Главная · Монтаж · Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину. Гравитационную постоянную измерили с рекордно малой ошибкой

Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину. Гравитационную постоянную измерили с рекордно малой ошибкой

Эксперименты по измерению гравитационной постоянной G, проведенные в последние годы несколькими группами, демонстрируют поразительное несовпадение друг с другом. Опубликованное на днях новое измерение, выполненное в Международном бюро мер и весов, отличается от всех них и только усугубляет проблему. Гравитационная постоянная остается на редкость неподатливой для точного измерения величиной.

Измерения гравитационной постоянной

Гравитационная постоянная G, она же постоянная Ньютона, - одна из самых важных фундаментальных констант природы. Это та константа, которая входит в закон всемирного тяготения Ньютона; она не зависит ни от свойств притягивающихся тел, ни от окружающих условий, а характеризует интенсивность самой силы гравитации. Естественно, что такая фундаментальная характеристика нашего мира важна для физики, и она должна быть аккуратно измерена.

Однако ситуация с измерением G до сих пор остается очень необычной. В отличие от многих других фундаментальных констант, гравитационная постоянная с большим трудом поддается измерению. Дело в том, что аккуратный результат можно получить только в лабораторных экспериментах, через измерение силы притяжения двух тел известной массы. Например, в классическом опыте Генри Кавендиша (рис. 2) на тонкой нити подвешивается гантелька из двух тяжелых шаров, и когда сбоку к этим шарам пододвигают другое массивное тело, то сила гравитации стремится повернуть эту гантельку на некоторый угол, пока вращательный момент сил слегка закрученной нити не скомпенсирует гравитацию. Измеряя угол поворота гантельки и зная упругие свойства нити, можно вычислить силу гравитации, а значит, и гравитационную постоянную.

Это устройство (оно называется «крутильные весы») в разных модификациях используется и в современных экспериментах. Такое измерение очень просто по сути, но трудно по исполнению, поскольку оно требует точного знания не только всех масс и всех расстояний, но и упругих свойств нити, а также обязывает минимизировать все побочные воздействия, как механические, так и температурные. Недавно, правда, появились и первые измерения гравитационной постоянной другими, атомно-интерферометрическими методами , которые используют квантовую природу вещества. Однако точность этих измерений пока сильно уступает механическим установкам, хотя, возможно, за ними будущее (см. подробности в новости Гравитационная постоянная измерена новыми методами , «Элементы», 22.01.2007).

Так или иначе, но, несмотря на более чем двухсотлетнюю историю, точность измерений остается очень скромной. Нынешнее «официальное» значение, рекомендованное американским Национальным институтом стандартизации (NIST), составляет (6,67384 ± 0,00080)·10 –11 м 3 ·кг –1 ·с –2 . Относительная погрешность тут составляет 0,012%, или 1,2·10 –4 , или, в еще более привычных для физиков обозначениях, 120 ppm (миллионных долей), и это на несколько порядков хуже, чем точность измерения других столь же важных величин. Более того, вот уже несколько десятилетий измерение гравитационной постоянной не перестает быть источником головной боли для физиков-экспериментаторов. Несмотря на десятки проведенных экспериментов и усовершенствование самой измерительной техники, точность измерения так и осталась невысокой. Относительная погрешность на уровне 10 –4 была достигнута еще 30 лет назад, и никакого улучшения с тех пор нет.

Ситуация по состоянию на 2010 год

В последние несколько лет ситуация стала еще более драматичной. В 2008–2010 годах три группы обнародовали новые результаты измерения G. Над каждым из них команда экспериментаторов работала годами, причем не только непосредственно измеряла величину G, но и тщательно искала и перепроверяла всевозможные источники погрешностей. Каждое из этих трех измерений обладало высокой точностью: погрешности составляли 20–30 ppm. По идее, эти три измерения должны были существенно улучшить наше знание численной величины G. Беда лишь в том, что все они отличались друг от друга аж на 200–400 ppm, то есть на целый десяток заявленных погрешностей! Эта ситуация по состоянию на 2010 год показана на рис. 3 и кратко описана в заметке Неловкая ситуация с гравитационной постоянной .

