Главная · Электробезопасность · Какие устройства применяются от токов короткого замыкания. Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки

Какие устройства применяются от токов короткого замыкания. Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки

В процессе эксплуатации любой электрической установки в ней могут возникнуть короткие замыкания,недопустимые перегрузки или может резко снизиться напряжение. Последствиями этих режимов могут быть серьезные повреждения оборудования электровозов; чтобы предотвратить их, применяют различные защиты.
С двумя аппаратами защиты от коротких замыканий и перегрузок мы уже познакомились - это быстродействующий выключатель на электровозах постоянного тока и главный выключатель на электровозах переменного тока.
Быстродействующий и главный выключатели не могут защищать силовую цепь во всех ненормальных режимах. Поэтому для контроля за действиями электротехнических устройств, работой сигнализации о нарушении нормального режима их работы, автоматическим отключением цепей или всей установки применяют специальные защиты. Основным аппаратом в них являютсяреле.
По принципу действия реле могут быть электромагнитными, тепловыми, электродинамическими и др. Благодаря простоте устройства, возможности применения как при постоянном, так и при переменном токе наибольшее распространение в электрических системах, в том числе и на электровозах, получили электромагнитные реле.

Автоматические выключатели с тепловым реле. Защита от перегрузки и короткого замыкания Защита от перегрузки. никогда не выше, чем правило 2 используется для защиты от перегрузки. способные выполнять эту функцию: Правило 1 удовлетворяет общим условиям защиты от перегрузки. когда ток превышает заданное значение.

Эта защита должна обеспечиваться устройствами, которые могут привести к отключению цепи в соответствующее время. Эти соображения должны быть проанализированы разработчиком в зависимости от типа устанавливаемой схемы. хотя работа коммутатора будет гарантирована даже в случае ненормальных нагрузок, которые могут поддерживаться. Понятно, что при выборе условия максимальной защиты ситуация может повлиять на непрерывность обслуживания. С другой стороны, выбор переключателя с калиброванным током, равным пропускной способности кабеля.

Рис. 96 Схема включения электромагнитного реле

Принцип действия такого реле, защищающего, например, электрический двигатель М (рис. 96) от перегрузки, заключается в следующем. В случае возрастания тока в двигателе сверх максимального допустимого якорь реле, по катушке которого проходит ток защищаемой цепи, притягивается к сердечнику, преодолевая усилие пружины. При этом контакты а и б, замыкаясь, включают сигнальную лампу; загораясь, она сигнализирует машинисту о перегрузке тяговых двигателей. Контакты в и г вызывают отключение главного или быстродействующего выключателя, разрывая цепи удерживающих катушек.
Ток, при котором срабатывает реле, называют током уставки. Его регулируют, изменяя натяжение пружины. Электромагнитное реле при соответствующей уставке может быть использовано как реле максимального напряжения или как реле пониженного тока либо напряжения. В первом случае при повышении напряжения сверх допустимого якорь притягивается и контакты реле, допустим, замыкаются, во втором - якорь отпадает и контакты, наоборот, размыкаются.
На электровозах ВЛ11, ВЛ10, ВЛ8 контакты реле перегрузки не введены в цепь удерживающей катушки быстродействующего выключателя. При замыкании они включают сигнальную лампу, загорание которой свидетельствует о перегрузке какой-либо цепи тяговых двигателей. Если перегрузка произошла в режиме ослабленного возбуждения, то под действием реле выключаются контакторы ослабления возбуждения. Число реле перегрузки соответствует числу цепей параллельно включенных двигателей. Если короткое замыкание на электровозах постоянного тока произойдет в цепи за тяговыми двигателями, соединенными последовательно, то быстродействующий выключатель может не сработать, так как э. д. с. исправных двигателей, включенных в начале цепи, возрастет вследствие увеличения тока. Ток короткого замыкания будет невелик. Учитывая это, на электровозах ВЛ11, ВЛ10, ВЛ8, ВЛ23 применяют чувствительнуюдифференциальную защиту , выполненную на специальном реле.
Рассмотрим принцип действия этого реле. Через окно магнитопровода дифференциального реле РДф проходят кабели начала и конца защищаемого участка силовой цепи двигателей, ток которых направлен встречно (рис. 97).

В целом, существуют следующие практические случаи обязательности. чей ток требовал к линии с заблокированным ротором. При условии, что их продолжительность не позволяет достичь недопустимых температур в изоляции цепей. Тепловое реле. эти перегрузки. Случаи, в которых защита от перегрузки не рекомендуется. что позволяет прохождение низких интенсивностей в течение определенного времени и вместо этого. Эти устройства называются временными или обратными тепловыми характеристиками. В пожарных насосах.

Пример: в магнитных цепях транспортного крана. таким образом избегая чрезмерных отключений, которые могут ухудшить нормальную работу двигателей. Обычно устройство измеряет нагрев косвенно, контролируя ток, протекающий по цепи. Это означает, что устройство защиты от перегрузки является интеллектуальным. В стандарте рекомендуется исключить защиту от перегрузки проводников, когда открытие цепи может создать риск.


