Главная · Монтаж · Расчет проушины на срез. Проверочные расчёты при срезе и смятии. Расчет пальца на изгиб

Расчет проушины на срез. Проверочные расчёты при срезе и смятии. Расчет пальца на изгиб

В данной конструкции применяется три пальцевых соединения: коромысло рукоятки и соединение малого плунжера с рукояткой. И в первом и во втором случае плоскостей среза две, что имеет непосредственной влияние на прочность конструкции. Пальцевые соединения принято рассчитывать на срез и смятие:

Допускаемое напряжение пальца на срез,

;

- допускаемое напряжение пальца на смятие,

;

где, F – нагрузка, действующая на пальцевое соединение;

Z – общее количество пальцев в соединении;

δ – толщина листа, мм;

dотв – диаметр отверстия, мм;

К – количество плоскостей среза.

Срез пальца для Ст0, Ст2 – 1400кгс/см2; для Ст3 – 1400кгс/см2.

Смятие пальца для Ст0, Ст2 – 2800 кгс/см2, для Ст3 – 3200кгс/см2.

Расчет пальца на корпусе:

мм;

мм.

Расчет пальца на плунжере:

мм;

мм.

Принимаю палец с упорной головкой по с d=3 мм; D=5,4 мм; L=12мм.

Самое популярное:

Технологический процесс работы участковой станции
Станции являются важнейшими линейными производственно-хозяйственными организациями, на которых осуществляется непосредственная связь железной дороги с населёнными пунктами, промышленными предприятиями и агропромышленными комплексами. На сети железных дорог СНГ и Балтии насчитывается б...

Автомобильный холодильный транспорт
Применение холода для сохранения пищевых продуктов известно давно. Для этого использовали сначала лед и снег, а затем смеси льда с солью, что позволило получить температуры ниже 0° С. Транспортные холодильники предназначены для перевозок охлажденных и замороженных пищевых продуктов жел...

Анализ внешней среды транспортной отрасли Хабаровского края
Транспорт является одной из экономических подсистем народного хозяйства. Он служит материальной базой производственных связей между отдельными странами и регионами мира для обмена товарами, выступает как фактор, организующий мировое экономическое пространство и обеспечивающий дальнейшую...

Элементы, которыми соединяют различные детали, например, заклепки, штифты, болты (без зазора) в основном рассчитывают на срез.

Расчет носит приближенный характер и основан на следующих допущениях:

1) в поперечных сечениях рассматриваемых элементов возникает лишь один силовой фактор - поперечная сила Q ;

2) при наличии нескольких одинаковых соединительных элементов каждый из них воспринимает одинаковую долю общей нагрузки, передаваемой соединением;

3) касательные напряжения распределены по сечению равномерно.

Условие прочности выражается формулой:

τ ср = Q/F ср ≤[ τ] ср , где

Q - поперечная сила (при нескольких i соединительных элементах при передаче силы P ср

Q = P ср /i );

τ ср - напряжение среза в плоскости рассчитываемого сечения;

F ср - площадь среза;

[τ] ср - допускаемое напряжение на срез.

На смятие, как правило, рассчитывают элементы, которые соединены заклепками, штифтами, болтами. Смятию подвергаются стенки отверстий в зонах установки соединительных элементов. Обычно расчет на смятие выполняют для соединений, соединительные элементы которых рассчитывают на срез.

При расчете на смятие принимают, что силы взаимодействия между соприкасающимися деталями равномерно распределены по поверхности контакта и в каждой точке нормальны к этой поверхности. Силу взаимодействия, принято называть напряжением смятия.

Расчет на прочность выполняется по формуле:

σ см = P см /(i´F см) ≤ [σ] см , где

σ см - действующее напряжение смятия;

P см - усилие передаваемое соединением;

i - число соединительных элементов;

F см - расчетная площадь смятия;

[σ] см - допускаемое напряжение смятия.