Совершенно ясно, что сама гравитационная постоянная тут не виновата; она действительно обязана быть одной и той же всегда и везде. Например, есть спутниковые данные, которые хоть и не позволяют хорошо измерить численное значение константы G, зато позволяют убедиться в ее неизменности - если бы G изменилась за год хоть на одну триллионную долю (то есть на 10 –12), это уже было бы заметно. Поэтому единственный вытекающий отсюда вывод таков: в каком-то (или в каких-то) из этих трех экспериментов есть неучтенные источники погрешностей. Но вот в каком?

Единственный способ попытаться разобраться, это повторять измерения на других установках, и желательно разными методами. К сожалению, особенного разнообразия методик здесь пока достичь не удается, поскольку во всех экспериментах используется то или иное механическое устройство. Но всё же разные реализации могут обладать разными инструментальными погрешностями, и сравнение их результатов позволит разобраться в ситуации.

Новое измерение

На днях в журнале Physical Review Letters было опубликовано одно такое измерение. Небольшая группа исследователей, работающих в Международном бюро мер и весов в Париже, с нуля построила аппарат, который позволил измерить гравитационную постоянную двумя разными способами. Он представляет из себя те же крутильные весы, только не с двумя, а с четырьмя одинаковыми цилиндрами, установленными на диске, подвешенном на металлической нити (внутренняя часть установки на рис. 1). Эти четыре груза гравитационно взаимодействуют с четырьмя другими, более крупными цилиндрами, насаженными на карусель, которую можно повернуть на произвольный угол. Схема с четырьмя телами вместо двух позволяет минимизировать гравитационное взаимодействие с несимметрично расположенными предметами (например, стенками лабораторной комнаты) и сфокусироваться именно на гравитационных силах внутри установки. Сама нить имеет не круглое, а прямоугольное сечение; это, скорее, не нить, а тонкая и узкая металлическая полоска. Такой выбор позволяет ровнее передавать нагрузку по ней и минимизировать зависимость от упругих свойств вещества. Весь аппарат находится в вакууме и при определенном температурном режиме, который выдерживается с точностью до сотой доли градуса.

Это устройство позволяет выполнять три типа измерения гравитационной постоянной (см. подробности в самой статье и на страничке исследовательской группы). Во-первых, это буквальное воспроизведение опыта Кавендиша: поднесли груз, весы повернулись на некоторый угол, и этот угол измеряется оптической системой. Во-вторых, его можно запустить в режиме крутильного маятника, когда внутренняя установка периодически вращается туда-сюда, а наличие дополнительных массивных тел изменяет период колебаний (этот способ, впрочем, исследователи не использовали). Наконец, их установка позволяет выполнять измерение гравитационной силы без поворота грузиков. Это достигается с помощью электростатического сервоконтроля: к взаимодействующим телам подводятся электрические заряды так, чтобы электростатическое отталкивание полностью компенсировало гравитационное притяжение. Такой подход позволяет избавиться от инструментальных погрешностей, связанных именно с механикой поворота. Измерения показали, что два метода, классический и электростатический, дают согласующиеся результаты.

Результат нового измерения показан красной точкой на рис. 4. Видно, что это измерение не только не разрешило наболевший вопрос, но и еще сильнее усугубило проблему: оно сильно отличается от всех остальных недавних измерений. Итак, к настоящему моменту у нас имеется уже четыре (или пять, если считать неопубликованные данные калифорнийской группы) разных и при том довольно точных измерения, и все они кардинально расходятся друг с другом! Разница между двумя самыми крайними (и хронологически - самыми последними) значениями уже превышает 20(!) заявленных погрешностей .