Рис. 97. Схема дифференциальной защиты электровозов постоянного тока

На одном конце магнитопровода установлена включающая катушка, питающаяся от источника электроэнергии напряжением 50 В. Под действием ее магнитного потока притягивается якорь, в результате чего замыкаются контакты, включенные в цепь удерживающей катушки быстродействующего выключателя. При нормальном режиме магнитные потоки, возникающие вокруг кабелей ввода и вывода, взаимно уничтожаются. На рис. 97 условно сечение кабелей, проходящих через окно магнитопровода, показано окружностями; на остальных участках цепи кабели изображены в виде соединительных линий электрической связи. Направление тока в кабелях из плоскости чертежа к нам, как принято в электротехнике, показано точкой, а от нас в плоскость чертежа - крестиком.
В случае короткого замыкания на землю, например в точке К, ток, проходящий по кабелю ввода, а следовательно, и создаваемый им магнитный поток резко возрастут. В кабеле вывода, наоборот, ток и магнитный поток уменьшатся до нуля. Магнитный поток кабеля ввода направлен встречно по отношению к потоку включающей катушки.
Вследствие этого якорь реле под действием пружины оторвется от магнитопровода и разорвет цепь удерживающей катушки БВ.
Ток короткого замыкания прерывается быстродействующим выключателем не сразу и после срабатывания дифференциального реле некоторое время продолжает увеличиваться. Поэтому магнитный поток, создаваемый током кабеля ввода, может вновь притянуть якорь реле. Чтобы не допустить этого, в средней части магнитопровода реле установлен магнитный шунт. Воздушные зазоры этого шунта меньше, чем зазор между отключенными якорем и торцом магнитопровода. Поэтому после отключения реле магнитный поток, создаваемый током кабеля ввода, будет замыкаться через магнитный шунт.
Дифференциальное реле не может защитить тяговые двигатели от перегрузки, так как неравенства, или, как говорят, небаланса токов, в кабелях при этом не будет. Небаланс токов возможен только при коротком замыкании на землю.
На электровозах переменного тока дифференциальная защита тяговых двигателей не нужна, так как они соединены всегда параллельно и в их цепь включено реле перегрузки. Она используется для защиты от коротких замыканий выпрямительных установок. В этом случае катушку блока дифференциальных реле (БРД) вместе с дросселем включают между двумя точками цепи вторичных обмоток тягового трансформатора, имеющими равные потенциалы. Не останавливаясь подробно на действии защиты, отметим, что она реагирует на скорость нарастания тока короткого замыкания в выпрямительной установке. При быстром нарастании тока дроссель в цепи, где он установлен, задержит нарастание тока. Поэтому основная часть тока будет проходить по цепи катушек реле. Следовательно, магнитный поток удерживающей катушки будет значительно отличаться от магнитного потока, вызванного током короткого замыкания. Реле сработает и его контакты разорвут цепь удерживающей катушки главного выключателя.
На электровозах переменного тока необходимо защищать силовые цепи от замыканий на землю, точнее, на корпус (кузов) электровоза. Это объясняется тем, что вторичная обмотка трансформатора, выпрямители и тяговые двигатели не соединены с землей, как на электровозе постоянного тока, где замыкание на землю вызывает срабатывание быстродействующего выключателя или дифференциальной защиты. Нарушение изоляции в одной точке силовой цепи не приведет к повреждению, но замыкание в двух точках уже создает аварийный режим. Поэтому нужно контролировать состояние изоляции силовой цепи.
Это осуществляют с помощьюреле заземления РЗ - так называемойземляной защиты. Обмотка реле РЗ (рис. 98) соединена с корпусом локомотива и включена в цепь выпрямленного напряжения селенового выпрямителя СВ .

Для правильного использования установок и машин хорошо, что устройства безопасности допускают определенным образом и в течение определенного времени. это происходит не мгновенно. Непрямой: если ток проходит через нагревательную катушку, которая окружает заготовку. Прямой: если весь ток цепи проходит через заготовку. это. это нагревание может быть: листом, состоящим из двух металлов с разным коэффициентом расширения и нагретым током, протекающим через главный контур.

При достижении кривизны до определенной точки. в этих случаях. Чтобы избежать этих неудобств. можно отключить цепь, открыв тепловое реле. с необходимой скоростью, чтобы исключить, что изоляционные материалы достигают температуры, которая повреждает их. Короткое замыкание Общие условия защиты. Поскольку аламины соединяются механически или путем сварки. в пределах нормальных значений. запускает некоторый механизм. заготовка больше не будет рассеивать столько тепловой энергии, и начнется процесс расширения.


Рис. 98. Схема защиты силовой цепи от замыканий на землю

Выпрямитель питается от вторичной обмотки напряжением 380 В тягового трансформатора. Чтобы можно было использовать одно и то же реле для двух групп тяговых двигателей, его подключают через два одинаковых резистора R к точкам силовой цепи, имеющим равные потенциалы. В случае короткого замыкания, допустим, в точке а образуется цепь выпрямленного тока, реле срабатывает и отключает главный выключатель.
Цепи вспомогательных машин защищают с помощью реле перегрузки, которые вызывают отключение главного или быстродействующего выключателя, а также плавкими предохранителями и дифференциальной защитой. Асинхронные двигатели вспомогательных машин электровозов переменного тока имеют тепловую защиту РТ от перегрузки. В тепловом реле (рис. 99) использованы биметаллические пластины, на которых установлены размыкающие блокконтакты.

В трехфазных цепях с нейтральным. Значение этого тока является оценочным значением. измеренный между фазой и нейтралью. Ток предполагаемого тока короткого замыкания. тем больше ток. Фаза - фаза. чем больше расстояние, тем меньше ток. - Длина линии до точки отказа. Нейтральный - Трехфазный сбалансированный Это последнее условие является самым серьезным. Характеристики тока короткого замыкания Расчетный ток короткого замыкания в точке установки - это ток, который будет присутствовать при незначительном сопротивлении между проводниками с напряжением.


