घर · उपकरण · लघुगणक को कैसे हल करें इसके सरल उदाहरण हैं। लघुगणक की परिभाषा और उसके गुण: सिद्धांत और समस्या समाधान

लघुगणक को कैसे हल करें इसके सरल उदाहरण हैं। लघुगणक की परिभाषा और उसके गुण: सिद्धांत और समस्या समाधान

तो, हमारे पास दो की शक्तियाँ हैं। यदि आप नीचे की पंक्ति से संख्या लेते हैं, तो आप आसानी से उस शक्ति का पता लगा सकते हैं जिस तक आपको इस संख्या को प्राप्त करने के लिए दो को उठाना होगा। उदाहरण के लिए, 16 प्राप्त करने के लिए, आपको दो को चौथी घात तक बढ़ाने की आवश्यकता है। और 64 प्राप्त करने के लिए, आपको दो को छठी घात तक बढ़ाने की आवश्यकता है। इसे तालिका से देखा जा सकता है।

और अब - वास्तव में, लघुगणक की परिभाषा:

x का आधार लघुगणक वह शक्ति है जिस तक x प्राप्त करने के लिए a को बढ़ाया जाना चाहिए।

पदनाम: लॉग ए एक्स = बी, जहां ए आधार है, एक्स तर्क है, बी वह है जो लघुगणक वास्तव में बराबर है।

उदाहरण के लिए, 2 3 = 8 ⇒ लघुगणक 2 8 = 3 (8 का आधार 2 लघुगणक तीन है क्योंकि 2 3 = 8)। उसी सफलता के साथ लॉग 2 64 = 6, क्योंकि 2 6 = 64।

किसी दिए गए आधार पर किसी संख्या का लघुगणक ज्ञात करने की क्रिया को लघुगणक कहा जाता है। तो, आइए अपनी तालिका में एक नई पंक्ति जोड़ें:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
लॉग 2 2 = 1लॉग 2 4 = 2 लॉग 2 8 = 3लॉग 2 16 = 4 लॉग 2 32 = 5लॉग 2 64 = 6

दुर्भाग्य से, सभी लघुगणक की गणना इतनी आसानी से नहीं की जाती है। उदाहरण के लिए, लॉग 2 5 खोजने का प्रयास करें। संख्या 5 तालिका में नहीं है, लेकिन तर्क बताता है कि लघुगणक खंड पर कहीं स्थित होगा। क्योंकि 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

ऐसी संख्याओं को अपरिमेय कहा जाता है: दशमलव बिंदु के बाद की संख्याओं को अनंत तक लिखा जा सकता है, और उन्हें कभी भी दोहराया नहीं जाता है। यदि लघुगणक अपरिमेय हो जाता है, तो इसे इस प्रकार छोड़ना बेहतर है: लघुगणक 2 5, लघुगणक 3 8, लघुगणक 5 100।

यह समझना महत्वपूर्ण है कि लघुगणक दो चर (आधार और तर्क) के साथ एक अभिव्यक्ति है। पहले तो कई लोग भ्रमित हो जाते हैं कि आधार कहां है और तर्क कहां है। कष्टप्रद ग़लतफहमियों से बचने के लिए, बस चित्र देखें:

हमारे सामने लघुगणक की परिभाषा से अधिक कुछ नहीं है। याद करना: लघुगणक एक शक्ति है, जिसमें तर्क प्राप्त करने के लिए आधार बनाया जाना चाहिए। यह आधार है जिसे एक शक्ति तक उठाया जाता है - इसे चित्र में लाल रंग में हाइलाइट किया गया है। इससे पता चलता है कि आधार हमेशा सबसे नीचे होता है! मैं अपने विद्यार्थियों को पहले पाठ में ही यह अद्भुत नियम बता देता हूँ - और कोई भ्रम पैदा नहीं होता।

हमने परिभाषा का पता लगा लिया है - जो कुछ बचा है वह सीखना है कि लघुगणक की गणना कैसे करें, अर्थात्। "लॉग" चिह्न से छुटकारा पाएं। आरंभ करने के लिए, हम ध्यान दें कि परिभाषा से दो महत्वपूर्ण तथ्य निकलते हैं:

  1. तर्क और आधार सदैव शून्य से बड़ा होना चाहिए। यह एक तर्कसंगत घातांक द्वारा डिग्री की परिभाषा से अनुसरण करता है, जिसमें लघुगणक की परिभाषा कम हो जाती है।
  2. आधार एक से भिन्न होना चाहिए, क्योंकि किसी भी स्तर तक एक अभी भी एक ही रहता है। इस कारण से, यह प्रश्न कि "दो प्राप्त करने के लिए एक को किस शक्ति तक बढ़ाया जाना चाहिए" निरर्थक है। ऐसी कोई डिग्री नहीं है!