Что касается нового эксперимента, тут надо добавить вот что. Эта группа исследователей уже выполняла аналогичный эксперимент в 2001 году. И тогда у них тоже получалось значение, близкое к нынешнему, но только чуть менее точное (см. рис. 4). Их можно было бы заподозрить в простом повторении измерений на одном и том же железе, если бы не одно «но» - тогда это была другая установка. От той старой установки они сейчас взяли только 11-килограммовые внешние цилиндры, но весь центральный прибор был сейчас построен заново. Если бы у них действительно был какой-то неучтенный эффект, связанный именно с материалами или изготовлением аппарата, то он вполне мог измениться и «утащить за собой» новый результат. Но результат остался примерно на том же месте, что и в 2001 году. Авторы работы видят в этом лишнее доказательство чистоты и достоверности их измерения.

Ситуация, когда сразу четыре или пять результатов, полученных разными группами, все различаются на десяток-другой заявленных погрешностей, по-видимому, для физики беспрецедентна. Какой бы высокой ни была точность каждого измерения и как бы авторы ею ни гордились, для установления истины она сейчас не имеет никакого значения. И пока что пытаться на их основании узнать истинное значение гравитационной постоянной можно только одним способом: поставить значение где-то посередине и приписать погрешность, которая будет охватывать весь этот интервал (то есть раза в полтора-два ухудшить нынешнюю рекомендованную погрешность). Можно лишь надеяться, что следующие измерения будут попадать в этот интервал и постепенно будут давать предпочтение какому-то одному значению.

Так или иначе, но гравитационная постоянная продолжает оставаться головоломкой измерительной физики. Через сколько лет (или десятилетий) эта ситуация действительно начнет улучшаться, сейчас предсказать трудно.

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Wikimedia Commons Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r 2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами. Другие обозначения Г. п.: γ или f (реже k 2 ). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц (См. СГС система единиц)

G = (6,673 ± 0,003)․10 -8 дн см 2 г -2

или см 3 г --1 сек -2 , в Международной системе единиц (См. Международная система единиц)

G = (6,673 ± 0,003)․10 -11 ․н м 2 кг --2

или м 3 кг -1 сек -2 . Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов (См. Крутильные весы).

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. - произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ± 0,00003)․10 14 ․м 3 сек -2 .

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. - произведение Г. п. на массу Солнца:

GS s = 1,32718․10 20 ․ м 3 сек -2 .

Эти значения GE и GS s соответствуют системе фундаментальных астрономических постоянных (См. Фундаментальные астрономические постоянные), принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

  • - , физ. величина, характеризующая св-ва тела как источника тяготения; равна инертной массе. ...

    Физическая энциклопедия

  • - нарастание со временем отклонений от ср. значения плотности и скорости движения в-ва в косм. пр-ве под действием сил тяготения...

    Физическая энциклопедия

  • - нарастание возмущений плотности и скорости вещества в первоначально почти однородной среде под действием гравитационных сил. В результате гравитационной неустойчивости образуются сгустки вещества...

    Астрономический словарь

  • - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды...

    Мир Лема - словарь и путеводитель

  • - подземная вода, способная передвигаться по порам, трещинам и другим пустотам горных пород под влиянием силы тяжести...

    Словарь геологических терминов

  • - вода свободная. Она передвигается под влиянием силы тяжести, в ней действует гидродинамическое давление...

    Словарь по гидрогеологии и инженерной геологии

  • - Влага свободная, передвигающаяся или способная к передвижению в п. или грунте под влиянием силы тяжести...

    Толковый словарь по почвоведению

  • - тяготения постоянная, - универс. физ. постоянная G, входящая в ф-лу, выражающую ньютоновский закон тяготения: G = *10-11Н*м2/кг2...

    Большой энциклопедический политехнический словарь

  • - местная ликвация по высоте слитка, связанная с различием в плотности твердой и жидкой фаз, а также не смешивающихся при кристаллизации жидких фаз...
  • - шахтная печь, в которой нагреваемый материал движется сверху вниз под действием силы тяжести, а газообразный теплоноситель - встречно...

    Энциклопедический словарь по металлургии

  • - син. термина аномалия силы тяжести...

    Геологическая энциклопедия

  • - см. в ст. Свободная вода....

    Геологическая энциклопедия

  • - масса, тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...
  • - то же, что Отвесная линия...

    Большая Советская энциклопедия

  • - тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...

