Главная · На заметку · Средства измерения углов и конусов. Угловые меры и угольники. Угломеры. Методы и средства измерения углов и конусов Измерение углов наклона в машиностроении

Средства измерения углов и конусов. Угловые меры и угольники. Угломеры. Методы и средства измерения углов и конусов Измерение углов наклона в машиностроении

В полигонометрическом ходе измеряют примычные углы, углы поворота и засечки боковых пунктов.

Существует два основных способа измерения углов на пунктах полигонометрии: способ круговых приемов; способ отдельного угла.

Способ круговых приемов

Измерение углов в данном способе начинается с подготовки теодолита для измерения углов, состоящего из:

Центрирования, которое выполняется с помощью оптического отвеса с точностью 1 мм;

Приведения основной оси в отвесное положение с помощью уровня при алидаде горизонтального круга и трёх подъемных винтов;

Установки трубы для наблюдений, состоящей из установки трубы по глазу, установки трубы по предмету и устранение параллакса сетки нитей;

Работа на станции выполняется в следующей последовательности:

Наводят визирную ось зрительной трубы при КЛ на визирную марку, которую при измерении принимают за начальное направление;

Устанавливают лимб и оптический микрометр на отсчёт, близкий к нулю (лучше несколько больше нуля); для этого сначала вращением рукоятки микрометра устанавливают отсчёт по шкале последнего, близкий к нулю, затем вращением рукоятки перестановки лимба тщательно совмещают изображение штрихов противоположных краёв лимба, после чего производят отсчёт и записывают в журнал;

Разводят рукояткой микрометра изображение совмещённых штрихов и снова их соединяют (второе совмещение), производят отсчёт и записывают в журнал; разность двух отсчётов не должна превышать 2;

Открепляют алидаду и наводят визирную ось трубы (вращая алидаду по ходу часовой стрелки) на вторую, а затем третью и т.д. марки; при двух совмещениях производят отсчёты, которые записывают в журнал;

Заканчивают наблюдения повторным визированием на точку начального направления и по полученным начальным и конечным отсчетам убеждаются в неподвижном положении лимба.

Описанные действия составляют первый полу приём.

Повторное наведение на первую марку называется замыканием горизонта. Расхождение между результатами наблюдений на начальное направление в начале и конце полу приёма не должно превышать 8.

Переводят трубу через зенит и производят измерения второго полу приёма в следующей последовательности:

Наводят ось зрительной трубы на начальное направление и при двух совмещениях производят отсчёты, которые записывают в журнал в строку соответствующую наблюдению при КП: запись ведётся снизу вверх;

Открепляют алидаду и поворачивая её против хода часовой стрелки визируют ось трубы на третью (в зависимости от числа направлений),вторую и снова на первую марки. Производят отсчёты при двух совмещениях записывают в журнал.

На этом заканчивается второй полуприем. Два полуприема составляют полный прием.

Второй и последующие приёмы измерения направлений производят в той же последовательности, как и первый, но для ослабления влияния систематических погрешностей делений лимба, лимб поворачивают на угол

G = 180\ n +10", где n – число приёмов.

Измерение углов способом отдельного угла

Порядок наблюдений при измерении угла способом отдельного угла между двумя направлениями остается таким же, как и в способе приемов.

Отличие состоит лишь в том, что не производят повторного наведения на начальную точку и вращают алидаду и в первом и во втором полуприёмах или по ходу или только против хода часовой стрелки.

Значения углов в полуприемах, а также и в отдельных приемах не должны различаться на 8”.

Окончательное значение угла вычисляют как среднее арифметическое из углов, измеренных в отдельных приемах.

При измерении отдельных углов или направлений теодолитами, предусмотренными «Инструкцией по топографической съемке в масштабах 1: 5000, 1: 2000, 1: 1000, 1: 500. Москва, «Недра», 1973 г.», результаты измерений должны находится в пределах установленных допусков.

В полигонометрии 4 класса для теодолитов типов Т2 и Т1 число приемов установлено 4.

