Главная · Прочее · Двухфазное короткое замыкание в сети. Замыкания на землю и заземления

Двухфазное короткое замыкание в сети. Замыкания на землю и заземления

Однофазные замыкания на землю - это такое повреждение на линиях электропередачи , при котором одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. ОЗЗ являются очень распространенным видом повреждения, на однофазные замыкания на землю приходится 70- 90% электрических повреждений. .

Сама по себе передача электроэнергии производится по специальным трехфазным электрическим цепям высокого напряжения. Одна из особенностей транспорта электроэнергии заключается в наличии нейтрального провода в схеме, который представляет из себя общую точку источников питания трехфазной электрической системы, также называемой нейтралью. Процессы, протекающие в сети при возникновении такого замыкания, значительным образом зависят от режима работы нейтрали данной сети.

В сетях с изолированной нейтралью ток однофазного замыкания на землю замыкается через емкости неповрежденных фаз. Его значение невелико и определяется суммарной емкостью неповрежденных фаз. Это позволяет эксплуатировать сеть, не отключая повреждения данного вида незамедлительно. Но в таком случае изоляция оборудования будет стареть намного быстрее, и это может привести к более опасному явлению - короткому замыканию, которое требует немедленного отключения поврежденного участка сети.

В сетях с заземленной нейтралью однофазное замыкание на землю является коротким замыканием . Ток повреждения в данном случае замыкается через заземленные нейтрали первичного оборудования и имеет значительную величину. Такое повреждение требует немедленного обесточивания поврежденного участка. Учитывая данную особенность, то выбор оптимального типа нейтрали является сложной технико-экономической задачей. В России данная задача нашла решение в таком виде, что распределительные сети уровнем 6-35 кВ эксплуатируются в изолированном от земли режиме нейтрали источников питания, а сети более высокого уровня напряжения эксплуатируются в режиме, когда нейтраль напрямую связана с землей – глухозаземленный и эффективный режим нейтрали. Причины однофазных замыканий на землю Износ или повреждение изоляции оборудования - основная причина возникновения ОЗЗ. Изоляция может быть нарушена по разным обстоятельствам. Это может произойти как вследствие внешнего механического повреждения, так и по причине старения.

Последствия ОЗЗ

1. Опасность для жизни

Единственным путем протекания тока однофазного замыкания на землю в сети с изолированной нейтралью является емкостная связь между фазными проводами линий и землей. В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Что достаточно, чтобы представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.

2. Риск двойного короткого замыкания

В большинстве случаев возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения между элементами подключенными к фазам сети и землей, превышающие в 2-4 раза номинальное фазное напряжение. Оборудование в сети с изолированной нейтралью рассчитано, на длительную работу максимум только на линейное напряжение. Изоляция в процессе замыкания может не выдержать таких перенапряжений и возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.

3. Преждевременный износ оборудования

В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.

Учитывая все вышеизложенные факторы, данные замыкания должны идентифицироваться релейной защитой, и поврежденная линия должна селективно отключаться.

Защита от ОЗЗ

Факторы, влияющие на работу защит

  1. Вид замыкания (металлическая связь, замыкание через переходное сопротивление, замыкание через дугу);
  2. Устойчивость замыкания (устойчивые и неустойчивые: прерывистое замыкание и замыкание через перемежающуюся дугу);
  3. Наличие небалансов в сети;
  4. Переходные процессы схожие с процессами при ОЗЗ (включение линии, наводка от других ЛЭП при ОЗЗ на них и т.д.).

Виды защит от ОЗЗ

Виды защит от ОЗЗ подразделяются на два больших класса - это индивидуальные и централизованные защиты.

Индивидуальные защиты

Такой вид защиты считается достаточно простым, но при этом часто дает ложное срабатывание.

Подвиды индивидуальных защит:
  • токовая защита нулевой последовательности;
  • токовая направленная защита нулевой последовательности;
  • защита по активной мощности нулевой последовательности;
  • защита нулевой последовательности на токах высших гармоник;
  • защита, реагирующая на наложенный ток.