Рис.99. Схема тепловой защиты

Металлы, из которых изготовлены пластины, имеют разные коэффициенты линейного расширения. В случае длительной перегрузки или короткого замыкания элементы нагреваются и изгибаются. После того как прогиб пластин достигнет определенного значения, блокконтакты разорвут цепь включающей катушки и контактор отключится. Когда установится нормальная температура, элементы займут исходное положение. Реле тепловой защиты включают в каждые два провода, подводимые к двигателю.
Особенности нарушений режимов электрического торможения зависят от системы торможения - реостатного или рекуперативного, схемы соединения и системы возбуждения двигателей.
В режиме реостатного торможения при последовательном возбуждении двигателей перегрузка может возникнуть, как и в тяговом режиме, в случае чрезмерно быстрого выключения ступеней реостата. Чтобы предотвратить такую перегрузку, обычно используют те же реле, что и в тяговом режиме.
При защите от токов короткого замыкания в режиме реостатного торможения, как и в режиме тяги, могут быть использованы дифференциальные реле и реле заземления.
Защита от коротких замыканий в режиме рекуперативного торможения на электровозах ВЛ8, ВЛ10 и ВЛ11 осуществляетсябыстродействующими электромагнитными контакторами КБ, имеющими дугогасительные камеры. При их выключении меняется направление тока в обмотках возбуждения тяговых двигателей и происходит интенсивное гашение магнитного потока. Способ включения быстродействующих контакторов в схеме циклической стабилизации при возбудителе с противовозбуждением, создаваемым обмотками ОВГ в цепи якорей тяговых двигателей, пояснен на рис. 100.

Не подходит для целей защиты от короткого замыкания. Хотя испытания на прерывание выключателей основаны на симметричном компоненте. Защита от короткого замыкания Расчет тока короткого замыкания Для расчета расчетных значений тока короткого замыкания в любой точке установки необходимо только применить следующую формулу и узнать вычисленные значения импеданса от начала установки до анализируемой точки. Таблица для оценки тока короткого замыкания.

Термомагнитный выключатель. Защита от коротких замыканий. крутой и разрушительный. Интенсивность вполне приемлема Если ошибка подключения или отказ изоляции. Особенности: Предохранители и правильная калибровка. два контакта гнезда находятся в контакте. Короткие замыкания возникают, когда все или часть их импеданса исчезают в цепи. Переключатели с магнитным реле. Конечные выключатели последнего поколения могут иметь преддуговые времена менее 1 мс и высокое напряжение дуги, получая коэффициенты ограничений, меньшие, чем.

Рис. 100. Схема защиты тяговых электродвигателей
от токов короткого замыкания в рекуперативном режиме

Отключающие катушки быстродействующих контакторов КБ1 и КБ2 через ограничивающие резисторы Ro включены параллельно катушкам индуктивных шунтов ИШ. Увеличение тока короткого замыкания в цепи тяговых двигателей вызывает резкое повышение напряжения на индуктивных шунтах. По отключающей катушке проходит ток, превышающий ток уставки контактора, в результате чего его силовые контакты размыкаются. Контакторы не размыкают цепь полностью, а вводят в нее резисторы R3, сопротивление которых выбирают таким, при котором не возникают опасные перенапряжения. После размыкания контактов контакторов КБ большая часть тока тяговых двигателей проходит через их обмотки возбуждения встречно по отношению к току возбуждения, вызывая быстрое размагничивание двигателей.
Для защиты от короткого замыкания на электровозах переменного тока с рекуперативным торможением устанавливаютбыстродействующие выключатели в цепи выпрямленного тока. На электровозах ВЛ80р в цепь каждого двигателя введены индивидуальные быстродействующие выключатели.

Устройства защиты инвертора. Защита от перенапряжений. Защита от обратной полярности Защита от перегрузки по току. Устройства для защиты цепей фотогальванического генератора. Защита от обратных всплесков. Устройства для отключения фотогальванического генератора. Установка внешних устройств защиты всегда должна оцениваться в отношении: условий установки фотогальванического генератора, собственных характеристик инвертора, устройств, встроенных в инвертор, и их характеристик.

Защита растений: перегрузка

Перегрузка: Огромное переходное напряжение, возникающее в одной или нескольких точках системы, которое может превышать напряжение изоляции системы. Причины: могут быть вызваны активацией и внедрением высокоиндуктивных или емкостных нагрузок или атмосферными явлениями. Внешние перегрузки: вызванные молнией, например, когда это происходит вблизи линий высокого, среднего и низкого напряжения. Внутренние перенапряжения: вызванные открывающими и закрывающими устройствами, установленными в силовых цепях или сбоями системы.

Защита растений: проводка перенапряжения

Сведите к минимуму площадь, на которую налагаются провода шнура, которые составляют проводку.

Предохранитель - это простейший аппарат, защищающий электрическую сеть от коротких замыканий и значительных перегрузок. Предохранитель состоит из двух основных частей: фарфорового основания с металлической резьбой и смежной плавкой вставки (рис. 42, а) Плавкая вставка рассчитана на номинальные токи 10, 16, 20 А.

