлечет за собой срез по боковой поверхности цилиндра высотой h и диаметром d (рис. 3,а). Площадь срезаА ср = π·d · h .

Если будет уменьшаться диаметр головки D , то воспринимающая силу F , опорная кольцевая поверхность головки стержня может подвергнуться смятию. Площадь смятия (рис. 3,б).

Таким образом, расчет необходимо вести по условиям прочности на растяжение, срез и смятие. При этом следует соблюдать определенную последовательность, т.е. начинать расчет с определения тех силовых факторов или размеров, которые не зависят от других определяемых величин. В данной задаче начинаем с определения внутренней силы Ν , которая равна по величине срезающей силе Q прикладываемой к болту силы F .

Из условия прочности при растяжении

определяем силу N , которая равна по величине силе Q = F .

Сила

Из условия прочности на срез определим высоту головки

болта, т.к. Q = F , то, , но A ср = πdh , поэтому .

Определяем диаметр опорной поверхности головки болта из условия ее прочности на смятие

Ответ: h = 50 мм, D = 187 мм.

Пример № 4

Определить какую силу F (рис. 4) надо приложить к пуансону штампа для пробивки в стальном листе толщиной t = 4 мм , размером в × h = 10× 15, если предел прочности на срез материала листа τ пч = 400 МПа. Определить также напряжение сжатия в пуансоне.

Рис.4

Решение.

Под действием силы F произошло разрушение материала листа по четырем поверхностям, когда действительное напряжение достигло предела прочности τ пч при срезе. Следовательно, надо определить внутреннюю Q и равную ей внешнюю силу F по известному напряжению и размерам h , в и t площадь деформируемых сечений. А эта площадь представляет собой площадь четырех прямоугольников: двух с размерами h × t и двух с размерами в × t .

Таким образом,А ср = h · t + в· t = 2t · (h + в ) = 2·4·(15+10) = 200 мм 2 .

Касательное напряжение при срезе срез

но так как Q = F ;

F = 𝜏 пч A ср = 400·200 = 80000 Н = 80 кН; F = 80 кН

Напряжение сжатия в пуансоне

Ответ: F =80кН; σ сж = 533,3 МПа.

Пример № 5

Деревянный брус квадратного сечения, а = 180 мм (рис.5) подвешен на двух горизонтальных прямоугольных балках и нагружен растягивающей силой F = 40 кН . Для крепления на горизонтальных балках в брусе выполнены две врубки до размера в = 120 мм . Определить возникающие в опасных сечениях бруса напряжения растяжения, среза и смятия, если с = 100 мм .

Рис.5

Решение.

Под действием силы F в брусе, ослабленном с двух сторон врубками возникаем растягивающее напряжение σ . В опасном сечении, размеры которого А р = в ∙ а = 120∙ 180 = 21600 мм 2 . Нормальное напряжение σ , учитывая, что внутренняя сила N в сечении равна внешней силе F равно:

Касательные напряжения скалывания τ ск возникают в двух опасных сечениях от давления горизонтальных балок на вертикальный брус, под действием силы Q = F . Эти площадки расположены в вертикальной плоскости, их величина А ск 2 ∙ с ∙ а =2∙ 100∙ 180=36000 мм 2 .

Вычисляем напряжения скалывания, действующих на этих площадках:

Напряжение смятия σ см возникает от действия силы F в двух опасных сеченияхвертикального бруса в верхней части горизонтальных балок, оказывающих давление на вертикальный брус. Их величина определяется А см ∙ (а-в) = 180∙ (180-120) =180∙ 60 = 10800 мм 2 .

Напряжение смятия

Пример № 6

Определить необходимые размеры врубки «прямым зубом». Соединение показано на (рис. 6). Сечение брусьев квадратное, растягивающая сила F = 40 кН . Допускаемые напряжения для древесины имеют значения: на растяжение[σ р ]= 10МПа, на скалывание [τ ск ]= 1МПа, на смятие [σ см ] = 8 МПа.

Рис.6

Решение.