Среди прочих недостатков индивидуальных защит выделяют вероятность отказа в срабатывании при ОЗЗ через переходные сопротивления, нестабильность состава и уровня высших гармоник в токе НП, снижение чувствительности РЗА, отказ в срабатывании при перемежающихся дуговых ОЗЗ.

Централизованные защиты

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность. Представителем таких защит являются защиты типа Геум, которые используют в своей работе несколько алгоритмов: штатный алгоритм, алгоритм суммарного тока, фазный и логические алгоритмы.

Подвиды централизованных защит:
  • централизованная защита с поочередным опросом каналов;
  • централизованная защита с параллельным опросом каналов;
  • централизованная защита с параллельным синхронизированным опросом каналов.

Межфазное замыкание является аварийным режимом работы электрической сети. Оно возникает при электрическом соединении между разноименными фазами при ухудшении изоляции между ними, механических повреждениях или ошибках при эксплуатации.
Кроме межфазных замыканий различают однофазные замыкания, происходящие когда соединяются между собой ноль и фаза. Соединение фазного проводника с землей называется замыканием на землю.
Замыкания происходят в электроустановках, имеющих как заземленную нейтраль, когда нулевой проводник связан с контуром заземления, так и изолированную, где он изолирован от земли на всем протяжении. Они могут возникнуть между двумя фазами, тремя фазами с нулем или без него.
Замыкания могут возникать в любом месте электрической сети. Им подвержены:

  • опорные и проходные изоляторы, на которых устанавливаются токопроводящие шины;
  • обмотки электрических машин: силовых трансформаторов, электродвигателей и генераторов;
  • силовые кабельные линии;
  • воздушные линии электропередач;
  • изолирующие элементы коммутационной аппаратуры: выключатели, разъединители, рубильники, колодки предохранителей, ;
  • потребители электрической энергии, например, электронагреватели, конденсаторные установки.

В различных ситуациях замыкания протекают по-разному. Различают:

  • «металлические» замыкания, при которых соединение проводников двух фаз имеет малое сопротивление, исключающее образование дуги и искр;
  • замыкание через дугу , образующееся в случае наличия между замкнутыми проводниками воздушного зазора;
  • «тлеющее» замыкание, характерное для кабельных линий, загрязненных изоляционных поверхностей, когда ток между фазами идет через участок с небольшим сопротивлением, разогревая его;
  • замыкание в полупроводниковых элементах при их пробое.

Для защиты от междуфазных замыканий в электроустановках 380/220 В применяются:

Для защиты электроустановок с напряжением более 1000 В применяется комплекс устройств, называемый релейной защитой. Он включает в себя датчики тока (трансформаторы тока), напряжения (трансформаторы напряжения), реле защиты и управляемые силовые коммутационные элементы.
Реле защиты бывают электромеханическими, полупроводниковыми или микропроцессорными. Задача коммутационного элемента (масляного, вакуумного или элегазового выключателя) – обеспечить отключение поврежденного участка по команде от устройства защиты. При этом он должен выдержать отключение тока короткого замыкания.

Токи межфазного замыкания

Важной электрической характеристикой короткого замыкания является его ток. При проектировании электроустановок его обязательно рассчитывают по определенной методике для нескольких точек. Делается это для того, чтобы правильно выбрать параметры электрооборудования и установки защитных устройств: токи отсечки автоматических выключателей и характеристики срабатывания релейной защиты.
На величину тока короткого замыкания (КЗ) оказывают влияние следующие факторы:

  1. Расстояние от точки замыкания до источников электроэнергии. Чем ближе замыкание от мощных трансформаторов, генераторов, тем ток замыкания больше;
  2. Вид, сечение и протяженность соединительных кабельных и воздушных линий, соединяющих источник питания с точкой КЗ. Количество и характеристики коммутационных аппаратов в этой цепи и их техническое состояние. При расчете все эти данные преобразуют в эквивалентное сопротивление сети. Зная мощность источника электроэнергии, рассчитывают ток КЗ;
  3. Вид межфазного замыкания: при металлическом замыкании ток наибольший, его и рассчитывают при проектировании. При дуговом замыкании ток меньше. Но если дуга неустойчива и постоянно то гаснет, то загорается вновь, возникают переходные процессы, приводящие к кратковременному превышению расчетных токов.