ऐसे प्रतिबंध कहलाते हैं स्वीकार्य मूल्यों की सीमा(ओडीजेड)। यह पता चला है कि लघुगणक का ODZ इस तरह दिखता है: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

ध्यान दें कि संख्या b (लघुगणक का मान) पर कोई प्रतिबंध नहीं है। उदाहरण के लिए, लघुगणक ऋणात्मक हो सकता है: लघुगणक 2 0.5 = −1, क्योंकि 0.5 = 2 −1.

हालाँकि, अब हम केवल संख्यात्मक अभिव्यक्तियों पर विचार कर रहे हैं, जहाँ लघुगणक का VA जानने की आवश्यकता नहीं है। समस्याओं के लेखकों द्वारा सभी प्रतिबंधों को पहले ही ध्यान में रखा जा चुका है। लेकिन जब लघुगणक समीकरण और असमानताएं चलन में आएंगी, तो डीएल आवश्यकताएं अनिवार्य हो जाएंगी। आख़िरकार, आधार और तर्क में बहुत मजबूत निर्माण शामिल हो सकते हैं जो जरूरी नहीं कि उपरोक्त प्रतिबंधों के अनुरूप हों।

आइए अब लघुगणक की गणना के लिए सामान्य योजना देखें। इसमें तीन चरण होते हैं:

  1. आधार a और तर्क x को एक घात के रूप में व्यक्त करें जिसका न्यूनतम संभव आधार एक से अधिक हो। साथ ही, दशमलव से छुटकारा पाना बेहतर है;
  2. चर b के लिए समीकरण हल करें: x = a b ;
  3. परिणामी संख्या b उत्तर होगी।

बस इतना ही! यदि लघुगणक अपरिमेय हो जाता है, तो यह पहले चरण में ही दिखाई देगा। यह आवश्यकता कि आधार एक से बड़ा हो, बहुत महत्वपूर्ण है: इससे त्रुटि की संभावना कम हो जाती है और गणनाएँ बहुत सरल हो जाती हैं। दशमलव भिन्नों के साथ भी ऐसा ही है: यदि आप उन्हें तुरंत सामान्य भिन्नों में बदल दें, तो बहुत कम त्रुटियाँ होंगी।

आइए विशिष्ट उदाहरणों का उपयोग करके देखें कि यह योजना कैसे काम करती है:

काम। लघुगणक की गणना करें: लघुगणक 5 25

  1. आइए आधार और तर्क की कल्पना पाँच की घात के रूप में करें: 5 = 5 1 ; 25 = 5 2 ;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 5 25 = बी ⇒ (5 1) बी = 5 2 ⇒ 5 बी = 5 2 ⇒ बी = 2;

  3. हमें उत्तर मिला: 2.

काम। लघुगणक की गणना करें:

काम। लघुगणक की गणना करें: लघुगणक 4 64

  1. आइए आधार और तर्क की कल्पना दो की घात के रूप में करें: 4 = 2 2 ; 64 = 2 6 ;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 4 64 = बी ⇒ (2 2) बी = 2 6 ⇒ 2 2बी = 2 6 ⇒ 2बी = 6 ⇒ बी = 3;
  3. हमें उत्तर मिला: 3.

काम। लघुगणक की गणना करें: लघुगणक 16 1

  1. आइए आधार और तर्क की कल्पना दो की घात के रूप में करें: 16 = 2 4 ; 1 = 2 0 ;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 16 1 = बी ⇒ (2 4) बी = 2 0 ⇒ 2 4बी = 2 0 ⇒ 4बी = 0 ⇒ बी = 0 ;
  3. हमें उत्तर मिला: 0.