Из допущения о характере распределения сил взаимодействия по поверхности контакта следует, что если контакт осуществляется по поверхности полуцилиндра, то расчетная площадь F см равна площади проекции поверхности контакта на диаметральную плоскость, т.е. равна диаметру цилиндрической поверхности d на ее высоту δ :

F см = d´ δ

Пример 10.3

Стержни I и II соединены штифтом III и нагружены растягивающими силами (рис. 10.4). Определить размеры d, D, d шт , c , e конструкции, если [σ] р = 120 МН/м 2 , [τ] ср = 80 МН/м 2 , [σ] см = 240 МН/м 2 .

Рисунок 10.4

Решение .

1. Определяем диаметр штифта из условия прочности на срез:

Принимаем d = 16×10 -3 м

2. Определяем диаметр стержня I из условия прочности на растяжение (сечение стержня, ослабленное отверстием для штифта, показано на рис. 10.4б):

94,2 × 10 3 10 d 2 - 1920´10 3 d - 30 ³ 0


Решив квадратное неравенство, получим d³30,8´10 -3 м. Принимаем d = 31´10 -3 м .

3. Определим наружный диаметр стержня II из условия прочности на растяжение, сечения ослабленного отверстием для штифта (рис. 10.4в):

94,2´10 3 ´D 2 -192´10 3 ´D-61³0

Решив квадратное уравнение, получим D = 37,7´10 -3 м . Примем D = 38´10 -3 м .

4. Проверим, достаточна ли толщина стенок стержня II по условию прочности на смятие:

Так как напряжение смятия превышает допустимое напряжение на смятие, то увеличим наружный диаметр стержня так, чтобы выполнялось условие прочности на смятие:

Принимаем D = 39×10 -3 м.

5. Определяем размер c из условия прочности нижней части стержня II на срез:

Примем c = 24×10 -3 м.

6. Определим размер e из условия прочности верхней части стержня I на срез:

Примем e = 6×10 -3 м .

Пример 10.4

Проверить прочность заклепочного соединения (рис. 10.5а), если [τ] ср = 100 Мн/м 2 , [σ] см = 200 Мн/м 2 , [σ] р = 140 Мн/м 2 .

Рисунок 10.5

Решение.

Расчет включает проверку прочности заклепок на срез, стенок отверстий в листах и накладках на смятие, а также листов и накладок на растяжение.

Напряжения среза в заклепках определяем по формуле:

В рассматриваемом случае i = 9 (число заклепок по одну сторону от стыка), k = 2 (двухсрезные заклепки).

τ ср = 550´10 3 / (9´2´((3,14´0,02 2) /4)) = 97,2 Мн/м 2

Избыток прочности по срезу заклепок:

Напряжение смятия стенок отверстий определим по формуле:

В заданном соединении площадь смятия стенок отверстий соединяемых листов меньше, чем стенок отверстий в накладках. Следовательно, напряжения смятия для листов больше, чем для накладок, поэтому принимаем δ расч = δ = 16 ´10 -3 м.

Подставляя числовые значения, получим:

σ см = 550´10 3 / (9´16´10 -3 ´20´10 -3) = 191 Мн/м 2

Избыток прочности по смятию стенок отверстий:

Для проверки прочности листов на растяжение вычислим напряжения по формуле:

N - нормальная сила в опасном сечении;

F нетто - площадь сечения нетто, т.е. площадь поперечного сечения листа за вычетом его ослабления отверстиями для заклепок.

Для определения опасного сечения строим эпюру продольных сил для листов (рис. 10.5 г). При построении эпюры воспользуемся допущением о равномерном распределении силы между заклепками. Площади ослабленных сечений разные, поэтому не ясно, какое из них опасное. Производим проверку каждого из ослабленных сечений, которые показаны на рисунке 10.5в.

Сечение I-I

Сечение II-II

Сечение III-III

Опасным оказалось сечение I-I ; напряжение в этом сечении выше допускаемого примерно на 2%.

Проверка накладки аналогична проверки листов. Эпюра продольных сил в накладке показана на рисунке 10.5г. Очевидно, что для накладки опасным является сечение III-III, так как это сечение имеет наименьшую площадь (рис. 10.5д) и в нем возникает наибольшая продольная сила N = 0,5P .

Напряжения в опасном сечении накладки:

Напряжения в опасном сечении накладки выше допускаемого примерно на 3,5%.