Вместо предохранителей могут применяться автоматические выключатели (автоматы). Включают автоматы вручную, а отключать можно вручную и автоматически, в результате срабатывания вмонтированных в корпус расцепителей.

Защита растений: защита от перенапряжения

Проложите проводку так, чтобы она имела два кольца, в которых индуцированный ток протекает в противоположном направлении. Все струнные инверторы объединяют ограничители перенапряжений в качестве термически управляемых и сменных варисторов. Являются ли защитные устройства внутри преобразователя достаточными для защиты инвертора?

Защита растений: защита от перегрузки по току

Благодаря тому, как они подключены внутри инвертора, ограничители перенапряжений защищают от скачков дифференциального режима и скачков общего режима. Учитывая природу генератора, когда мы можем говорить о перегрузке в инверторе? Когда облученный фотогальванический генератор подключен к инвертору, а внутренние конденсаторы полностью разряжены.

Автоматы с тепловыми расцепителями предназначены для защиты от перегрузок. В качестве теплового расцепителя служит биметаллическая пластинка. При прохождении по ней тока перегрузки она изгибается и приводит в действие расцепляющий механизм, отключающий автомат.

Электромагнитный расцепитель состоит из катушки, сердечника и пружины. Автоматы с электромагнитным расцепителем служат для защиты от коротких замыканий. Ток короткого замыкания, проходя по катушке, содействует втягиванию внутрь ее сердечника, который сжимает пружину и приводит в действие расцепляющее устройство. Автоматы могут иметь тепловой или электромагнитный расцепитель или одновременно тот и другой, т. е. комбинированный. В осветительных сетях вместо предохранителей могут применяться резьбовые автоматические выключатели типа Пар 6, -А; 10А и 16А; 250 В (рис.42,б) и автоматические выключатели АЕ10 на 16А; 25А; 250В (рис. 42, в).

Существует ли ограничение на обратную максимальную току, поддерживаемую модулями?

В таких условиях, когда фотогальванические сборки подключены к инвертору, конденсаторы ведут себя как короткое замыкание, и поэтому фотогальванический генератор подает ток, равный его максимальному току. Производители модулей сообщают в информационном листе указание максимального номинала предохранителя, который предназначен как максимальный размер предохранителя, который последовательно вставлен в модуль для создания обратной токовой защиты.

Когда необходимо вставить защиту от перегрузки по току обратного тока? Когда обратный ток присутствует в цепи выше максимального номинала предохранителя; Как правило, при наличии более трех строк параллельно друг с другом. Каковы возможные возможности защиты от перегрузки по току? Блокирующий диод: вставка блокирующего диода последовательно к каждой цепи предотвращает протекание обратных токов через цепь. Предохранители. Вставка плавкого предохранителя последовательно в каждую цепь позволяет предотвратить протекание обратных токов через веревку.


Рис. 42. Устройства защиты от токов короткого замыкания и перегрузок: а - предохранитель; б - резьбовой автоматический выключатель Пар; в - автоматический выключатель АЕ10; г - автоматический выключатель АП50Б; 1 - дугогасительная камера; 2 - электромагнитный расцепитель; 3-главные контакты; 4 и 5 - кнопки ручного включения и отключения; 6 - пластмассовое основание

Разъединитель: устройство, способное к изоляции между двумя частями цепи. Конкретной характеристикой разъединителя является способность обеспечить изоляцию между двумя секционными частями схемы. Переключатель: устройство, способное обеспечить открытие схемы зарядки, то есть схемы, через которую протекает ток.

Разъединитель должен иметь возможность обрезать цепь и внутреннюю неисправность инвертора. Следовательно, инвертор «поддерживает» сетевое напряжение и не может изменять его напрямую. Для подключения к сетке достаточно, чтобы инвертор имел переменное напряжение с напряжением и частотой в пределах диапазона, разрешенного самим преобразователем.

Для защиты трехфазных электрических сетей применяют трехфазные автоматические выключатели серий АЕ20, АП50Б и др. Предпочтительным является применение автоматических выключателей серии АП50Б (рис. 42, г), так как контакты для подключения жил проводов или кабелей закрыты крышкой, что повышает электробезопасность при их обслуживании. Автоматические выключатели АП50Б выпускаются с номинальными токами на 6, 3; 10; 16; 25 и 40 А.

Автоматические выключатели, в основной функции защиты от перегрузки по току, работают через триггеры, которые могут быть тепловыми, магнитными и электронными. Самые традиционные автоматические выключатели для общего использования оснащены тепловыми триггерами, которые действуют в случае умеренных сверхтоков и магнитных триггеров для высоких перегрузок. Отсюда и термин термомагнитные выключатели.

Триггер термооктопуса состоит из биметаллического лезвия, которое изгибается под действием тепла, создаваемого прохождением тока. Эта временная деформация лезвия, обусловленная различными расширениями двух составляющих ее металлов, в конечном итоге вызывает открытие автоматического выключателя. Биметаллический термический триггер имеет характеристику срабатывания обратного времени, то есть срабатывание происходит за более короткое время и чем выше ток.

Для нормальной работы защитных аппаратов необходимо определить рабочий ток, по которому производится выбор плавкой вставки предохранителя и выбор выключателя. Для этого необходимо определить мощность потребителей, которые будет защищать этот аппарат. Принято считать, что при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5 А; при трехфазной - на 1 кВт - 3 А. -ная нагрузку, определяют номинальный ток плавкой вставки или автоматического выключателя.