काम। लघुगणक की गणना करें: लघुगणक 7 14

  1. आइए आधार और तर्क की कल्पना सात की घात के रूप में करें: 7 = 7 1 ; 14 को सात की घात के रूप में प्रदर्शित नहीं किया जा सकता, क्योंकि 7 1< 14 < 7 2 ;
  2. पिछले पैराग्राफ से यह पता चलता है कि लघुगणक की गिनती नहीं होती है;
  3. उत्तर कोई परिवर्तन नहीं है: लॉग 7 14।

अंतिम उदाहरण पर एक छोटा सा नोट। आप यह कैसे सुनिश्चित कर सकते हैं कि एक संख्या किसी अन्य संख्या की सटीक घात नहीं है? यह बहुत सरल है - बस इसे अभाज्य गुणनखंडों में शामिल करें। यदि विस्तार में कम से कम दो अलग-अलग कारक हैं, तो संख्या सटीक शक्ति नहीं है।

काम। पता लगाएँ कि क्या संख्याएँ सटीक घात हैं: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - सटीक डिग्री, क्योंकि केवल एक गुणक है;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - एक सटीक घात नहीं है, क्योंकि दो कारक हैं: 3 और 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - सटीक डिग्री;
35 = 7 · 5 - फिर से कोई सटीक शक्ति नहीं;
14 = 7 · 2 - फिर भी कोई सटीक डिग्री नहीं;

यह भी ध्यान दें कि अभाज्य संख्याएँ हमेशा स्वयं की सटीक घातें होती हैं।

दशमलव लघुगणक

कुछ लघुगणक इतने सामान्य हैं कि उनका एक विशेष नाम और प्रतीक होता है।

x का दशमलव लघुगणक आधार 10 का लघुगणक है, अर्थात संख्या x प्राप्त करने के लिए संख्या 10 को जिस शक्ति तक बढ़ाया जाना चाहिए। पदनाम: एलजी एक्स.

उदाहरण के लिए, लॉग 10 = 1; एलजी 100 = 2; एलजी 1000 = 3 - आदि।

अब से, जब पाठ्यपुस्तक में "फाइंड एलजी 0.01" जैसा वाक्यांश दिखाई दे, तो जान लें कि यह कोई टाइपो त्रुटि नहीं है। यह दशमलव लघुगणक है. हालाँकि, यदि आप इस संकेतन से अपरिचित हैं, तो आप इसे हमेशा फिर से लिख सकते हैं:
लॉग एक्स = लॉग 10 एक्स

जो कुछ सामान्य लघुगणक के लिए सत्य है वह दशमलव लघुगणक के लिए भी सत्य है।

प्राकृतिक

एक और लघुगणक है जिसका अपना पदनाम है। कुछ मायनों में, यह दशमलव से भी अधिक महत्वपूर्ण है। हम प्राकृतिक लघुगणक के बारे में बात कर रहे हैं।

x का प्राकृतिक लघुगणक आधार e का लघुगणक है, अर्थात। वह शक्ति जिससे संख्या x प्राप्त करने के लिए संख्या e को बढ़ाया जाना चाहिए। पदनाम: एलएन एक्स .

कई लोग पूछेंगे: ई संख्या क्या है? यह एक अपरिमेय संख्या है, इसका सटीक मान न तो पाया जा सकता है और न ही लिखा जा सकता है। मैं केवल प्रथम आंकड़े दूँगा:
ई = 2.718281828459...

यह नंबर क्या है और इसकी आवश्यकता क्यों है, इसके बारे में हम विस्तार से नहीं बताएंगे। बस याद रखें कि ई प्राकृतिक लघुगणक का आधार है:
एलएन एक्स = लॉग ई एक्स

इस प्रकार ln e = 1 ; एलएन ई 2 = 2; एलएन ई 16 = 16 - आदि। दूसरी ओर, ln 2 एक अपरिमेय संख्या है। सामान्य तौर पर, किसी भी परिमेय संख्या का प्राकृतिक लघुगणक अपरिमेय होता है। बेशक, एक को छोड़कर: एलएन 1 = 0।

प्राकृतिक लघुगणक के लिए, वे सभी नियम मान्य हैं जो सामान्य लघुगणक के लिए सत्य हैं।

प्राकृतिक लघुगणक, ग्राफ, परिभाषा का क्षेत्र, मूल्यों का सेट, मूल सूत्र, व्युत्पन्न, अभिन्न, शक्ति श्रृंखला विस्तार और जटिल संख्याओं का उपयोग करके फ़ंक्शन एलएन एक्स का प्रतिनिधित्व के मूल गुण दिए गए हैं।

परिभाषा

प्राकृतिकफलन y = है एलएन एक्स, घातांक का व्युत्क्रम, x = e y, और संख्या e के आधार का लघुगणक है: एलएन एक्स = लॉग ई एक्स.