Основные понятия. Расчетные формулы.

Лекция 4. Срез и смятие.

Детали, служащие для соединения отдельных элементов машин и строительных конструкций – заклепки, штифты, болты, шпонки – воспринимают нагрузки, перпендикулярные их продольной оси.

Справедливы следующие допущения.

1. В поперечном сечении возникает только один внутренний силовой фактор – поперечная сила Q .

2. Касательные напряжения, возникающие в поперечном сечении, распределены по его площади равномерно.

3. В случае если соединение осуществлено несколькими одинаковыми деталями, принимается, что все они нагружены одинаково.

Условие прочности при срезе (проверочный расчёт):

где Q – поперечная сила

– число болтов, заклепок, i – число плоскостей среза крепежной детали)

F ср – площадь среза одного болта или заклепки, D – диаметр болта или заклёпки.

[τ ср ] – допускаемое напряжение на срез, зависящее от материала соединительных элементов и условий работы конструкции. Принимают [τ ср ] = (0,25…0,35)·σ т, где σ т – предел текучести.

Также справедливо: , т.к. , где n – коэффициент запаса прочности (для стали равный 1,5).

Если толщина соединяемых деталей недостаточна или материал соединяемых деталей более мягкий, чем у болта, штифта и т.д., то стенки отверстий обминаются, и соединение становится ненадежным, происходит смятие. При смятии действуют только нормальные напряжения – σ. Площадь смятия фактическая – это полуцилиндр, расчётная – это проекция полуцилиндра на диаметральную плоскость. F см , где d – диаметр болта или заклёпки, - минимальная толщина листа (если соединяемые листы разной толщины).

Проверочный расчёт на срез соединительных деталей:

Ниже указанная формула аналогична формуле (52)

,

Q – перерезывающая сила, равная по величине внешней

Где z – количество заклёпок (болтов)

i – количество срезов (равно количеству соединяемых листов минус один)

[τ ] = допускаемое касательное напряжение при срезе. Зависит от марки материала заклёпки и от условий работы конструкции.

Проверочный расчёт на смятие соединяемых деталей:

, (53)

Где d – диаметр заклёпки (болта)

Минимальная толщина листа

z – количество заклёпок (болтов)

Допускаемое нормальное напряжение при смятии соединяемых деталей.

Проверочный расчёт при разрыве соединяемых деталей:

, (54)

Где (в - z d ) – ширина листа без заклёпок

Минимальная толщина листа

Допускаемое нормальное напряжение при разрыве соединяемой детали.



Расчет выполняется для участка, где максимальное количество соединительных деталей (заклёпок, штифтов, болтов и т.д.).

Проектный расчёт (определение количества заклёпок).

, (55)

(56)

Выбираем максимальное количество заклёпок.

Определение максимально допускаемой нагрузки.

, (57)

, (58)

Из двух значений выбираем наименьшую нагрузку.

Растягивающее усилие Р =150Кн .,

допускаемое напряжение среза

допускаемое напряжение при смятии

допускаемое напряжение при растяжении ,

общее количество заклёпок z =5 шт. (в одном ряду 3, в другом 2),

диаметр заклёпки .

4.2.6 Расчет пальца на срез

Расчитаем палец на срез.

Прочность пальца обеспеченна

4.3.5 Расчёт подшипников рычагов

Выбираем роликовый двухрядный сферический подшипник №3003168 по ГОСТ 5721-75 с параметрами: С=2130000 Н, d=340мм, D=520мм, B=133мм.

Расчет методика произведем по формуле изложенной в .

Срок службы подшипника:

где b 1 - коэффициент учёта направления нагрузки, b 1 = 5;

b 2 - коэффициент учёта условий смазки, b 2 = 1;

b 3 - коэффициент температуры, b 3 = 1;

b 4 - размерный коэффициент, b 4 = 1,5;

b 5 - коэффициент учёта свойств материала, b 5 = 1,1;

D a - диаметр сферы, D a = 100 мм;

в - половина угла колебаний, в = 90 о;

С - номинальная динамическая грузоподъёмность, С = 2130000 Н;

Срок службы подшипников рычага:

При выталкивании 1 ряда заготовок приводной вал, рычаг и соответственно подшипник рычага совершают поворот на угол 180 и на такой же угол при обратном ходе. Этот угол соответствует 1 обороту.