Некоторые термические триггеры имеют регулируемый диапазон тока. Существуют также термопары с температурной компенсацией. Магнитный триггер состоит из катушки, которая притягивает шарнирную часть, когда ток достигает определенного значения. Такое смещение якоря за счет механических муфт вызывает открытие основных контактов автоматического выключателя. Существуют автоматические выключатели, которые имеют регулируемое магнитное отключение.

На рисунке 1 показана типичная временная характеристика термомагнитного выключателя, показывающая работу теплового отключения при перегрузке и магнитное отключение. Электронный триггер, наконец, включает в себя датчики тока, электроника и исполнительные механизмы обработки сигналов и управления. Датчики тока состоят из магнитной цепи и создают изображение измеряемого тока. Электроника обрабатывает информацию и, в зависимости от величины измеряемого тока, определяет отключение автоматического выключателя в ожидаемое время.

Например, необходимо выбрать защиту для электропроводки в доме и для трехфазного электродвигателя мощностью 3 кВт. Определяем суммарную нагрузку в доме сложением, получаем 2, 2 кВт (2200 Вт). 2, 2 5 = 11 А. Номинальный ток плавкой вставки предохранителя или автомата должен быть больше тока рабочего. Выбираем плавкую вставку на 16 А или автомат АЕ с номинальным током на 16 А.

Временная характеристика электронных триггеров имеет три зоны работы: - долгосрочная зона тепловой защиты, которая представляет собой. Рис. 1 - Типичная временная характеристика термомагнитного автоматического выключателя позволяет моделировать характеристики повышения температуры проводников; - короткая зона задержки, обеспечивающая защиту от удаленных токов повреждения. Короткая задержка, совместимая с ограничениями на повышение температуры проводников, обеспечивает селективность с устройствами защиты верхних частот; - мгновенная рабочая зона, которая является защитой от коротких замыканий высокой и сразу после автоматического выключателя.

Для электродвигателя: 3 3 == 9 А. Выбираем автомат АП50Б на 10 А.

Более точный выбор пускозащитной аппаратуры изложен ниже.

Kак выбрать плавкую вставку предохранителя?

Токи плавких вставок для проводов осветительной сети выбирают по номинальному току

Iл.вст>I ном

При выборе плавких вставок для защиты асинхронных электродвигателей необходимо учитывать, что пусковой ток двигателя в 5-7 раз больше номинального. Поэтому выбирать плавкую вставку по номинальному току нельзя, так как она при пуске электродвигателя перегорит.

Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (tпуск=5-10с) номинальный ток плавкой вставки можно определить по выражению

Iпл.вст>0,4 Iпуск,

где I - пусковой ток электродвигателя, А.

При тяжелых условиях работы (частые пуски, продолжительность разбега до 40 с)

Iпл.вст > (0,5 - 0,6) Iпуск

Как выбрать автоматический выключатель?

Автоматические воздушные выключатели применяют для защиты участков сети от коротких замыканий, перегрузок или снижений напряжения. Их используют также для нечастых оперативных включений и отключений асинхронных короткозамкнутых электродвигателей. Конструкции автоматических выключателей различаются расцепителями - встроенными устройствами в виде защитных реле для дистанционного отключения. Различают расцепители максимального тока (электромагнитные или тепловые), минимального напряжения (нулевые) и независимые. Электромагнитные расцепители срабатывают практически мгновенно (за 0,02 с), тепловые отключают цепь в зависимости от длительности и силы тока, превышающего уставку теплового расцепителя. При наличии комбинированного расцепителя (то есть электромагнитного и теплового) выключатель мгновенно срабатывает при сверхтоках и с выдержкой времени от перегрузок, определяемой тепловым расцепителем. При снижениях напряжения до 70-30% номинального срабатывает расцепитель минимального, напряжения.

Условия выбора автоматических воздушных выключателей сводятся к следующему:

1) номинальное напряжение выключателя должно соответствовать напряжению сети, то есть

Uн.авт>Uc;

2) номинальный ток автомата должен быть равен рабочему или превышать его: Iн.авт>Ip ;

3) номинальный ток расцепителя автомата

должен быть равен рабочему току (например, электродвигателя) или превышать его: Iн. расц> Ip;

4) правильность срабатывания электромагнитного расцепителя автомата проверяют из условия

Iсраб.расц>1.25Imax

Если применен автомат только с тепловым расцепителем, то по условиям надежной защиты от коротких замыканий необходимо последовательно с ним устанавливать также плавкие предохранители.

Для чего предназначен магнитный пускатель?


Магнитные пускатели (рис.43) предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или при его снижении до 50 - 60% от номинального катушка не удерживает магнитную систему контактора и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным. Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок.

Наибольшее распространение получили магнитные пускатели серий ПМЕ, ПМЛ и ПМА.

Изготовляются эти серии в открытом, защищенном, пылеводозащищенном и пылебрызгонепроницаемом исполнении на напряжение 220 и 380 В. Они могут быть реверсивными и нереверсивными. Реверсивные пускатели наряду с пуском, остановом и защитой электродвигателя изменяют направление его вращения.

В магнитные пускатели встраиваются тепловые реле ТРН (двухполюсные) и ТРЛ, РТИ (трехполюсные). Они срабатывают под влиянием протекающего по ним тока перегрузки электродвигателя и отключают его от сети.