गणित में प्राकृतिक लघुगणक का व्यापक रूप से उपयोग किया जाता है क्योंकि इसके व्युत्पन्न का रूप सबसे सरल है: (एलएन एक्स)′ = 1/ एक्स.

आधारित परिभाषाएं, प्राकृतिक लघुगणक का आधार संख्या है :
ई ≅ 2.718281828459045...;
.

फ़ंक्शन का ग्राफ़ y = एलएन एक्स.

प्राकृतिक लघुगणक का ग्राफ़ (फ़ंक्शन y = एलएन एक्स) सीधी रेखा y = x के सापेक्ष दर्पण प्रतिबिंब द्वारा घातीय ग्राफ से प्राप्त किया जाता है।

प्राकृतिक लघुगणक को चर x के सकारात्मक मानों के लिए परिभाषित किया गया है। यह अपनी परिभाषा के क्षेत्र में नीरस रूप से बढ़ता है।

x → पर 0 प्राकृतिक लघुगणक की सीमा शून्य से अनंत (-∞) है।

जैसे x → + ∞, प्राकृतिक लघुगणक की सीमा प्लस इनफिनिटी (+ ∞) है। बड़े x के लिए, लघुगणक काफी धीरे-धीरे बढ़ता है। धनात्मक घातांक वाला कोई भी घात फलन x a लघुगणक की तुलना में तेजी से बढ़ता है।

प्राकृतिक लघुगणक के गुण

परिभाषा का क्षेत्र, मूल्यों का समुच्चय, चरम सीमा, वृद्धि, कमी

प्राकृतिक लघुगणक एक नीरस रूप से बढ़ने वाला कार्य है, इसलिए इसका कोई चरम नहीं है। प्राकृतिक लघुगणक के मुख्य गुण तालिका में प्रस्तुत किए गए हैं।

एलएन एक्स मान

एलएन 1 = 0

प्राकृतिक लघुगणक के लिए मूल सूत्र

व्युत्क्रम फलन की परिभाषा से निम्नलिखित सूत्र:

लघुगणक का मुख्य गुण और उसके परिणाम

आधार प्रतिस्थापन सूत्र

किसी भी लघुगणक को आधार प्रतिस्थापन सूत्र का उपयोग करके प्राकृतिक लघुगणक के रूप में व्यक्त किया जा सकता है:

इन सूत्रों के प्रमाण "लघुगणक" खंड में प्रस्तुत किए गए हैं।

उलटा काम करना

प्राकृतिक लघुगणक का व्युत्क्रम घातांक है।

तो अगर

तो अगर।

व्युत्पन्न एलएन एक्स

प्राकृतिक लघुगणक का व्युत्पन्न:
.
मापांक x के प्राकृतिक लघुगणक का व्युत्पन्न:
.
nवें क्रम का व्युत्पन्न:
.
सूत्र व्युत्पन्न करना > > >

अभिन्न

अभिन्न की गणना भागों द्वारा एकीकरण द्वारा की जाती है:
.
इसलिए,

सम्मिश्र संख्याओं का उपयोग करते हुए व्यंजक

जटिल चर z के फ़ंक्शन पर विचार करें:
.
आइए जटिल चर को व्यक्त करें जेडमॉड्यूल के माध्यम से आरऔर तर्क φ :
.
लघुगणक के गुणों का उपयोग करते हुए, हमारे पास है:
.
या
.
तर्क φ विशिष्ट रूप से परिभाषित नहीं है। यदि आप डालते हैं
, जहां n एक पूर्णांक है,
यह अलग-अलग n के लिए समान संख्या होगी।

इसलिए, एक जटिल चर के एक फ़ंक्शन के रूप में प्राकृतिक लघुगणक, एक एकल-मूल्यवान फ़ंक्शन नहीं है।

शक्ति शृंखला विस्तार

जब विस्तार होता है:

सन्दर्भ:
में। ब्रोंस्टीन, के.ए. सेमेन्डयेव, इंजीनियरों और कॉलेज के छात्रों के लिए गणित की पुस्तिका, "लैन", 2009।

संख्या b (b > 0) से आधार a (a > 0, a ≠ 1) का लघुगणक- घातांक जिससे संख्या a को b प्राप्त करने के लिए बढ़ाया जाना चाहिए।

बी का आधार 10 लघुगणक इस प्रकार लिखा जा सकता है लॉग(बी), और आधार ई का लघुगणक (प्राकृतिक लघुगणक) है एलएन(बी).