Измерение углов рекомендуется производить в утренние и вечерние часы. Время, близкое к восходу и заходу солнца (примерно за час до восхода и час после захода), использовать не следует, так как в эти часы наблюдается наибольшие колебания изображений. Перед началом измерений производят исследования, поверки и юстировку приборов. Измеряют обычно левые по ходу углы, наблюдения записывают в полевые журналы.

В целях устранения ошибок центрирования и редукции при проложении полигонометрических ходов и для некоторого ускорения угловых измерений, рекомендуется применять трехштативную систему измерения углов.

В настоящее время при производстве геодезических работ широко используются приборы различного назначения ведущих зарубежных фирм Leica, Sokia и других фирм геодезического приборостроения Швейцарии, Швеции, Германии, Японии.

Результаты угловых измерений в ГГС должны быть равноточными, т.е. на всех пунктах иметь один и тот же вес, и получены с наивысшей точностью при наименьших затратах труда и времени. Для этого высокоточные измерения каждого направления и угла выполняют по строго одинаковой наиболее совершенной методике в периоды наивыгоднейшего времени наблюдений, когда влияние внешней среды минимально. Необходимо, чтобы каждое направление измерялось на разных диаметрах лимба, равномерно распределенных по кольцу делений; в приеме должно быть обеспечено единообразие операций при измерении каждого направления и симметрия во времени относительно среднего для приема времени наблюдений; целесообразно все направления и углы на пункте измерять симметрично относительно момента изотермии воздуха.

Перед выполнением наблюдений на пункте производят осмотр геодезического знака, откапывают центр до марки с меткой, на площадку наблюдателя поднимают теодолит и другое снаряжение, крышу сигнала накрывают брезентом. В результате осмотра наблюдатель должен убедиться в прочности и устойчивости столика сигнала и в том, что внутренняя пирамида не соприкасается с полом площадки для наблюдателя и с лестницей. Обнаруженные недостатки необходимо устранить.

Перед наблюдением с помощью теодолита согласно схеме геодезической сети отыскивают все подлежащие наблюдению пункты и после наведения на них делают с точностью до 1’ отсчеты по горизонтальному и вертикальному кругам. Кроме того, при наведении на пункты положение алидады фиксируют на нижней части прибора с помощью штрихов против индекса на алидаде. Теодолит устанавливают на штатив или столик сигнала не менее чем за 40 минут до начала наблюдений. К измерению горизонтальных направлений приступают при хорошей видимости, когда изображения визирных целей спокойны или слегка колеблются (в пределах 2”).

Измерение отдельного угла. Незакрепленную алидаду отводят влево на 30 – 40 0 и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора, алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление так же, как и на 1-е. На этом заканчивается полуприем.

Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду на 30 – 40 0 ; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360 0 , наводят на визирную цель 1-го направления, берут отчет. Заканчивается прием.


Способ круговых приемов – способ Струве. Способ был предложен в 1816 г. В.Я. Струве, получил широкое применение почти во всех странах. В нашей стране используется в геодезических сетях 2 - 4 классов и сетях более низкой точности.

В этом способе при неподвижном лимбе алидаду вращают по ходу часовой стрелки и биссектор сетки нитей трубы последовательно наводят на первый, второй,…, последний и снова на первый (замыкание горизонта) наблюдаемые пункты, каждый раз отсчитывая по горизонтальному кругу. В этом состоит первый полуприем. Затем трубу переводят через зенит и, вращая алидаду против часовой стрелки, наводят биссектор на те же пункты, но в обратной последовательности: на первый, последний, …, второй, первый; заканчивают второй полуприем и первый прием., состоящий из первого и второго полуприемов.

Между приемами лимб переставляется на угол

где m – число приемов, i – цена деления лимба.

Наведение биссектора на на визирную цель выполняют только ввинчиванием наводящего винта алидады. Перед каждым полуприемом алидаду вращают по ее движению в данном полуприеме.

В результаты измеренных направлений вводят поправки за рен, наклон вертикальной оси теодолита (при углах наклона визирного луча в 1 0 и более) и поправки за кручение знака – по отсчетам по окулярному микрометру поверительной трубы.