Сопряжения элементов деревянных конструкций – врубки рассчитываются на прочность из условия их работы на растяжение, скалывание и смятие. При достаточной величине сил F , действующих на врубку прямым зубом (рис.6), может произойти скалывание по сечениям de и mn , по этим сечениям возникают касательные напряжения, величина которых определяется в предположении их равномерного распределения по площади сечения. Площадь сечения de или mn А ск = а∙ с .

Условие прочности имеет вид:

а·с = 4000 мм 2 (1)

В вертикальной стенке зуба на площадке m е имеет место деформация смятия. Площадь сечения, по которой может произойти смятие А см = в∙ а .

Из условия прочности на смятие:

имеем или в·а = 5000 мм 2 (2)

Исходя из разнопрочности деталей А и В , разрыв их может произойти по сечению, площадь которой .

Условия прочности на растяжение имеет вид:

В результате получим систему уравнений: 1, 2, 3.

а ∙ с = 4000

в ∙ а = 5000

Выполнив преобразование в третьем уравнении системы (4), получим:

а ∙ с = 4000

в ∙ а = 5000 (4 ’)

а 2 - а∙ в = 8000

уравнение (3) системы (4 ’)принимает вид а 2 = 8000∙ в = 8000+5000 = 13000 отсюда а = = 114 мм ;

из уравнения (2) системы (4’)

из уравнения (1) системы (4’)

Ответ: а = 114 мм ; в = 44 мм ;с = 351 мм .

Пример № 7

Соединение стропильной ноги с затяжкой выполнено с помощью лобовой врубки (рис. 7). Определить необходимые размеры (х, х 1 , y ), если сжимающее усилие в подкосе равно F = 60 кН , угол наклона крышки α = 30 о, размеры сечения брусьев h = 20 см , в = 10 см . Допускаемые напряжения приняты: на растяжения и сжатие вдоль волокон [σ ] = 10 МПа , на смятие поперек волокон [σ см ] = 8 МПа , на смятие вдоль волокон [σ 90 ] = 2,4 МПа и на скалывание вдоль волокон [τ ск ] = 0,8 МПа . Проверить также прочность стропильной ноги на сжатие и затяжки в ослабленном месте сечения на растяжение.

Рис.7

Решение.

Определяем усилия, действующие по плоскостям врубки. Для этого раскладываем силу F на вертикальную составляющую F 1 и горизонтальную составляющую F 2 ,получим

F 1 = F sin 𝛼 = 60∙ 0,5 = 30 кН .

F 2 = F cos 𝛼 = 60∙ 0,867 = 52,02 кН .

Эти силы уравниваются реакцией опоры R = F 1 и растягивающим усилием в затяжке N = F 2 . Сила F 1 вызывает смятие затяжки по площади опирания на опорную подушку (перпендикулярно к волокнам). Условия прочности на смятие:

откуда, т.к. А см =х 1 в ,то

Конструктивно она принимается значительно больше. Глубину врубки y определяем из условия, что сила F 2 вызывает смятие по вертикальной упорной, и площадке А см = у∙ в в месте контакта торца строительной ноги с затяжкой. Из условия прочности на смятие имеем:

т.к. А см =у ·в , то .

Конец затяжки испытывает скалывание вдоль волокон под действием этой же горизонтальной силы F 2 . Длину х затяжки, выступающую за врубку, определим из условия прочности на скалывание:

т.к. τ ск = 0,8 МПа , . Площадь скалывания А ск = в∙ х

Следовательно, в х = 65000, откуда

Проверим прочность строительной ноги на сжатие:

Проверим прочность затяжки в ослабленном сечении:

т.е. прочность обеспечена.

Пример № 8

Определить напряжение растяжения, вызываемое силой F = 30 кН в ослабленном, тремя заклепками сечения стальных полос, а также напряжения среза и смятия в заклепках. Размеры соединения: ширина полос а = 80 мм , толщина листов δ = 6 мм , диаметр заклепок d = 14 мм (рис.8).

Рис.8

Решение.