При «тлеющем» замыкании ток намного ниже расчетного, что делает невозможным реакцию защитных устройств на его появление. Тлеющее замыкание может внезапно перейти в дуговое или металлическое, сработает защита, но при повторном включении ток снова окажется за порогом чувствительности. Поиск места повреждения электрооборудования в данном случае затруднен и без измерения изоляции или испытаний повышенным напряжением невозможен.

Итак, чем дальше замыкание происходит от источника питания, тем меньше величина его тока. Объясняется это тем, что каждый кабель, распределительный щиток или воздушная линия увеличивают величину эквивалентного сопротивления электрической сети. По закону Ома при увеличении сопротивления нагрузки ток в цепи уменьшается.

Это позволяет реализовать селективное отключение поврежденных участков электрической сети. Автоматический выключатель на вводе в квартиру при номинальном токе 16 А и характеристикой «С» имеет ток срабатывания электромагнитного расцепителя 80 – 160 А. Ток замыкания, превышающий 160 А гарантированно приведет к его отключению. Но тока короткого замыкания в квартире вряд ли хватит для отключения выключателя на трансформаторной подстанции, питающей весь дом, отключающегося при 500А. И его даже не заметит защита кабельной линии, питающей подстанцию.

Воздействие межфазного замыкания на электрооборудование и людей

Когда возникают межфазовые замыкания, они разрушают электрооборудование или срывают режим его работы. При прохождении тока замыкания по токоведущим частям они одновременно испытывают динамическое и термическое воздействия.

Динамическое воздействие возникает при очень больших токах, в основном это имеет значение на мощных подстанциях, электростанциях и линиях электропередач энергосистемы. Связано это с тем, что проводники с током, расположенные на некотором расстоянии друг относительно друга, в зависимости от направления этих токов либо притягиваются, либо отталкиваются. Сила этого взаимодействия прямо пропорциональна величине токов и обратно пропорциональна расстоянию между ними.

При мощных авариях шины распределительных устройств взаимодействуют между собой с такой силой, что ломаются изоляторы, на которых они установлены. Обмотки электрических машин вырывает из пазов, а кабели извиваются, как змеи. Поломки токопроводов могут привести к возникновению дополнительных замкнутых участков, что делает аварийную ситуацию глобальней.

При проектировании все электрооборудование обязательно проверяют на то, чтобы оно выдержало ток КЗ без разрушения. У каждого электроаппарата есть заявленный в паспорте производителем ток динамической устойчивости, который должен быть больше расчетного тока КЗ.

Термическое воздействие заключается в нагреве проводников в процессе прохождения токов КЗ. Они превращаются в нагревательные элементы, на которых выделяется тепло. Мощность, выделяемая коротким замыканием на участке цепи пропорциональна его сопротивлению, помноженному на квадрат тока.

Все выпускаемое электрооборудование имеет помимо паспортной величины динамической устойчивости еще термическую устойчивость. Она тоже должна проверяться по расчетным параметрам КЗ, в которые дополнительно входит еще и время воздействия.

Когда в квартире возникает межфазное замыкание, бытовые автоматические выключатели срабатывают почти мгновенно. А вот время отключения защитных аппаратов в распределительных устройствах не может быть равно нулю. Тогда они могут срабатывать группами, что приведет к массовым отключениям и затруднению поисков поврежденных участков. Чем ближе к потребителю защитный аппарат, тем меньше время его срабатывания. Вышестоящий аппарат является его резервом, он сработает при токе КЗ, если нижестоящий его не отключит. Но время работы у него чуточку больше.