Контроль угловых измерений: по расхождениям значений первого направления в начале и конце полуприема (незамыкание горизонта), по колебанию двойной коллимационной ошибке, определяемой для каждого направления, и по расхождению приведенных к нулю значений одноименных направлений, полученных в разных приемах. В триангуляции 2 – 4 классов незамыкание горизонта и колебание направлений в приемах не должны превышать 5, 6 и 8” для Т05, Т1; ОТ-02 и Т2; колебание 2С – 6,8 и 12” для этих же теодолитов соответственно.

В пунктах 2 класса направления измеряют 12-15 круговыми приемами, на пунктах 3 класса – 9, на пунктах 4 класса – 6, а в сетях полигонометрии 2, 3, 4 классов – 18, 12, 9 приемами.

Уравнивание на станции сводится к вычислению среднего значения по каждому направлению из m приемов. При этом предварительно все измеренные направления приводят к начальному, придав ему значение 0 0 00’00,00”. Вес уравненного направления равен p = m – числу приемов измерений. Для оценки точности направления обычно применяют приближенную формулу Петерса

где μ – с.к.о. направления, полученного из одного приема (с.к.о. единицы веса); ∑‌‌[v ] – сумма абсолютных величин уклонений измеренных направлений от их средних значений, вычисленных по всем направлениям; n, m – число направлений и приемов соответственно. Значения k при m = 6, 9, 12, 15 равны 0,23; 0,15; 0,11; 0,08. С.к.о. уравненного направления (среднего из m приемов) вычисляют по формуле

Достоинства способа круговых приемов: простота программы измерений на станции; значительное ослабление систематических ошибок делений лимба; высокая эффективность при хорошей видимости по всем направлениям.

Недостатки: сравнительно большая продолжительность приема, особенно при большом числе направлений; повышенные требования к качеству геодезических сигналов; необходимость примерно одинаковой видимости по всем направлениям; разбивка направлений на группы при их большом числе на пункте; более высокая точность начального направления.

Способ измерения углов во всех направлениях – способ Шрейбера. Этот метод предложен Гауссом. Методика разработана Шрейбером, применившим его в 1870-х годах в прусской триангуляции. В России начал применяться с 1910 г., используется и в настоящее время. Суть способа: на пункте с n направлениями измеряют все углы, образующиеся при сочетании из n по 2, т.е.

1.2 1.3 1.4 … 1.n

Число таких углов

Значение углов можно получить путем непосредственных измерений и путем вычислений. Если вес непосредственно измеренного угла равен 2 , то вес этого же угла, полученного из вычислений, будет равен 1. Следовательно. Вес угла, полученного из вычислений, в два раза меньше веса непосредственно измеренного угла.

При уравнивании на станции для каждого угла вычисляют его среднее значение из всех приемов (при допустимых расхождениях между приемами). Используя эти средние, находят уравненные на станции углы как среднее весовое значение. Учитывая, что сумма весов измеренного и вычисленных значений данного угла , находим

где n – число направлений на пункте. Углы, полученные в результате уравнивания на станции, по направлениям – равноточны.

Применяя формулу веса функции, для угла находим

Так как , то , откуда . При Р = 1 , , т.е. веса уравненных углов равны половине числа направлений, наблюдаемых с данного пункта. Если каждый угол измерен m приемами, то при n направлениях вес каждого угла будет равен mn / 2. Для равенства весов окончательных углов на всех станциях необходимо, чтобы произведение mn для всех пунктов сети являлось постоянным. Так как вес направления в два раза больше веса угла, то mn – вес направления.

Вес углов, измеренных во всех комбинациях должен быть равен весу углов, измеренных способом круговых приемов, т.е. p = m кр = mn / 2 , откуда 2m кр = mn , где m кр – число приемов в методе круговых приемов. Например, если углы в триангуляции 2 класса измеряют 15 круговыми приемами (m кр = 15), то mn = 30; при числе направлений n = 5 способом во всех комбинациях их нужно измерять 6 приемами (m = 30 / 5 = 6).