    Большая Советская энциклопедия

  • - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами...

    Большая Советская энциклопедия

"Гравитационная постоянная" в книгах

автора Еськов Кирилл Юрьевич

автора

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Постоянная забота

Из книги Листы дневника. Том 1 автора Рерих Николай Константинович

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта. Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

6.10. Гравитационная редукция вектора состояния

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

6.10. Гравитационная редукция вектора состояния Есть веские причины подозревать, что модификация квантовой теории - необходимая, если мы намерены выдать ту или иную форму R за реальный физический процесс, - должна самым серьезным образом задействовать эффекты

Аналогия с вулканом: гравитационная и центробежная энергии

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Аналогия с вулканом: гравитационная и центробежная энергии Чтобы объяснить, как этот вулкан связан с законами физики, придется слегка углубиться в технические детали.Для простоты будем считать, что «Эндюранс» движется в экваториальной плоскости Гаргантюа.

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова)

Из книги 100 великих тайн Второй мировой автора Непомнящий Николай Николаевич

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова) В начале 1920-х годов в Германии была опубликована статья доцента Кёнигсбергского университета Т. Калуцы о «теории великого объединения», в которой он сумел опередить Эйнштейна, работавшего в то время

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Гравитационная

БСЭ

Гравитационная вертикаль

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная плотина

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная постоянная

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Способности кристаллов. Гравитационная подпитка

Из книги Энергия камня исцеляет. Кристаллотерапия. С чего начать? автора Бриль Мария

Способности кристаллов. Гравитационная подпитка Природные элементы, на протяжении миллионов лет выкристаллизовывавшиеся в глубинах земных недр, обладают особыми свойствами, позволяющими им максимально реализовать свои способности. А способности эти не так уж и малы.

Правило «Гравитационная горка»

Из книги Оздоровительно-боевая система «Белый Медведь» автора Мешалкин Владислав Эдуардович

Правило «Гравитационная горка» Мы уже договорились: все есть мысль; мысль есть Сила; движение Силы – волна. Поэтому боевое взаимодействие по сути не отличается от стирки белья. В обоих случаях имеет место волновой процесс.Вам надо усвоить, что волновой процесс жизни

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством , притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

  • m 1 и m 2 — тела, взаимодействующие посредством гравитации
  • F 1 и F 2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684-1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м 3 с −2 .

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см 3 (сегодня более точные расчеты дают 5,52 г/см 3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10 −11 м³/(кг·с²), G = 6,71·10 −11 м³/(кг·с²) или G = (6,6 ± 0,04)·10 −11 м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10 -17 . Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10 -11 – 10 -12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10 −11 м 3 ·с −2 ·кг −1 .

Все попытки экспериментаторов по уменьшению погрешности измерений гравитационной постоянной Земли до сего времени сводились к нулю. Как было отмечено ранее, со времен Кавендиша точность измерения этой постоянной практически не увеличилась. За два с лишним столетия точность измерения не сдвинулась с места. Такую ситуацию можно назвать по аналогии с «ультрафиолетовой катастрофой» как «катастрофа гравитационной постоянной». Из ультрафиолетовой катастрофы выбрались с помощью квантов, а как выйти из катастрофы с гравитационной постоянной?

Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:

Где, g – ускорение свободного падения (g=9,78 м/с 2 – на экваторе; g=9,832 м/с 2 – на полюсах).

R – радиус Земли, м,

M – масса Земли, кг.

Стандартное значение ускорения свободного падения, принятое при построении систем единиц, равно: g=9,80665 . Отсюда усредненное значение G будет равно:

В соответствии с полученным G , уточним температуру из пропорции:

6,68·10 -11 ~х=1~4,392365689353438·10 12

Данная температура соответствует по шкале Цельсия 20,4 o .

Такой компромисс, я думаю, вполне мог бы удовлетворить две стороны: экспериментальную физику и комитет (КОДАТА), чтобы периодически не пересматривать и не изменять значение гравитационной постоянной для Земли.