На участках, защищаемых аппаратами с выдержкой времени существует больше шансов, что шины или провода при КЗ будут расплавлены. Но и при мгновенном отключении разогреться оборудование успевает очень сильно.

Еще одним фактором воздействия межфазного замыкания на электрооборудование и людей является электрическая дуга. Она разогревает поверхности, с которыми соприкасается, до нескольких тысяч градусов. При таких температурах плавятся все использующиеся в электротехнике металлы. За время срабатывания защит порой выгорает несколько метров шин, пережигаются пополам кабельные линии.

Электрическая дуга выделяет тепло и в окружающее пространство. При наличии рядом горючих материалов может произойти пожар. Загореться может иизоляция кабелей и трансформаторное масло, использующееся в электроаппаратах для охлаждения или гашения дуги при коммутации.

Если рядом находятся люди, они могут пострадать или от ожогов сетчатки глаза из-за ослепляющего воздействия дуги, или получить другие ожоги. Такие ожоги трудно вылечить, так как они сопровождаются металлизацией: во все стороны летят брызги расплавленного металла. Осложнения возникают при загорании одежды на пострадавшем, которая вспыхивает мгновенно.

Поэтому при работе в действующих электроустановках безопасности уделяется особое внимание. Попасть под действие электрической дуги можно только при ошибках при выполнении переключений, подготовке рабочего места или нарушении технологии производства работ. Оказаться в месте, где замыкание возникло само по себе из-за пробоя изоляции, на практике нереально.

При КЗ напряжение в точке его возникновения существенно снижается. Происходит это в силу того же закона Ома: напряжение на участке цепи пропорционально току через него и его сопротивлению. Поскольку сопротивление в месте КЗ намного ниже, чем во всей остальной цепи до источника питания, то каким бы большим не был ток, напряжение все равно резко уменьшится. Это приводит к дополнительным проблемам: в остальной части электроустановки отпадают пускатели электродвигателей, сбоят электронные устройства, системы компьютерного управления. Поэтому на важных энергетических объектах системы управления и контроля за работой электрооборудования питаются от независимого источника электроэнергии (аккумуляторной батареи), а компьютерные системы обязательно имеют ИБП.

Профилактика межфазных замыканий

Частота возникновения КЗ в любых электроустановках зависит от следующих факторов:

  • возраста эксплуатируемого электрооборудования;
  • своевременности и качества выполнения планово-предупредительных ремонтов (ППР);
  • соблюдения режимов работы электрооборудования;
  • квалификации обслуживающего персонала.

На предприятиях всегда ведется статистический анализ всех аварийных отключений. На основании его делаются выводы, позволяющие предотвратить возникновение похожих инцидентов. Кроме того, каждое предприятие имеет собственный план модернизации электрооборудования, предусматривающий замену старых, физически и морально устаревших устройств на новые, современные.

Замыкания на землю и заземления

Евгений Иванов, сопредседатель проблемного комитета «Электробезопасность» Международной академии наук экологии и безопасности жизнедеятельности, д. т. н., профессор кафедры безопасности жизнедеятельности СПГЭТУ «ЛЭТИ»

В предыдущих номерах нашего журнала, рассматривая вопрос об основах электробезопасности в свете современных требований, мы писали о видах действия электрического тока на человека, схемах включения человека в цепь тока, о сопротивлении изоляции и емкости электроустановок относительно земли. В этом материале речь пойдет о замыканиях на землю и заземляющих устройствах.

Электротравмы в большинстве случаев происходят в режимах однофазного (однополюсного) прикосновения человека к токоведущей части электроустановки или к нетоковедущим металлическим конструкциям, случайно оказавшимся под напряжением вследствие повреждения электрической изоляции. Пожароопасные ситуации также в большинстве случаев возникают в режимах однофазного (однополюсного) замыкания на землю токоведущих частей электроустановки при эксплуатационных повреждениях изоляции. В этих режимах значения токов в цепях «токоведущая часть - земля» или «токоведущая часть - тело человека - земля» определяются параметрами цепей связи токоведущих частей с землей не только через сопротивления утечки, как это указывалось в предыдущей статье, но и через сопротивления замыкания на землю или принятого в проекте электроустановки искусственного заземления токоведущих частей.