При измерении углов способом во всех комбинациях выполняют следующий контроль: 1) расхождение углов из двух полуприемов – 6” для теодолита с окулярным микрометром и 8” – без; 2) расхождение углов из разных приемов 4 и 5” для сетей 1 и 2 классов соответственно; 3) колебание среднего значения угла, полученного по результатам непосредственных измерений и найденного из вычислений, не должно превышать 3 “ при n до 5 и 4” – более 5. Если законченные приемы не удовлетворяют этим допускам, то их переделывают на тех же установках круга. Если второй контроль не выполняется, то перенаблюдают углы, имеющие максимальное и минимальное значение, при тех же установках круга. Все наблюдения выполняют заново, если число повторных приемов более 30% от числа приемов, предусмотренных программой. Наблюдения повторяют и при несоблюдении третьего контроля.

С.к.о. единицы веса и уравненного угла определяют по формулам

Достоинства способа: уравненные результаты являются рядом равноточных направлений; углы можно измерять в любой последовательности, выбирая наиболее благоприятные условия видимости и обеспечивая в итоге высокую точность; малая продолжительность одного приема (2-4 минуты измерения угла) обеспечивает меньшую зависимость точности результата от кручения сигнала; большое число перестановок горизонтального круга ослабляет влияние ошибок диаметров лимба.

Недостатки: быстрое уменьшение числа m приемов измеренного угла с ростом числа n направлений на пунктах (малое число приемов непосредственного измерения углов снижает точность их средних и уравненных значений); быстрый рост объема работ при n > 5.

Способ неполных приемов предложен в 1954 г. Ю.А. Аладжаловым. Все направления разбивают на группы по три направления (без замыкания горизонта) так, чтобы определяемые по ним углы соответствовали бы углам, измеренным во всех комбинациях, но требовали бы меньшего объема работ и позволили увеличить число приемов непосредственных измерений каждой группы направлений. Следовательно, в этом способе заложено стремление избавиться от недостатков методов Струве и Шрейбера при наблюдении на пунктах с большим количеством направлений.

Практически не всегда путем подбора можно разбить направления на группы из трех направлений. В этом случае кроме групп из трех направлений измеряют отдельные углы, дополняющие программу. Программа измерений приведена в Инструкции. Способ неполных приемов применяется в триангуляции 2 класса на пунктах с 7 – 9 направлениями.

Обработка результатов измерений на станции заключается в определении средних значений направлений из m приемов в каждой группе и средних значений отдельных углов. По этим средним значениям вычисляют все углы – по три угла из каждой группы из трех направлений. Окончательно уравненные углы вычисляют по формулам способа Шрейбера. С.к.о. уравненных направлений определяют по формуле

где v – разности между измеренными и уравненными значениями углов; n – число направлений на пункте; r – число отдельно измеренных углов в программе. Вес уравненных направлений

где m – число приемов измерений направлений и отдельных углов; n, k – число направлений на пункте и в группе соответственно (k = 3, для углов k = 2).

Достоинства способа: результаты уравнивания на станции равноточны; объем работы на пункте на 20 – 25% меньше, чем в способе Шрейбера; число приемов непосредственных измерений групп при n = 7 – 9 больше, чем в способе Шрейбера, что позволяет более полно ослаблять ошибки измерений; дает возможность измерять направления, на которые в данный момент имеется хорошая видимость; короткая продолжительность приема (2 – 4 минуты), что позволяет уменьшить зависимость точности измерений от качества сигнала.

Недостатки: отсутствуют правила образования групп из трех направлений; при n = 8 нужно измерять большое число отдельных углов, что приводит к неклторому нарушению равноточности уравненных направлений; программа не предусматривает ослабление односторонне действующих ошибок измерений.

Видоизмененный способ измерения углов в комбинациях предложен А.Ф.Томилиным. Используется в триангуляции 2 класса на пунктах с 6 – 9 направлениями. В этом способе на станции с n направлениями независимо измеряют 2n углов:

1.2 2.3 3.4 … n.1;

1.3 2.4 3.5 … n.2.

Каждый угол измеряют 5 или 6 приемами. В этом способе измеряют не все углы, образующие сочетания направлений из n по 2, поэтому результат уравнивания на станции не является рядом равноточных направлений, и формулы для вычислений поправок в измеренные углы являются довольно сложными.