Т.е. на ряд заготовок приходится 1 оборот подшипника рычага.

Масса одного ряда заготовок 11200 кг = 112 т. Производительность стана 210 т/ч.

Количество заготовок за 1 час 210/112 = 1,85 шт.

Значит, за 1 час подшипник рычага совершит 1,85 оборотов.

Тогда, срок службы, выраженный в часах, для подшипника рычага равен G/15.

Годовой фонд рабочего времени составляет 7200..7400 часов (если из 8760 часов за год отнять часы плановых ремонтов всего стана). С учетом этого можно выразить срок службы в годах:

где n ч - обороты подшипника за 1 час.

Срок службы подшипника рычага:

Герметичный электронасос

Где -- допускаемое напряжение среза шпонки, условие проверки шпоночного соединения на срез соблюдается...

Назначаем толщину бурта гайки, принимая ее равной: НБ = 0,3*НГ = 21 мм. Опасное сечение: 3 - 3 (рис. 2); Условие статической прочности при срезе: фср? [фср]; где [фср] = ; [s] = 4…5; уB= 250 МПа; Примем [s]=5, [фср] = МПа. ==8...

Проектирование винтового механизма

Опасное сечение: 4 - 4 (рис. 2); Схему нагружения витка см. на рис. 5; Рис. 5. Схема нагружения витка резьбы при расчете на срез Условие статической прочности при срезе: фср? [фср] (определение [фср] - см. выше)...

Проектирование привода

Условие прочности на срез, где [фср] - допускаемое напряжение на срез; [фср] = 100 МПа (, стр. 74); следовательно, условие прочности обеспечено. 8.2 Шпоночное соединение тихоходного вала с зубчатым колесом. 8.2...

Проектирование привода

Условие прочности на срез, где [фср] = 100 МПа (, стр. 74); следовательно, условие прочности обеспечено. 8.3 Шпоночное соединение тихоходного вала редуктора с ведущей звездочкой цепной передачи 8.3...

Проектирование привода

Условие прочности на срез, где [фср] = 100 МПа (, стр. 74); следовательно, условие прочности обеспечено...

Проектирование привода ленточного транспортера

Подбор шпоночных соединений был выполнен в процессе 1-го этапа эскизной компоновки. Все шпонки призматические (ГОСТ 233360-78) (см. рисунок 8) Шпонка испытывает напряжение смятия боковых поверхностей (см) и напряжение среза (ср)...

Проектирование редуктора, выполненного по схеме замкнутого дифференциального планетарного механизма, для высотного турбовинтового двигателя

Шлицевая гайка 76 воспринимает тягу винта. С ее помощью разъемная внутренняя обойма шарикоподшипника 70 прижата к буртику вала, она также крепит на шлицах ступицу 39 перебора. Проверим витки резьбы гайки на срез: (5.1...

Проектирование скрепера МоАЗ-60071

Для расчета размера пальца примем его за брус, закрепленный на двух опорах, на который действует сила Sп, со стороны гидроцилиндра, которая вызывает изгибающие моменты, т.к. изгибающий момент действует в плоскости...

Расчет авиационного поршневого двигателя

Расчет производится на прочность от изгибающих моментов; на предельно допустимую деформацию (овализацию) во избежание заклинивания в верхней головке шатуна; на удельное давление на его трущихся поверхностях...

Расчет привода печного толкателя

Напряжения среза определяются по формуле: где: b - ширина шпонки, - площадь среза шпонки, - допускаемое напряжение среза, = 60... 100 МПа (меньшие значения принимаются при неравномерной или ударной нагрузке), l - стандартная длина шпонки...

Расчет четырехцилиндрового дизельного двигателя рядной компоновки

Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации. В соответствии с указанными условиями работы к материалам...

Редуктор для высотного турбовинтового двигателя

Шлицевая гайка воспринимает тягу винта. С ее помощью разъемная внутренняя обойма шарикоподшипника прижата к буртику вала, она также крепит на шлицах ступицу перебора. Проверим витки резьбы гайки на срез: (5.1...