लघुगणक के साथ समस्याओं को हल करते समय अक्सर उपयोग किया जाता है:

लघुगणक के गुण

ये चार मुख्य हैं लघुगणक के गुण.

मान लीजिए a > 0, a ≠ 1, x > 0 और y > 0.

संपत्ति 1. उत्पाद का लघुगणक

उत्पाद का लघुगणकलघुगणक के योग के बराबर:

लॉग ए (एक्स ⋅ वाई) = लॉग ए एक्स + लॉग ए वाई

गुण 2. भागफल का लघुगणक

भागफल का लघुगणकलघुगणक के अंतर के बराबर:

लॉग ए (एक्स / वाई) = लॉग ए एक्स - लॉग ए वाई

संपत्ति 3. शक्ति का लघुगणक

डिग्री का लघुगणकघात और लघुगणक के गुणनफल के बराबर:

यदि लघुगणक का आधार डिग्री में है, तो दूसरा सूत्र लागू होता है:

गुण 4. मूल का लघुगणक

यह गुण किसी घात के लघुगणक के गुण से प्राप्त किया जा सकता है, क्योंकि घात का nवाँ मूल 1/n की घात के बराबर है:

एक आधार के लघुगणक को दूसरे आधार के लघुगणक में बदलने का सूत्र

लघुगणक पर विभिन्न समस्याओं को हल करते समय भी इस सूत्र का उपयोग अक्सर किया जाता है:

विशेष मामला:

लघुगणक (असमानताएं) की तुलना करना

आइए हमारे पास समान आधार वाले लघुगणक के तहत 2 फ़ंक्शन f(x) और g(x) हैं और उनके बीच एक असमानता चिह्न है:

उनकी तुलना करने के लिए, आपको सबसे पहले लघुगणक के आधार को देखना होगा:

  • यदि a > 0, तो f(x) > g(x) > 0
  • यदि 0< a < 1, то 0 < f(x) < g(x)

लघुगणक के साथ समस्याओं को कैसे हल करें: उदाहरण

लघुगणक के साथ समस्याएँकार्य 5 और कार्य 7 में ग्रेड 11 के लिए गणित में एकीकृत राज्य परीक्षा में शामिल, आप हमारी वेबसाइट पर उपयुक्त अनुभागों में समाधान के साथ कार्य पा सकते हैं। साथ ही, गणित कार्य बैंक में लघुगणक वाले कार्य पाए जाते हैं। आप साइट पर खोज कर सभी उदाहरण पा सकते हैं।

लघुगणक क्या है

स्कूली गणित पाठ्यक्रमों में लघुगणक को हमेशा एक कठिन विषय माना गया है। लघुगणक की कई अलग-अलग परिभाषाएँ हैं, लेकिन किसी कारण से अधिकांश पाठ्यपुस्तकें उनमें से सबसे जटिल और असफल परिभाषाओं का उपयोग करती हैं।

हम लघुगणक को सरल एवं स्पष्ट रूप से परिभाषित करेंगे। ऐसा करने के लिए, आइए एक तालिका बनाएं:

तो, हमारे पास दो की शक्तियाँ हैं।

लघुगणक - गुण, सूत्र, कैसे हल करें

यदि आप नीचे की पंक्ति से संख्या लेते हैं, तो आप आसानी से उस शक्ति का पता लगा सकते हैं जिस तक आपको इस संख्या को प्राप्त करने के लिए दो को उठाना होगा। उदाहरण के लिए, 16 प्राप्त करने के लिए, आपको दो को चौथी घात तक बढ़ाने की आवश्यकता है। और 64 प्राप्त करने के लिए, आपको दो को छठी घात तक बढ़ाने की आवश्यकता है। इसे तालिका से देखा जा सकता है।

और अब - वास्तव में, लघुगणक की परिभाषा:

तर्क x का आधार a वह शक्ति है जिससे संख्या x प्राप्त करने के लिए संख्या a को बढ़ाया जाना चाहिए।

पदनाम: लॉग ए एक्स = बी, जहां ए आधार है, एक्स तर्क है, बी वह है जो लघुगणक वास्तव में बराबर है।

उदाहरण के लिए, 2 3 = 8 ⇒log 2 8 = 3 (8 का आधार 2 लघुगणक तीन है क्योंकि 2 3 = 8)। उसी सफलता के साथ, लॉग 2 64 = 6, क्योंकि 2 6 = 64।