Маркировка магнитных пускателей расшифровывается следующим образом: первая цифра после сочетания букв, указывающих на тип пускателя, обозначает величину, которая соответствует определенному значению тока (0 - 6, 3 А; 1 - 10 А;

2 - 25 А; 3 - 40 А; 4 - 63 А; 5 - 80 А; 6 - 125 А);

вторая - исполнение по роду защиты от окружающей среды (1 - открытое исполнение; 2 - защищенное; 3 -пылезащищенное; 4 - пылебрызгонепроницаемое), третья - исполнение (1 - нереверсивный без тепловой защиты; 2 - нереверсивный с тепловой защитой; 3 - реверсивный без тепловой защиты, 4 - реверсивный с тепловой защитой).

Для чего применяется тепловое реле и как его выбрать?

Тепловое реле (рис.43) применяют для защиты электродвигателя от перегрузок.

Тепловое реле и номинальный ток теплового элемента, если нет особых требований к тепловой защите, выбирают с соблюдением следующих условий: максимальный ток продолжительного режима реле должен быть не менее номинального тока защищаемого двигателя; ток уставки реле должен быть равен номинальному току защищаемого двигателя или несколько больше (в пределах 5%); запас на регулировку тока уставки как в сторону увеличения, так и в сторону уменьшения должен быть наибольший. Для этого на шкале уставки оставляют одно-два свободных деления в обе стороны от положения регулятора, соответствующего выбранному току уставки.

Для чего и как выполняют зануление?

-ануление - основная мера защиты от поражения электрическим током в электроустановках напряжением до 1000 В с глухозаземленной нейтралью источника питания в случае прикосновения к металлическим корпусам электрооборудования и металлическим конструкциям, оказавшимся под напряжением вследствие повреждения изоляции сети или электроустановок.

Всякое замыкание токоведущих частей на зануленные части превращается таким образом в однофазное короткое замыкание, что приводит к отключению аварийного участка сети.

В качестве нулевых защитных проводников могут быть использованы нулевые рабочие проводники, специально предусмотренные проводники (четвертая или третья жила кабеля или провод сети, стальные полосы и т.п.), стальные трубы электропроводки, алюминиевые оболочки кабелей, металлические конструкции зданий, металлические кожухи шинопроводов, все трубопроводы, проложенные открыто, кроме трубопроводов для горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода. По проводимости (сопротивлению) все перечисленные заземлители нулевых проводов должны удовлетворять требованиям ПУЭ. Устанавливать разъединяющие приспособления в цепях нулевых проводников запрещается, кроме тех случаев, когда одновременно отключаются и все токоведущие провода в установке.

Для зануления однофазных бытовых электроплит следует делать ответвление от нулевого рабочего проводника (шины) этажного щитка на вво

де, выполняемое отдельным проводом, площадь сечения у которого такая же, как у фазного. Этот провод должен подключаться к нулевому рабочему проводнику перед счетчиком до отключающего аппарата.

При зануден и и трехфазных электроплит не разрешается использовать нулевой рабочий проводник в качестве зануляющего рабочего проводника.

Для зануления светильников, вводы в которые выполняются защищенным проводом или незащищенными проводами в трубе (металлорукаве) или при скрытой проводке, делают ответвление от нулевого рабочего проводника внутри светильника. При вводе в светильник открытых незащищенных проводов для зануления корпуса светильника следует использовать гибкий провод (ответвление), присоединяемый с одной стороны к нулевому рабочему проводу на неподвижной опоре, а с другой - к заземляющему винту корпуса.

В наружных установках и во взрывоопасных помещениях для зануления нужно использовать свободную жилу кабеля или свободный провод воздушной сети, присоединяемые к нулевому рабочему проводнику в ответвительной коробке, а в помещениях В-1 - в ближайшем групповом щитке.

С целью выравнивания потенциала во всех помещениях и наружных установках, где выполнено зануление, все металлические конструкции трубопровода, корпуса оборудования и т.п. должны быть присоединены к сети зануления.

Kак выполняют заземление?

Аземляющее устройство состоит из заземлителя, заземляющих магистралей и заземляющих проводников. Различают два типа заземлителей: естественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий и сооружений, надежно соединенные с землей.

В качестве заземляющих проводников используют стальные трубы электропроводок, свинцовые и алюминиевые оболочки кабелей, металлические трубопроводы всех назначений, проложенные открыто. -апрещается использовать для этой цели трубопроводы для горючих и взрывчатых смесей, а также служащие для автопоения скота.

Использование голых алюминиевых проводников для прокладки в земле в качестве заземляющих проводников и заземлителей запрещается.

Все естественные заземлители для большей надежности соединяют с заземляющими магистралями электроустановки не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Соединение выполняют вблизи от ввода в здание при помощи сварки или хомутов (для труб), контактную поверхность которых облуживают. Трубы в местах накладки хомутов зачищают. Места и способы присоединения проводников выбирают с учетом возможных ремонтных работ трубопроводов. При разъединении трубопроводов должно быть обеспечено непрерывное действие заземляющего устройства.

Если естественные заземлители и заземляющие проводники отсутствуют или если они не обеспечивают необходимого нормированного сопротивления, тогда применяют искусственные заземлители.

В качестве искусственных заземлителей применяют: трубы, угловую сталь, металлические стержни и т. п., горизонтально проложенные стальные полосы, круглую сталь и т. п. В случае опасности усиленной коррозии применяют омедненные или оцинкованные заземлители. -аземлители и заземляющие проводники, проложенные в земле, не должны иметь окраски.