Максимальное напряжение растяжения возникает в полосе по сечению 1-1 (рис. 8,а) ослабленному тремя отверстиями под заклепки. В этом сечении действует внутренняя сила N , равная по величине силе F . Площадь поперечного сечения показана на (рис. 8, г) и равна А р = а ∙𝛿 – 3∙ d 𝛿 = 𝛿∙ (a - 3d ).

Напряжение в опасном сечении 1-1:

Срез вызывается действием двух равных внутренних сил , направленных в противоположные стороны, перпендикулярно оси стержня (рис. 8,в). Площадь среза одной заклепки равна площади круга (рис.8,д), площадь среза всего сечения , гдеn – число заклепок, в данном случае n = 3.

Подсчитываем напряжение среза в заклепках:

На стержень заклепки давление со стороны отверстия в листе передается по боковой поверхности полуцилиндра (рис. 8, д), высотой, равной толщине листа δ . С целью упрощения расчета за площадь смятия вместо поверхности полуцилиндра условно принимают проекцию этой поверхности на диаметральную плоскость (рис. 8,е), т.е. площадь прямоугольника efck , равную d 𝛿 .

Вычисляем напряжение смятия в заклепках:

Итак σ р = 131,6 МПа ,τ ср = 65 МПа ,σ см = 119 МПа .

Пример № 9

Стержень фермы, состоящий из двух швеллеров №20, соединен с фасонным листом (косынкой) узла фермы заклепками расчетным диаметром d = 16 мм (рис.9). Определить требуемое число заклепок при допускаемых напряжениях: [τ ср ] = 140 МПа ;[σ см ] = 320 МПа ;[σ р ] = 160 МПа . Проверить прочность стержня.

Рис.9

Решение.

Определяем размеры поперечного сечения швеллера №20 по ГОСТ 8240-89 А = 23,4 см 2 , толщина стенки швеллера δ = 5,2 мм . Из условия прочности на срез

где Q ср – поперечная сила: при нескольких одинаковых соединительных деталях Q ср = F / i ( – число заклепок; А с p – площадь среза одной заклепки; [τ ср ] – допускаемое напряжение на срез, зависящее от материала соединительных элементов и условий работы конструкций.

Обозначим z – число плоскостей среза соединения, площадь среза одной заклепки , тогда из условия прочности (1) следует, что допускаемая сила на одну заклепку:

Здесь принято z = 2, т.к. заклепки двухсрезные .

Из условия прочности на смятие

где А см = d 𝛿 к

𝛿 к – толщина фасонного листа (косынки). d – диаметр заклепки.

Определим допускаемую силу на одну заклепку:

Толщина косынки 9 мм меньше удвоенной толщины швеллера 10,4 мм , поэтому она и принята в качестве расчетной.

Требуемое число заклепок определяем из условия прочности на смятие, так как .

Обозначим n –число заклепок, тогда принимаем n =12.

Проверяем прочность стержня на растяжение. Опасным сечением будет сечение 1-1, так как в этом сечении действует наибольшая сила F , а площади во всех ослабленных сечениях одинаковы, т.е. , где А = 23,4 см 2 площадь поперечного сечения одного швеллера №20 (ГОСТ 8240-89).

Следовательно, прочность швеллеров обеспечена.

Пример № 10

Зубчатое колесо А соединено с валом В призматической шпонкой (рис. 10). С зубчатого колеса передается на вал диаметром d =40 мм момент М = 200 Нм . Определить длину призматической шпонки, учитывая, что допускаемые напряжения материала шпонки равны: на срез [τ ср ] = 80 МПа, а на смятие [σ см ] = 140 МПа (размеры на рис. указаны в мм ).

Рис.10

Решение.

Определяем усилие F , действующее на шпонку со стороны соединяемых деталей. Момент, передаваемый на вал равен , где d – диаметр вала. Откуда . Предполагается, что усилие F равномерно распределено по площади шпонки , где - длина шпонки, h – ее высота.

Длина шпонки, необходимая для обеспечения ее прочности, может быть найдена из условия прочности на срез

и условия прочности на смятие

Находим длину шпонки из условия прочности на срез, так как срез происходит по площади А ср = в·ℓ , то ;

Из условия прочности (2) на смятие, имеем:

Для обеспечения прочности соединения длину шпонки необходимо принять равной большему значению из двух полученных, т.е. ℓ= 18 мм.