Достоинства способа: при n =7 – 9 число приемов непосредственных измерений углов больше и их точность выше, чем в способе Шрейбера; требует меньшего объема измерений, чем способ во всех комбинациях.

Недостатки: сложные формулы для вычисления поправок в измеренные углы.

Для контроля углов применяют различные средства: угольники, угловые меры, конические калибры, угломеры, механические и оптические делительные головки, гониометры, синусные линейки и др. Угольники, калибры и угловые меры являются жесткими контрольными инструментами, они имеют определенные значения углов. Угольники подразделяются на цельные (рис. 28, а) и составные (рис. 28, б). Угловые меры – плитки (рис. 28, в) выпускаются наборами с таким расчетом, чтобы из трех – пяти мер можно было составлять блоки в пределах от 10 до 90 0 ; их изготовляют в виде плиток толщиной 5 мм с точностью угла (1-й класс) и (2-й класс). Они имеют или один рабочий угол или четыре рабочих угла: .

Угловые меры в основном применяют для поверки и градуировки различных средств измерения углов , но они могут применяться и непосредственно для измерения углов у деталей машин.

Для измерения углов у деталей чаще всего пользуются универсальными угломерами: нониусными с величиной отсчета , оптическими с величиной отсчета , индикаторными с величиной отсчета .


Рис. 28. Виды жестких измерительтельных средств:

а – цельный угольник, б – составной, в – угловая мера.

Угломер с нониусом (рис. 29) состоит из трех основных частей: жестко скрепленных линейки 1 и лимба 2 , который имеет полукруглую форму; жестко скрепленных линейки 5 с сектором 3 и дополнительного угольника 6 , которым пользуются при измерении острых


углов (менее 90 0). Линейка 5 вращается на оси 4 , связанной с лимбом. На дуге лимба 2 нанесена шкала с ценой деления 1 0 , а на дуге сектора 3 – нониус, который дает возможность отсчитывать дробные части шкалы.

Рис. 29. Нониусный угломер.

Для измерения острых углов (менее 90 0) к линейке 5 присоединяют дополнительный угольник 6 .

Нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы лимба 2 , - число минут.

При измерении тупых углов (более 90 0) дополнительный угольник 6 не нужен, но в этом случае к показаниям, снятым по шкале, необходимо еще прибавлять 90 0 .

Находят применение также оптические угломеры, имеющие две линейки и корпус, в котором размещен стеклянный диск со шкалой, разделенной на градусы и минуты.


Рис. 30. Схема измерения угла конуса на синусной линейке.

Отчет производится после того, как положение угломера зафиксировано зажимным рычагом.

Косвенные методы контроля конусов . Наиболее точными и широко применяемыми являются косвенные методы измерений, при которых измерят не непосредственно углы конусов, а линейные размеры, геометрически связанные с углами.

После определения значения этих линейных размеров расчетом находят и значения углов.

Измерение с помощью линейки . Синусные линейки, выпускаемые инструментальной промышленностью, делятся на три типа: тип I – без опорной плиты, тип II – с опорной плитой, тип III – с двумя опорными плитами и двойным наклоном.

Предметный столик 1 (рис. 30 ) синусной линейки имеет два ролика 2 и 3 с определенным расстоянием между ними L . Если под одним из роликов подложить блок 4 из плоскопараллельных концевых мер размером h , то предметный столик наклонится на угол и его можно определить по формуле:

.

При измерении угла конуса проверяемое изделие устанавливают на предметный столик, ориентируя его так, чтобы измеряемый угол находился в плоскости, перпендикулярной роликам синусной линейки (для этого используют боковые поверхности предметного столика). Установив изделие 5 на предметный столик 1, под ролик подкалывают блок из плоскопараллельных концевых мер 4. Размер блока определяют по формуле

,

где - номинальное значение измеряемого угла.

При разности показаний измерительной головки 6 в двух положениях на измеряемой длине можно определить отклонения измеряемого угла () от номинального значения по формуле

.

Действительную величину угла можно определить, подобрав такой блок плиток, при котором показания измерительной головки не будет отличаться на всей измеряемой длине.