Монтаж наружного контура заземления начинают с разметки трассы и рытья траншей глубиной 0,6-0,8 м (ниже уровня промерзания грунта).

Искусственные заземлители в виде отрезков стальных труб, круглых стержней или уголков длиной 3-5 м забивают в грунт так, чтобы головка электрода оказалась на глубине 0,5 м от поверхности. -аглубленные электроды соединяют друг с другом стальной полосой с помощью сварки. Места сварки покрывают разогретым битумом для защиты от коррозии. От заземлителей отводят магистраль заземления из стальных шин. Уложенные в траншеи заземляющие проводники и заземлители засыпают землей, не содержащей камней, строительного мусора, и плотно утрамбовывают. Количество электродов заземляющего контура зависит в основном от удельного сопротивления почвы, длины и расположения электродов. Для получения сопротивления заземления до 10 Ом необходимо забить от 2 до 30 электродов.

Соединение заземляющих проводников друг с другом и присоединение к конструкциям выполняют сваркой, а подключение к корпусам аппаратов, машин, и т. п. - болтовыми соединениями. При наличии вибрации применяют контргайки, пружинящие шайбы или иные средства против ослабления соединения. Сварочные швы выполняют длиной, равной двойной ширине проводника при прямоугольном сечении или шести диаметрам при круглом сечении. Соединяемые контактные поверхности болтовых соединений зачищают до металлического блеска и покрывают тонким слоем вазелина.

Каждый заземленный элемент электроустановки присоединяют к заземляющей магистрали отдельным проводником. Последовательное соединение этих проводников запрещается.

Аземляющие проводники, расположенные в помещениях, должны быть доступны для осмотра. Для предохранения от коррозии стальные голые провода окрашивают черной масляной краской.

Как измерить сопротивление заземляющего контура ?

Для измерения сопротивления заземляющего контура применяют специальный прибор М416.

Для грубых измерений сопротивления заземления зажимы 7 и 2 соединяют перемычкой и подключают прибор к измеряемому объекту по трехзажимной схеме (рис.44,а). При точных измерениях снимают перемычку с зажимов 1 и 2, подключают прибор к измеряемому объекту по четырехзажимной схеме. Эта схема позволяет исключить погрешность, которую вносят сопротивления соединительных проводов и контактов. Перед измерением регулируют прибор в такой последовательности. Ставят его горизонтально и переводят переключатель пределов измерения в положение "Контроль 5 Ом". Нажимают кнопку, вращением рукоятки прибора "Реохорд" устанавливают стрелку индикатора на нулевую отметку. На шкале реохорда должно быть показание 0,35-5 Ом при нормальных климатических условиях и номинальном напряжении источника питания. Прибор располагают около измеряемого заземления. Стержни, образующие вспомогательный заземлитель R5 и потенциальный электрод R3("-онд"), устанавливают на расстояниях, данных на рисунке.

Длина стержней в грунте должна составлять не менее 500 мм, обычно 1-1,5 м. Вспомогательный заземлитель и зонд выполняют в виде металлического стержня или трубы диаметром не менее 10 мм.

При испытании заземляющих устройств с сопротивлением растеканию не менее 10 Ом сопротивления вспомогательного заземлителя прини-


Рис.44. Измерение сопротивления заземления: а-с помощью измерителя заземлений типа М416; б-по методу амперметра и вольтметра; 1 - заземлитель, сопротивление которого неизвестно; 2 - заземлитель зонда; 3 - вспомогательный заземлитель; 4 - сварочный трансформатор; V - вольтметр на 5-10 В;

А - амперметр на 2,5 - 5 А

мают не более 250 Ом. Если сопротивление растеканию заземляющего устройства находится в пределах 100-1000 Ом, сопротивление вспомогательного электрода должно быть не более 500-1000 Ом. Сопротивление зонда рекомендуется для всех случаев измерений не более 1000 Ом. При грунтах с высоким удельным сопротивлением измерения будут приближенными.

Для повышения точности измерения уменьшают сопротивление вспомогательных заземлите-лей увлажнением вокруг них почвы и увеличением их количества.

Дополнительные стержни забивают на расстоянии не менее 2-3 м друг от друга. Все стержни, образующие контур зонда или вспомогательного заземлителя, соединяют между собой электрически. Измерение проводят по схеме, приведенной на рисунке.

Порядок измерения следующий. Переключатель прибора устанавливают в положение "х1" (умножить на один). Нажимают кнопку и, вращая ручку прибора "Реохорд", добиваются максимального приближения стрелки индикатора к нулю. Результат измерения отсчитывают по шкале реохорда. Если измеряемое сопротивление окажется больше 10 Ом, переключатель устанавливают в одно из положений х5, х20 или х100 и проделывают операции, указанные выше. Результат измерения находят как произведение показания шкалы реохорда на множитель.

При отсутствии специальных приборов сопротивление заземляющего контура можно измерить методом амперметра-вольтметра (рис.44,б). Для этого необходимо иметь источник переменного тока (электрически не связанный с сетью) и вольтметр на малые пределы измерения, но с большим внутренним сопротивлением.

Фактическое сопротивление заземления определяют по формуле

где U - показания вольтметра. В;

I - показания амперметра, А.

Амеры сопротивления заземляющего контура производят в периоды наименьшей проводимости почвы: зимой при наибольшем промерзании, летом во время наибольшего просыхания ее.