Можно «законодательно» утвердить нынешнее значение гравитационной постоянной для Земли G=6,67408·10 -11 Нм 2 /кг 2 , но скорректировать стандартное значение g=9,80665, несколько уменьшив его значение.

Кроме того, если использовать среднюю температуру Земли, равную 14 o С, то гравитационная постоянная будет равна G=6,53748·10 -11 .

Итак, у нас имеются три значения, претендующих на пьедестал гравитационной постоянной G для планеты Земля: 1) 6,67408·10 -11 м³/(кг·с²) ; 2) 6,68·10 -11 м³/(кг·с²) ; 3) 6,53748·10 -11 м³/(кг·с²) .

Комитету КОДАТА остается вынести окончательный вердикт, какую из них утвердить как гравитационную постоянную Земли.

Мне могут возразить, если гравитационная постоянная зависит от температуры взаимодействующих тел, то силы притяжения днем и ночью, зимой и летом должны отличаться. Да, именно так и должно быть, с малыми телами. Но Земля огромный, быстро вращающийся шар, имеет громадный запас энергии. Отсюда, интегральное количество крафонов зимой и летом, днем и ночью, вылетающих из Земли, одинаково. Поэтому, ускорение свободного падения на одной широте остается всегда постоянным.

Если переместиться на Луну, где разность температур дневного и ночного полушарий сильно разнятся, то гравиметры должны зафиксировать разницу силы притяжения.

Related Posts

11 комментариев

    Только один вопрос к Вам:

    Или у Вас в постранстве энергия не в сфере распространяется?

    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.

    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»

    Только один вопрос к Вам:
    Если Вы уже начали говорить об энергии, то почему напрочь забыли о 4Пи перед R^2?!
    Или у Вас в постранстве энергия не в сфере распространяется?
    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.
    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»
    ________________________________________________________
    Вместо одного заявленного вопроса оказалось три, но суть не в этом.
    1. Касаемо 4π. В формулах (9) и (10) R2 – это расстояние от тела (предмета) до центра Земли. Откуда здесь должна появиться 4π – не понятно.
    2. Что касается максимальной температура вещества в природе. Вы, очевидно, поленились открыть ссылку в конце статьи: «Гравитационная постоянная величина – переменная».
    3. Теперь относительно «осмысленного описания процесса гравитационного взаимодействия тел». Все осмыслено и описано. Относительно, в какую сторону летят эти самые крафоны, читаем статьи: « ». Солнечные фотоны стартуют с поверхности Светила без отдачи, с приобретением импульсов придачи. Фотон, в противовес материальному миру, не имеет инерции – его импульс возникает в момент отрыва от источника без отдачи!
    Явление отдачи наблюдается только в телах, когда под действием внутренних сил оно распадается на части, разлетающееся в противоположные стороны. Фотон не распадается на части, он не расстается со своим приобретенным импульсом до своего поглощения, поэтому для него выражение (3) будет справедливо.
    « » , и ч.2 .
    Цитата из 2-й части: «Крафоны из элементарного шарика вылетают спонтанно, по разным направлениям по нормали его поверхности. Притом, направлены они, в основном, в атмосферу, т.е. в более разреженный электромагнитный эфир (ЭМЭ) по сравнению с ЭМЭ вод Мирового океана. В принципе та же картина наблюдается и на материках».
    Уважаемые читатели, на тему: как возникает гравитация, и кто является ее переносчиком, читайте всю главу под названием: «Гравитация». Конечно, можно и выборочно, для этого кликайте по кнопке «Карта сайта» верхнего меню, расположенного над шапкой сайта.

    Добавление к предыдущему комментарию.

    12окт.2016г. На страницах электронного научно-практического журнала «Современные научные исследования и инновации» опубликована моя статья под названием: «Фотонно-квантовая гравитация». В статье изложена суть гравитации. Прочесть по ссылке:

    P.S. Алексей Вы правы, в данном журнале указанной статьи нет. Читай ниже мой комментарий.

    Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((

    «Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((»
    Статья: ГРАВИТАЦИЯ ЗЕМЛИ ФОТОННО-КВАНТОВАЯ ГРАВИТАЦИЯ переехала в другой журнал: «Scientific-Researches» №5(5), 2016, с. 79
    http://tsh-journal.com/wp-content/uploads/2016/11/VOL-1-No-5-5-2016.pdf

    05.01.2017. Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула

    «Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула»
    ———————————
    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    «Все тела, обладающие массой, возбуждают в окружающем пространстве гравитационные поля, подобно тому, как электрически заряженные частицы образуют вокруг себя электростатическое поле. Можно предположить, что тела несут в себе гравитационный заряд, аналогичный электрическому, или, по-другому, обладают гравитационной массой. С высокой точностью было установлено, что инертная и гравитационная массы совпадают.
    2
    Пусть имеется два точечных тела массами m1 и m2. Они удалены друг от друга на расстояние r. Тогда сила гравитационного притяжения между ними равна: F=C·m1·m2/r², где С – коэффициент, который зависит лишь от выбранных единиц измерения.

    3
    Если на поверхности Земли имеется небольшое тело, его размерами и массой можно пренебречь, т.к. габариты Земли намного превосходят их. При определении расстояния между планетой и поверхностным телом рассматривается только радиус Земли, т.к. высота расположения тела пренебрежимо мала в сравнении с ним. Получается, что Земля притягивает тело с силой F=M/R², где M – масса Земли, R – ее радиус.
    4
    Согласно закону всемирного тяготения, ускорение тел при действии силы тяжести на поверхности Земли равно: g=G M/ R². Здесь G – гравитационная постоянная, численно равная примерно 6,6742 10^(−11).
    5
    Ускорение свободного падения g и радиус земли R находятся из непосредственных измерений. Константа G с большой точностью определена в опытах Кэвендиша и Йолли. Итак, масса Земли M=5,976 10^27 г ≈ 6 10^27 г.

    фТавтология, на мой взгляд, разумеется ошибочный, заключается в том, что при вычислении массы Земли используется все тот же коэффициент G Кавендиша Йолли под названием гравитационная постоянная, которая совсем даже не постоянная, в чем я с Вами абсолютно согласен. Поэтому Ваш посыл «Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:» не совсем корректен. Ваш расчет константы G уже использован в расчете массы Земли. Ни в коей мере не хочу Вас укорить, просто очень хочу разобраться с этой гравитационной постоянной, которой в законе Роберта Гука присвоенного Ньютоном совсем даже не было. С глубоким уважением Микула.

    Уважаемый, Микула, Ваше желание понять и разобраться с гравитационной постоянной похвально. Учитывая, что понять данную константу желали многие ученые, но не многим удалось это сделать.
    «Константа G с большой точностью определена в опытах Кавендиша и Йолли».
    Нет! С не большой! Иначе, зачем бы наука тратила средства и время для ее регулярной перепроверки и уточнения, т.е. усреднения результатов, чем и занимается КОДАТА. А нужна она как раз для того чтобы «взвесить Землю» и узнать ее плотность, чем и прославился Кавендиш. Но как видите, G гуляет от одного опыта к другому. Тоже самое и с ускорением свободного падения.
    Гравитационная постоянная – это коэффициент для одного значения температуры, а температура, что дышло.
    Что предлагаю я? Для планеты Земля раз и навсегда установить одно значение G и сделать ее действительно постоянной c учетом g.
    Не поленитесь, прочтите все статьи в рубрике G (гравитационная постоянная), думаю, у Вас многое прояснится. Начните сначала:

    Путь Наш во мраке… И стукаемся Мы лбами не только об осклизлые стены подземелья в поисках проблесков к выходу, но и об лбы таких же несчастных, матерясь и проклиная… хромые, безрукие, слепые нищие … И не слышим друг друга. Протягиваем руку и получаем в неё плевок… и потому бесконечен Наш путь… И тем не менее… вот моя рука. Это моя версия понимания природы гравитации… и «сильного взаимодействия».
    Мезенцев Николай Фёдорович.

    Ваша рука, к сожалению, мне никак не помогла, а собственно зачем.

Этот сайт использует Akismet для борьбы со спамом. .


Ваш комментарий на модерации.