Редуктор червячный

, (6.2) где b - ширина шпонки, мм; . Таким образом, прочность шпоночных соединений обеспечена...

Тепловой и конструктивный расчеты поршневого компрессора

Наибольшее давление на поршневой палец в подшипнике Наибольшее давление в месте соединения пальца с поршнем Напряжение от изгиба Напряжение на срез в сечении между бобышкой поршня и головкой...

Допускаемые напряжения – 80…120 МПа.

Овализация пальца

Овализация пальца происходит, когда от действия вертикальных сил (рис. 7.1, в ) возникает деформация с увеличением диаметра в поперечном сечении. Максимальные приращения диаметра пальца в средней части:

, (7.4)

где – коэффициент, полученный из эксперимента,

К =1,5…15( -0,4) 3 ;

– модуль упругости стали пальца, МПа.

Обычно = 0,02…0,05 мм – эта деформация не должна превышать половины диаметрального зазора между пальцем и бобышками или отверстием шатунной головки шатуна.

Напряжения, которые возникают при овализации (см. рис. 7.1) в точках 1 и 3 внешнего и 2 и 4 внутреннего волокон, можно определить по формулам:

Для наружной поверхности пальца

. (7.5)

Для внутренней поверхности пальца

, (7.6)

где h – толщина стенки пальца, r = (d н +d в)/4; f 1 и f 2 – безразмерные функции, зависящие от углового положения расчетного сечения j , рад.

f 1 =0,5cosj +0,3185sinj -0,3185j cosj ;

f 2 =f 1 - 0,406.

Наиболее нагружена точка 4 . Допустимые значения
s св = 110...140 МПа. Обычно монтажные зазоры между плавающим пальцем и втулкой шатуна 0,01...0,03 мм, а в бобышках чугунного поршня 0,02...0,04 мм. При плавающем пальце зазор между пальцем и бобышкой для прогретого двигателя должен быть не более

D = D¢+(a пп Dt пп - a б Dt б)d пн, (7.7)

где a пп и a б – коэффициенты линейного расширения материала пальца и бобышки, 1/К;

Dt пп и Dt б – повышение температуры пальца и бобышки.

Поршневые кольца

Компрессионные кольца (рис. 7.2) являются основным элементом уплотнения внутрицилиндрового пространства. Устанавливаются с достаточно большим радиальным и осевым зазором. Хорошо уплотняя надпоршневое газовое пространство, они, обладая насосным эффектом, не ограничивают поступление масла в цилиндр. Для этого служат маслосъемные кольца (рис. 7.3).

В основном применяют:

1. Кольца с прямоугольным сечением. Просты в изготовлении, имеют большую площадь контакта со стенкой цилиндра, что обеспечивает хороший теплоотвод от головки поршня, но они плохо прирабатываются к зеркалу цилиндра.

2. Кольца с конической рабочей поверхностью хорошо прирабатываются, после чего приобретают качества колец с прямоугольным сечением. Однако производство таких колец сложно.

3. Скручивающиеся кольца (торсионные). В рабочем положении такое кольцо скручивается и его рабочая поверхность контактирует с зеркалом узкой кромкой, как у конических, что обеспечивает приработку.

4. Маслосъемные кольца обеспечивают на всех режимах сохранение масляной пленки между кольцом и цилиндром толщиной 0,008...0,012 мм. Для предохранения от всплытия на масляной пленке оно должно обеспечивать большое радиальное давление (рис. 7.3).

Различают:

а) Чугунные кольца с витым пружинным расширителем. Для повышения долговечности рабочие пояски колец покрывают слоем пористого хрома.

б) Стальные и сборные хромированные маслосъемные кольца. При эксплуатации кольцо теряет свою упругость неравномерно по периметру, особенно в стыке замка при нагреве. Вследствие этого кольца при изготовлении заневоливают, что обеспечивает неравномерную эпюру давления. Большие давления получают в зоне замка в виде грушевидной эпюры 1 и каплевидной 2 (рис. 7.4, а ).