Замыкания на землю
Согласно Правилам устройства электроустановок (п. 1.7.10) замыканием на землю называется случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или с землей непосредственно.
Вблизи места замыкания на землю формируется зона растекания тока - пространство, на поверхности которого электрические потенциалы отличны от нуля. Понятие об этой зоне - одно из основополагающих в теории электробезопасности. Поэтому рассмотрим его подробнее, взяв в качестве примера линию передачи электроэнергии (ЛЭП).
Пусть по какой-либо причине происходит замыкание фазного провода С на опору ЛЭП (увлажненность, загрязнение изоляторов, крылья птицы и пр.). Ток замыкания на землю протекает по контуру: фаза С - опора ЛЭП - земля - сопротивление заземления нейтрали R0 трансформатора ЛЭП - нейтраль 0 трансформатора (рис. 1).
Вблизи опоры ЛЭП формируется зона растекания тока (считается, что ее радиус равен 20 м). В этой зоне ток протекает в земле по радиусам во все стороны от фундамента опоры. Поэтому упрощенно поперечное сечение проводящего слоя земли можно принять за полусферу, площадь которой
S = 2p x 2 ,
где x - расстояние до опоры. То есть по мере удаления от фундамента опоры ток замыкания на землю протекает как бы по проводнику с переменным сечением, увеличивающимся по мере удаления от места замыкания. Наибольшая плотность тока j зам наблюдается вблизи места замыкания (здесь наименьшее сечение проводника - земли). По мере удаления от места замыкания сечение проводника - земли возрастает и поэтому плотность тока j зам = I зам /2p x 2 постепенно уменьшается до бесконечно малого значения. Соответственно изменяется и напряженность электрического поля в зоне растекания тока E = r j зам (здесь r - удельное сопротивление грунта) - от максимального значения до нуля. То есть потенциалы электрического поля в зоне растекания тока изменяются от максимального значения j зам в месте замыкания на землю до практически нулевого значения на расстоянии 20 м от места замыкания. Такая закономерность характерна для любых вариантов замыканий на землю (замыкание на опору ЛЭП взято лишь для наглядности).

Сопротивление зоны растекания тока
Поскольку в зоне растекания тока существуют электрические потенциалы, она может представлять опасность для жизни человека. Поэтому всегда необходимо выполнять количественную оценку ее параметров, в частности, определять значение максимального потенциала j зам. Этот потенциал равен падению напряжения на зоне растекания тока в контуре тока замыкания на землю: j зам = I зам R зам, где R зам - сопротивление зоны растекания тока. Так же как и сопротивление электрической изоляции, сопротивление зоны растекания тока - распределенный параметр, количественное значение которого может быть определено только путем специальных измерений.
Поставим эксперимент. Воткнем в землю два электрода Э1 и Э2 и через амперметр А подключим к ним источник измерительного напряжения U изм (рис. 2).
Вблизи каждого из этих электродов возникают зоны растекания тока I зам с максимальными потенциалами j зам1 и j зам2 , причем j зам1 + j зам2 = U изм. Значения этих потенциалов относительно земли можно измерить. Для этого применяют дополнительный электрод ЭВ, вынесенный за зону растекания тока, туда, где потенциал на поверхности земли j 0 близок к нулю.
Показание вольтметра V, подключенного между дополнительным и основным электродами, будет U = j зам - j 0 = j зам. Зная по показанию амперметра А значение тока замыкания на землю, получаем значения сопротивлений зон растекания тока R зам1 = j зам1 /I зам и R зам2 = j зам2 /I зам. Обычно вместо двух приборов - амперметра и вольтметра - используют логометр, позволяющий получить отношение потенциала к току непосредственно (измеритель заземления типа М 416).
Приведем некоторые количественные значения сопротивлений зон растекания тока. В варианте обрыва провода ЛЭП и замыкания его на землю сопротивление зоны растекания тока зависит от вида грунта; ориентировочно считают: при замыкании на щебень сопротивление зоны растекания тока равно 10 кОм, на асфальт - 1 кОм, на сырую землю - 100 Ом. Если замыкание произошло на водопроводную трубу, то сопротивление зоны растекания тока вокруг нее можно принять равным 100 Ом. Когда человек стоит на земле и касается токоведущей части, то под его ногами также возникает зона растекания тока с сопротивлением порядка 30 Ом (сырая земля), 1000 Ом (сухая земля), 10 кОм (щебень).