Пример № 11

Вильчатый кривошип укреплен на валу с помощью цилиндрического штифта (рис.11) и нагружен силой F =2,5 кН. Проверить прочность штифтового соединения на срез и смятие, если [τ ср ] = 60 МПа и[σ см ] = 100 МПа .

Рис.11

Решение.

Сначала следует определить величину силы F 1 , передаваемую на штифт от силы F , приложенной к кривошипу. Очевидно, что М= F h равен моменту .

проверим прочность штифта на срез под действием силы F 1 . В продольном сечении штифта возникает касательное напряжение среза, величина которого определяется по формуле , где А ср = d ∙ ℓ

Цилиндрическая поверхность штифта под действием силы F 1 подвергается смятию. Поверхность контакта, через которую передается сила F 1, представляет собой четвертую часть поверхности полуцилиндра, так как за уловную площадь смятия принимается площадь проекции поверхности контакта на диаметральную плоскость, т.е. d ℓ , то А см = 0,5∙ d ∙ ℓ.

Итак, прочность штифтового соединения обеспечена.

Пример № 12

Рассчитать количество заклепок диаметром d = 4 мм, необходимое для соединения двух листов двумя накладками (см. рис.12). Материалом для листов и заклепок служит дюралюминий, для которого R bs = 110 МПа, R b р = 310 МПа. Сила F = 35 кН, коэффициент условий работы соединения γ b = 0,9; толщина листов и накладок t = 2 мм.

Рис.12

Решение.

Используя формулы

рассчитываем потребное количество заклепок:

из условия прочности на срез

из условия прочности на смятие

Из полученных результатов видно, что в данном случае решающим явилось условие прочности на смятие. Таким образом, следует взять 16 заклепок.

Пример № 13

Выполнить расчет прикрепления стержня к узловой фасонке (см. рис.13) болтами диаметром d = 2 см. Стержень, поперечное сечение которого представляет собой два одинаковых равнобоких уголка, растягивается силой F = 300 кН.

Материал фасонки и болтов – сталь, для которой расчетные сопротивления равны: на растяжениеR bt = 200 МПа, на срезR bs = 160 МПа, на смятие R b р = 400 МПа, коэффициент условий работы соединения γ b = 0,75. Одновременно рассчитать и назначить толщину листа фасонки .

Рис.13

Решение.

Прежде всего необходимо установить номер равнобоких уголков, составляющих стержень, определив потребную площадь поперечного сеченияA nec из условия прочности на растяжение

Учитывая предстоящее ослабление стержня отверстиями для болтов, следует добавить к площади сечения A nec 15%. Полученной таким образом площади сечения А = 1,15∙ 20 = 23 см 2 отвечает по ГОСТ 8508–86 (см. Приложение) симметричное сечение из двух равнобоких уголков размерами 75× 75× 8 мм.

Производим расчет на срез. Пользуясь формулой , найдем необходимое число болтов

Остановившись на этом числе болтов, определим толщину δ узловой фасонки , используя условие прочности на смятие

Указания

1. Привязка линии размещения болтов (заклепок) в один ряд находится из условия:m = b / 2 + 5 мм.

В нашем примере (рис. 13)

m = 75/2 + 5 = 42,5 мм.

2. Минимальное расстояние между центрами соседних болтов принимают равным l = 3d . В рассматриваемой задаче имеем

l = 3∙ 20 = 60 мм.

3. Расстояние от крайних болтов до границы соединения l / принимается равным 0,7l . В нашем примере l / = 0,7l = 0,7∙ 60 = 42 мм.

4. При выполнении условия b ≥12 см болты (заклепки) размещают в две линии в шахматном порядке (рис. 14).

Рис.14

Пример № 14

Определить необходимое количество заклепок диаметром 20 мм для соединения внахлестку двух листов толщиной 8 мм и 10 мм (рис.15). Сила F , растягивающая соединение, равна 200 кН. Допускаемые напряжения: на срез [τ ] = 140 МПа, на смятие [σ c ] = 320 МПа.