Измерение наружных конусов с помощью роликов . Этот косвенный метод измерения (рис. 31 ) угла конуса изделия 1 осуществляется при использовании плиты 2, двух роликов 3 одинакового размера (можно использовать ролики от роликовых подшипников), концевых мер 4 и микрометра с ценой деления 0,01 мм или рычажного с ценой деления 0,002 мм .


Рис. 31. Схемы измерения угла конуса с помощью калиброванных

роликов (а, б),колец (в), шариков (г).

Сначала измеряют размер по диаметрам роликов 3 (рис. 31,а ), затем под ролики подкладывают блоки из концевых мер 4 одинакового размера и определяют размер (рис. 31,б ). Зная размеры , , находят конусность по формуле

или ,

По такому же принципу измеряют конусность у вала с помощью двух калиброванных колец (рис. 31,в ) с заранее известными диаметрами D и d и толщиной . После надевания колец на конус вала измеряют размер H и определяют тангенс угла по формуле

.

Измерение внутренних конусов . Угол внутреннего конуса определяют с помощью двух шариков, диаметры которых заранее известны, и глубиномера (рис. 31,г ).

Втулку 1 ставят на плиту 2, закладывают внутрь шарик малого диаметра d и измеряют при помощи глубиномера (микрометрического или индикаторного) размер , затем закладывают шарик большего диаметра D и измеряют размер . При таком методе измерения конусность втулки определяют по формуле:

.

Контроль конусов калибрами

Контроль калибрами (рис. 32) основан на проверке отклонений базорасстояния по методу осевого перемещения калибра относительно проверяемой детали или на проверке по краске.


Рис. 32. Конусные калибры:

а – втулка, б – пробка, в – скоба.

Калибрами для проверки наружных конусов служат втулки (рис. 32, а ) или скоба (рис. 32, в ), а для внутренних конусов – пробки (рис. 32, б ), со стороны большого диаметра которых наносятся риски на расстоянии от торца калибра, равном допуску базорасстояния .

Торец проверяемых конических вала и втулки при сопряжении с калибром не должен выходить за пределы рисок или уступа на калибре. Если это условие нарушено, то угол конуса выходит из установленных пределов (допуска).

Конусные калибры – втулки проверяют по контрольным калибрам – пробкам. Контрольные калибры изготовляют с повышенной точностью конусности и проверяют универсальными средствами.

Вопросы для повторения:

1. Сколько степеней точности установлено для допусков на угловые размеры и почему допуск на угол уменьшается с увеличением длины меньшей стороны угла?

2. Назовите примеры применения конических соединений и их преимущества в сравнении с цилиндрическими соединениями.

3. Начертите конус и покажите основные параметры его.

4. Что называется базорасстоянием и в какой зависимости находится изменение его величины от допусков на диаметры конуса и конусности?

5. Как устроен угломер с нониусом и какие углы им можно измерять?

6. Расскажите о косвенных методах измерения угла наружного и внутреннего конусов.

7. Как осуществляется контроль наружных и внутренних конусов коническими калибрами?

Литература:


Лекция 7 . ДОПУСКИ, ПОСАДКИ И СРЕДСТВА ИЗМЕРЕНИЯ

РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Основные элементы метрической крепежной резьбы

и допуски на них

В машиностроении применяют различные резьбовые соединения: цилиндрические, конические, трапецеидальные и др. Эти резьбы имеют ряд общих признаков, а так как наиболее распространенными являются цилиндрические крепежные резьбовые соединения с треугольным профилем, то применительно к ним и будут рассмотрены допуски, методы и средства контроля.



Профиль метрической цилиндрической резьбы (рис. 33, а) представляет собой равносторонний треугольник с углом при вершине , равным 60 0 . Основными параметрами резьбы, общими для наружной резьбы (болта) и внутренней резьбы (гайки), являются: наружный диаметр и , внутренний диаметр и , средний диаметр и , шаг резьбы , угол профиля , угол между стороной витка и перпендикуляром к оси резьбы , теоретическая высота витка , рабочая высота витка резьбы . При измерении угла профиля и расчетах допусков учитывается угол , так как при нарезании резьбы ее профиль может быть завален на сторону так, что с правой стороны будет больше или меньше, чем с левой стороны, а в целом весь угол профиля может быть равен 60 0 .