Надежность заземления и его общее состояние проверяют при замерах не реже одного раза в год, а также после каждого капитального ремонта и длительного бездействия установки.

Внешний осмотр состояния заземляющих проводников (шин) производят не реже одного раза в шесть месяцев, а в сырых и особо сырых помещениях - не реже одного раза в три месяца.

Как выполнить молниезащиту здания?

Основными средствами защиты зданий и сооружений от прямых ударов молнии являются молниеотводы, которые принимают на себя разряды и отводят в землю.

Молниеотводы бывают тросовыми и стержневыми. Тросовые молниеотводы устанавливают главным образом на крышах зданий. Молние-приемником является трос, который соединяет две или несколько опор.

Стержневые чаще всего устанавливают у наружных стен зданий и только в отдельных случаях - на крышах. Удар молнии принимает стержневой молниеприемник, крепящийся на опоре.

Стержневой молниеотвод состоит из молниеприемника, который воспринимает удары молний, токоотвода, соединяющего молниеприемник с заземлителем, заземляющего устройства, служащего для отвода молнии в землю, и опоры. Для изготовления молниеприемников применяют стальные прутки диаметром 12 мм, полосы 35х3 мм, уголки 20х20х3 мм, газовые трубки диаметром 1/2 - 3/4 дюйма и др. Длину молниеприемников принимают от 300 до 1500 мм.

Токоотводы выполняют из стали диаметром не менее 6 мм и полосы сечением 35 мм^2. Обычно для токоотводов применяют стальную проволоку (катанку). Части токоотвода соединяют между собой при помощи сварки или болтами. Площадь контакта должна быть не менее двойной площади сечения токоотвода. Токоотвод прокладывают по крышам и стенам защищаемого здания, а также по деревянным конструкциям опор молниеотводов вплотную к их поверхности, за исключением зданий с легковоспламеняющейся кровлей.

Место установки молниеотвода выбирают с таким расчетом, чтобы обеспечить защиту не только зданий и сооружений, но и защиту людей от шагового напряжения. Шаговое напряжение возникает в момент отвода тока молнии в землю. Чтобы избежать поражения шаговым напряжением, заземлители размещают не ближе 4 м от наружных стен зданий, где нет проходов, скоплений людей и животных. Необходимо делать ограждения заземлителей всех видов на расстоянии 4 м (в радиусе). Помещения длиною до 14-15 м защищают от прямого удара молнии одним стержневым молниеотводом, установленным на крыше здания.

Для помещений длиною до 25 м грозозащиту выполняют стержневым молниеотводом, с установкой опоры по центру здания у наружной продольной стены.

Помещения сложной планировки и длиною более 25 м защищают двумя и более стержневыми молниеотводами с установкой опор у наружных стен. Высоту молниеотвода от уровня земли принимают равной 18-20 м.

Сопротивление заземления грозозащиты не должно превышать 10Ом.

При защите помещений двумя стержневыми молниеотводами расстояние от угла торцевой стены, в зависимости от ширины постройки, должно быть 2-6 м. Увеличение расстояния ведет к увеличению высоты молниеотвода и усложнению его конструкции.

Установка молниеотводов, если крыша металлическая, не требуется. В этом случае крышу по периметру через 20-25 м заземляют. Трубы, вентиляционные устройства и т. п., установленные на крыше, присоединяют к металлической кровле.

Как экономить электрическую энергию?

В электроосветительных установках борьбу за экономию энергии нельзя вести в ущерб высокому качеству освещения, которое создает комфортные условия и положительно влияет на производительность труда. -десь, так же как и в других потребительских установках, следует следить за безусловным соблюдением действующих норм, внедрять прогрессивные источники света и рациональные типы осветительной арматуры, правильно выбирать лампы и светильники, поддерживать нормальный уровень напряжения в осветительной сети, обеспечивать хорошую эксплуатацию.

Амена ламп накаливания на люминесцентные и газоразрядные может дать большую экономию электроэнергии. Последние имеют более высокий энергетический КПД. Поэтому при переходе на люминесцентные или газоразрядные лампы можно при сокращенном расходе электроэнергии значительно повысить уровень освещенности рабочих мест.

В интересах экономии энергии нужно автоматизировать и программировать продолжительность искусственного освещения. Для этих целей применяют реле времени, фотоэлементы, фотореле и регуляторы напряжения.

Электроэнергию в осветительных установках можно экономить также за счет поддержания отражающих поверхностей в состоянии, соответствующем нормативным требованиям, используя новые химические препараты для мойки стекол, снижения уровня освещенности в нерабочих помещениях: тамбурах, коридорах, туалетах и т.п.

В жилом секторе осветительные приборы следует включать только в том случае, когда это действительно необходимо. -а счет этого можно сэкономить до 15% энергии. По возможности лампы накаливания следует заменить на люминесцентные. Вместо нескольких ламп небольшой мощности желательно пользоваться одной мощной лампой.

В домах с централизованным теплоснабжением важно следить за тем, чтобы температура воздуха в жилых комнатах не превышала нормы. Нужно помнить, что повышение температуры на ГС в закрытом помещении связано с дополнительным расходом на отопление 3-5% электроэнергии.

На расход энергии в домах влияет состояние их теплоизоляции. Из-за неутепленных окон и дверей помещения зачастую теряют до 40% теплоты. Подсчитано, что через неутепленную балконную дверь уходит столько же тепла, сколько и сквозь дырку диаметром 20 см.