Допускаемые напряжения – 80…120 МПа.

Овализация пальца

Овализация пальца происходит, когда от действия вертикальных сил (рис. 7.1, в ) возникает деформация с увеличением диаметра в поперечном сечении. Максимальные приращения диаметра пальца в средней части:

, (7.4)

где – коэффициент, полученный из эксперимента,

К =1,5…15( -0,4) 3 ;

– модуль упругости стали пальца, МПа.

Обычно = 0,02…0,05 мм – эта деформация не должна превышать половины диаметрального зазора между пальцем и бобышками или отверстием шатунной головки шатуна.

Напряжения, которые возникают при овализации (см. рис. 7.1) в точках 1 и 3 внешнего и 2 и 4 внутреннего волокон, можно определить по формулам:

Для наружной поверхности пальца

. (7.5)

Для внутренней поверхности пальца

, (7.6)

где h – толщина стенки пальца, r = (d н +d в)/4; f 1 и f 2 – безразмерные функции, зависящие от углового положения расчетного сечения j , рад.

f 1 =0,5cosj +0,3185sinj -0,3185j cosj ;

f 2 =f 1 - 0,406.

Наиболее нагружена точка 4 . Допустимые значения
s св = 110...140 МПа. Обычно монтажные зазоры между плавающим пальцем и втулкой шатуна 0,01...0,03 мм, а в бобышках чугунного поршня 0,02...0,04 мм. При плавающем пальце зазор между пальцем и бобышкой для прогретого двигателя должен быть не более

D = D¢+(a пп Dt пп - a б Dt б)d пн, (7.7)

где a пп и a б – коэффициенты линейного расширения материала пальца и бобышки, 1/К;

Dt пп и Dt б – повышение температуры пальца и бобышки.

Поршневые кольца

Компрессионные кольца (рис. 7.2) являются основным элементом уплотнения внутрицилиндрового пространства. Устанавливаются с достаточно большим радиальным и осевым зазором. Хорошо уплотняя надпоршневое газовое пространство, они, обладая насосным эффектом, не ограничивают поступление масла в цилиндр. Для этого служат маслосъемные кольца (рис. 7.3).

В основном применяют:

1. Кольца с прямоугольным сечением. Просты в изготовлении, имеют большую площадь контакта со стенкой цилиндра, что обеспечивает хороший теплоотвод от головки поршня, но они плохо прирабатываются к зеркалу цилиндра.

2. Кольца с конической рабочей поверхностью хорошо прирабатываются, после чего приобретают качества колец с прямоугольным сечением. Однако производство таких колец сложно.

3. Скручивающиеся кольца (торсионные). В рабочем положении такое кольцо скручивается и его рабочая поверхность контактирует с зеркалом узкой кромкой, как у конических, что обеспечивает приработку.

4. Маслосъемные кольца обеспечивают на всех режимах сохранение масляной пленки между кольцом и цилиндром толщиной 0,008...0,012 мм. Для предохранения от всплытия на масляной пленке оно должно обеспечивать большое радиальное давление (рис. 7.3).

Различают:

а) Чугунные кольца с витым пружинным расширителем. Для повышения долговечности рабочие пояски колец покрывают слоем пористого хрома.

б) Стальные и сборные хромированные маслосъемные кольца. При эксплуатации кольцо теряет свою упругость неравномерно по периметру, особенно в стыке замка при нагреве. Вследствие этого кольца при изготовлении заневоливают, что обеспечивает неравномерную эпюру давления. Большие давления получают в зоне замка в виде грушевидной эпюры 1 и каплевидной 2 (рис. 7.4, а ).

В данной конструкции применяется три пальцевых соединения: коромысло рукоятки и соединение малого плунжера с рукояткой. И в первом и во втором случае плоскостей среза две, что имеет непосредственной влияние на прочность конструкции. Пальцевые соединения принято рассчитывать на срез и смятие:

Допускаемое напряжение пальца на срез,

;

- допускаемое напряжение пальца на смятие,

;

где, F – нагрузка, действующая на пальцевое соединение;

Z – общее количество пальцев в соединении;

δ – толщина листа, мм;

dотв – диаметр отверстия, мм;

К – количество плоскостей среза.