Рис. 33. Метрическая цилиндрическая резьба:

а – профиль резьбы, б – схема расположения полей допусков.

Под средним диаметром понимают диаметр воображаемого, соосного с резьбой, цилиндра, который делит профиль резьбы так, что толщина витка, ограниченная на рис. 33, а буквами а – б, равна ширине впадины, ограниченной буквами б – в . Шаг резьбы – это расстояние вдоль оси резьбы между параллельными сторонами двух рядом лежащих витков.

Единой системой допусков и посадок СЭВ для метрической резьбы с размерами от 0,25 до 600 мм предусмотрены три стандарта: СТ СЭВ 180-75 определяет профиль резьбы; СТ СЭВ 181-75 – диаметры и шаги; СТ СЭВ 182-75 – основные размеры. Предельные отклонения и допуски резьбовых соединений с зазорами устанавливает СТ СЭВ 640-77.

Значения диаметров резьбы разбиты на 3 ряда (1, 2 и 3-й). При выборе диаметров резьбы предпочтительным является первый ряд. Второй ряд диаметров резьбы берется, если диаметры 1-го ряда не удовлетворяют требованиям конструктора; в последнюю очередь диаметры берутся из 3-го ряда. По числовой величине шага резьбы для диаметров 1-64 мм делятся на две группы: с крупным шагом и мелкие, а резьбы диаметром свыше 64 мм , (до 600 мм ) имеют только мелкие шаги.


Допуски для цилиндрической крепежной резьбы () установлены на следующие параметры: на средний диаметр болта и гайки в виде величин и , (поле допуска для гайки расположено в плюс, а для болта – в минус от номинального размера); на наружный диаметр болта и на внутренний диаметр гайки .

Допуски на наружный диаметр гайки и внутренний диаметр болта не установлены. Технология нарезания резьбы и размеры резьбообразующих инструментов (метчиков, плашек и др.) гарантируют, что наружный диаметр резьбы гайки не будет меньше теоретического, а внутренний диаметр резьбы болта – больше теоретического.

На шаг резьбы и угол профиля в отдельности допуски не установлены, а возможные отклонения по ним допускаются за счет изменения среднего диаметра резьбы в пределах его допуска. Такая компенсация погрешностей шага и угла за счет допуска , возможна потому, что шаг и угол геометрически связаны со средним диаметром.

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).


Приемы измерения углов смотрите рис. 2.14.


Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).



Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).


Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).


Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).


Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).


Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.


Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).


Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минута состоит из 60 угловых секунд. Особенность угловых размеров состоит в том, что точность их изготовления и контроля зависит от длины сторон, образующих угол. Чем короче сторона, тем труднее изготовить и измерить угол. Методы измерения углов можно разделить на три основных вида:

1) метод сравнения с жесткими угловыми мерами;

2) абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой (угол при этом отсчитывают непосредственно по шкале прибора в угловых единицах);

3) косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Угловые меры и угольники

Угловые меры (рис. 1.19, а) изготавливают в виде прямых призм и применяют для контроля углов и градуировки угломерных инструментов и угловых шаблонов. Угловые меры аналогичны рассмотренным ранее плоскопараллельным концевым мерам длины. Угловые меры выпускают в виде наборов с градацией углов через 2°, 1°,15′ и различными номинальными значениями углов. Изготавливают угловые меры четырех классов точности (00, 0, 1, 2) и аттестуют на разряды. Угловые меры могут притираться друг к другу, но их сцепление менее надежно, чем у плоскопараллельных концевых мер длины, поэтому блоки угловых мер соединяют друг с другом при помощи специальных приспособлений. Плитки в блоки соединяют при помощи державок (рис. 1.19, б-г), винтов и конических штифтов. Державки (см. рис. 1.19, б, в) позволяют собирать блоки из двух и трех угловых мер. Для получения дополнительных углов применяют державки со специальными лекальными линейками (см. рис. 1.19, г). Контроль углов угловыми мерами производят обычно на просвет. В случае отсутствия угловой меры с необходимыми значениями угла или в случае, когда изделие не позволяет использовать угловую меру, изготавливают специальный угловой шаблон.