Заземляющее устройство
Заземление - это намеренное соединение металлических токоведущих или нетоковедущих частей с землей. Оно может преследовать различные цели - защита от поражения током (защитное заземление), защита радиоэлектронной аппаратуры от помех, заземление нейтрали источника, рабочее заземление (в однопроводных системах электропитания и электросварочных установках), снятие заряда статического электричества и пр. Оно осуществляется с помощью заземляющего устройства, основным элементом которого является заземлитель - металлоконструкция, врытая в землю. В производственных условиях по контуру помещения располагается шина заземления (стальная или медная полоса, связанная с заземлителем). Заземляемые конструкции соединяются с шиной заземления заземляющими проводниками, сечение которых выбирается из соображений механической прочности (например, чтобы при уборке помещения исключить возможность случайного обрыва проводника) или термической устойчивости к токам замыкания. Требования к конструкции шины заземления и заземляющим проводникам приведены в ПУЭ (глава 1.7).
Количественной нормируемой характеристикой заземляющего устройства является его сопротивление Rз, то есть максимально допустимое значение сопротивления зоны растекания тока вблизи заземлителя (табл. 1).


На подвижных объектах (самолет, корабль и пр.) заземлителем является металлический корпус самого объекта. Здесь сопротивление заземляющего устройства определяется не нормами безопасности, а качеством (механической целостностью) винтового контактного соединения заземляющего проводника с металлоконструкцией (0,02 - 0,05 Ом). Правила контроля заземляющих устройств приведены в Правилах эксплуатации электроустановок потребителей (приложение 24).

Ток замыкания на землю
Значения токов однофазного замыкания на землю ограничены импедансами изоляции здоровых фаз (в сетях, изолированных от земли) или сопротивлением заземления нейтрали (в сетях с заземленной нейтралью). Поэтому на ток однофазного замыкания не реагирует ни аппаратура от токов междуфазного короткого замыкания (максимальная защита), ни аппаратура защиты от перегрузки (тепловая защита). В результате режим однофазного (однополюсного в двухпроводных сетях) замыкания на землю может существовать длительное время, приводя к пожароопасным ситуациям. В режиме однофазного замыкания распределенные по всей сети активные и емкостные токи утечки сосредотачиваются в месте замыкания. Именно здесь - на сопротивлении замыкания или на контакте с сопротивлением заземления - и выделяется активная мощность, под действием которой может произойти процесс роста температуры нагрева. Токи утечки на землю между здоровыми фазами и землей рассредотачиваются по всей сети на бесконечно малые токи по распределенным сопротивлениям утечки и поэтому пожарной опасности не представляют. Ток замыкания опасен именно в месте замыкания. По данным ВНИИ противопожарной обороны (полковник В.В.Смирнов) пожароопасными считаются такие токи, при которых в месте повреждения изоляции выделяется активная мощность более 17 Вт. Во взрывоопасных зонах опасен ток замыкания на землю, значение которого превышает 25 мА.
Предполагаемое (возможное) значение тока замыкания может быть рассчитано по формулам: Здесь приняты следующие обозначения: g a , g b , g c - активные проводимости изоляции фаз, gзам - активная проводимость в месте повреждения изоляции (проводимость зоны растекания тока), C ф - емкости фаз относительно земли, U ф - фазное напряжение.