Срез пальца для Ст0, Ст2 – 1400кгс/см2; для Ст3 – 1400кгс/см2.

Смятие пальца для Ст0, Ст2 – 2800 кгс/см2, для Ст3 – 3200кгс/см2.

Расчет пальца на корпусе:

мм;

мм.

Расчет пальца на плунжере:

мм;

мм.

Принимаю палец с упорной головкой по с d=3 мм; D=5,4 мм; L=12мм.

Самое популярное:

Технологический процесс работы участковой станции
Станции являются важнейшими линейными производственно-хозяйственными организациями, на которых осуществляется непосредственная связь железной дороги с населёнными пунктами, промышленными предприятиями и агропромышленными комплексами. На сети железных дорог СНГ и Балтии насчитывается б...

Автомобильный холодильный транспорт
Применение холода для сохранения пищевых продуктов известно давно. Для этого использовали сначала лед и снег, а затем смеси льда с солью, что позволило получить температуры ниже 0° С. Транспортные холодильники предназначены для перевозок охлажденных и замороженных пищевых продуктов жел...

Анализ внешней среды транспортной отрасли Хабаровского края
Транспорт является одной из экономических подсистем народного хозяйства. Он служит материальной базой производственных связей между отдельными странами и регионами мира для обмена товарами, выступает как фактор, организующий мировое экономическое пространство и обеспечивающий дальнейшую...

Напряжения среза пальца в сечении I - I , рис. 1, τ с, МПа:

При определении допустимых напряжений [τ с ] по формуле (6) для материала пальца по табл. 1:

Коэффициент Кτ р определяют по табл.3 в зависимости от диаметра пальца d ;

- коэффициент Кτ п определяют по табл.4, полагая поверхность пальца шлифованной;

Коэффициент Кτ к = 1 принимают для конструкции пальца без буртиков или проточек в опасном сечении;

Коэффициент Кτ у определяют по табл. 6, обычно рекомендуется использовать поверхностное упрочнение.

Если условие прочности по формуле (8) не выполнено, следует выбрать более качественную марку стали или увеличить диаметр пальца d .

Рис. 4. Детали с типовыми концентраторами напряжений: а – переход от меньше­го размера b к большему l , радиус сопряжения r 1 ; б – поперечное отверстие диа­метром d 1

Рис. 5. Расчетная схема пальца шарнира: а – эпюра перерезывающих сил; б – эпю­ра изгибающих моментов

5.2. Расчет пальца на изгиб

Учитывая неопределенность условий защемления пальца в щеках и влияния прогиба пальца и деформаций щёк на распределение удельной нагрузки, принимают упрощенную расчётную схему балки на двух опорах, нагруженной двумя сосредоточенными силами, рис. 5. Максимальные напряжения изгиба развиваются в среднем пролёте балки. Напряжения изгиба пальца, σ и, МПа, в сечении 4-4 , рис. 5:

σ и = M /W ≤ [σ и ], (9)

где М – изгибающий момент в опасном сечении, Н∙мм:

M = 0,125F max (l + 2δ );

W осевой момент сопротивления, мм 3:

W = πd 3  / 320,1d 3 ,

l - длина трущейся части пальца, определяемая в зависимости от отношения l/d , заданного в Прил. и диаметра пальца d , мм, найденного в п.4.1; δ – толщина стенки проушины, определяемая в п.6.1;

[σ и ] – допускаемые напряжения при изгибе по форм. (6).

В расчете по формулам (6) и (9):

- к – коэффициент определяют по табл. 5 с учетом концентратора напряжений - поперечного отверстия для подвода смазки, рис. 1;

Коэффициенты p , п и К у назначают аналогично расчёту пальца по п.5.1.

Если условие прочности по формуле (9) не выполнено, следует увеличить диа­метр пальца d .

Окончательная величина d , проставляемая на чертеже, округляется до ближайшего большего стандартного значения из ряда нормальных линейных размеров по ГОСТ 6636-69.