Для контроля и разметки прямых углов (90 °) предназначены проверочные угольники (рис. 1.20), которые применяют также для контроля взаимного расположения поверхностей деталей при сборке. Изготавливают угольники следующих типов УЛ, УЛП, УЛШ, УЛЦ, УП, УШ.

Угольники типов УЛ, УЛП и УЛШ предназначены для точных лекальных работ, они имеют две острые рабочие грани.

Угольники типа УП и УШ используют при слесарной сборке, обработке и ремонте.

Угольники типа УЛЦ представляют собой отрезок вала с торцами, перпендикулярными образующей цилиндрической поверхности. Эти угольники используют для проверки других угольников, так как они позволяют получить точное значение угла 90°.

Угломеры

Для контроля углов методом непосредственной оценки в машиностроении широко применяют угломеры с нониусом . Эти угломеры выпускают двух типов: УН — для измерения наружных и внутренних углов (рис. 1.21, а) и УМ — для измерения только наружных углов (рис. 1.21, б).

Угломер типа УН состоит из основания 2 с нанесенной по окружности градусной шкалой, которое жестко соединено с линейкой 3. Линейка имеет снаружи доведенную измерительную поверхность. По основанию 2 перемещается сектор 5 с нониусом 1 и стопором 4. К сектору крепят угольник 6 при помощи державки 9. К угольнику 6 крепят съемную линейку 7 при помощи державки 8. Варианты измерений показаны на рис. 1.22. Угломер позволяет измерять углы в диапазоне от 0 до 50° (рис. 1.22, а). Для измерения углов в диапазоне от 50 до 140° с угломера снимают угольник, а на его место устанавливают линейки (рис. 1.22, б). Чтобы измерить наружные углы в диапазоне от 140 до 230°, необходимо снять линейку, измерения в этом случае ведут с использованием угольника. Если с угломера снять угольник, линейку и державки, то с его помощью можно будет контролировать размеры углов в диапазоне от 240 до 320°. Следовательно, общий диапазон измерений угломером УН составляет от 0 до 320 ° для наружных углов.

При измерении углов деталей сложных контуров необходима установка угломера на заданную величину длины прямолинейного контура. Такая установка осуществляется при помощи блока концевых мер длины 2, который устанавливается на съемную линейку 3, а основание угломера перемещают по угольнику 1 так, чтобы измерительная линейка была установлена на блоке концевых мер. Схема такой установки приведена на рис. 1.22, в.

Если с угломера снять угольник и линейку, то им можно измерять внутренние углы в диапазоне от 40 до 180° (рис. 1.22, г).

Измерение углов в труднодоступных местах производят по схеме, показанной на рис. 1.22, д.

Угломер типа УМ (см. рис. 1.21, б) широко применяется при обучении слесарному делу. Он состоит из основания 4 со шкалой, проградуированной в градусах. На основании закреплена линейка 3. Подвижная линейка 10 с сектором 9 и нониусом 7 может поворачиваться на оси А, фиксация линейки в момент измерения осуществляется стопорным винтом 5. Угломер имеет винт 6 для микрометрической подачи измерительной подвижной линейки 10 с сек- , тором 9. На подвижной линейке крепится угольник 2 при помощи державки 1. Угломер обеспечивает измерение углов в диапазоне от О до 180°. Для измерения углов свыше 90° угольник 2 необходимо снять, в этом случае для получения значения угла к показаниям по шкалам угломера прибавляют 90°.

При работе с угломером типа УМ необходимо:

Определить способ измерения угла (с использованием угольника или без него);

Убедиться в плавности перемещения сектора угломера;

Убедиться в точности установки угломера на ноль;

При измерении прочно удерживать угломер за корпус;

Измерительная поверхность должна плотно прилегать к поверхности детали (без просвета и перекоса);

Обратить внимание на достигаемую точность измерений, которая выбита на нониусе.