किसी दिए गए आधार पर किसी संख्या का लघुगणक ज्ञात करने की संक्रिया कहलाती है। तो, आइए अपनी तालिका में एक नई पंक्ति जोड़ें:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
लॉग 2 2 = 1 लॉग 2 4 = 2 लॉग 2 8 = 3 लॉग 2 16 = 4 लॉग 2 32 = 5 लॉग 2 64 = 6

दुर्भाग्य से, सभी लघुगणक की गणना इतनी आसानी से नहीं की जाती है। उदाहरण के लिए, लघुगणक 2 5 खोजने का प्रयास करें। संख्या 5 तालिका में नहीं है, लेकिन तर्क बताता है कि लघुगणक अंतराल पर कहीं स्थित होगा। क्योंकि 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

ऐसी संख्याओं को अपरिमेय कहा जाता है: दशमलव बिंदु के बाद की संख्याओं को अनंत तक लिखा जा सकता है, और उन्हें कभी भी दोहराया नहीं जाता है। यदि लघुगणक अपरिमेय हो जाता है, तो इसे इस प्रकार छोड़ना बेहतर है: लघुगणक 2 5, लघुगणक 3 8, लघुगणक 5 100।

यह समझना महत्वपूर्ण है कि लघुगणक दो चर (आधार और तर्क) के साथ एक अभिव्यक्ति है। पहले तो कई लोग भ्रमित हो जाते हैं कि आधार कहां है और तर्क कहां है। कष्टप्रद ग़लतफहमियों से बचने के लिए, बस चित्र देखें:

हमारे सामने लघुगणक की परिभाषा से अधिक कुछ नहीं है। याद करना: लघुगणक एक शक्ति है, जिसमें तर्क प्राप्त करने के लिए आधार बनाया जाना चाहिए। यह आधार है जिसे एक शक्ति तक उठाया जाता है - इसे चित्र में लाल रंग में हाइलाइट किया गया है। इससे पता चलता है कि आधार हमेशा सबसे नीचे होता है! मैं अपने विद्यार्थियों को पहले पाठ में ही यह अद्भुत नियम बता देता हूँ - और कोई भ्रम पैदा नहीं होता।

लघुगणक कैसे गिनें

हमने परिभाषा का पता लगा लिया है - जो कुछ बचा है वह सीखना है कि लघुगणक की गणना कैसे करें, अर्थात्। "लॉग" चिह्न से छुटकारा पाएं। आरंभ करने के लिए, हम ध्यान दें कि परिभाषा से दो महत्वपूर्ण तथ्य निकलते हैं:

  1. तर्क और आधार सदैव शून्य से बड़ा होना चाहिए। यह एक तर्कसंगत घातांक द्वारा डिग्री की परिभाषा से अनुसरण करता है, जिसमें लघुगणक की परिभाषा कम हो जाती है।
  2. आधार एक से भिन्न होना चाहिए, क्योंकि किसी भी स्तर तक एक अभी भी एक ही रहता है। इस कारण से, यह प्रश्न कि "दो प्राप्त करने के लिए एक को किस शक्ति तक बढ़ाया जाना चाहिए" निरर्थक है। ऐसी कोई डिग्री नहीं है!

ऐसे प्रतिबंध कहलाते हैं स्वीकार्य मूल्यों की सीमा(ओडीजेड)। यह पता चला है कि लघुगणक का ODZ इस तरह दिखता है: log a x = b ⇒x > 0, a > 0, a ≠ 1.

ध्यान दें कि संख्या b (लघुगणक का मान) पर कोई प्रतिबंध नहीं है। उदाहरण के लिए, लघुगणक ऋणात्मक हो सकता है: लघुगणक 2 0.5 = −1, क्योंकि 0.5 = 2 −1.

हालाँकि, अब हम केवल संख्यात्मक अभिव्यक्तियों पर विचार कर रहे हैं, जहाँ लघुगणक का VA जानने की आवश्यकता नहीं है। समस्याओं के लेखकों द्वारा सभी प्रतिबंधों को पहले ही ध्यान में रखा जा चुका है। लेकिन जब लघुगणक समीकरण और असमानताएं चलन में आएंगी, तो डीएल आवश्यकताएं अनिवार्य हो जाएंगी। आख़िरकार, आधार और तर्क में बहुत मजबूत निर्माण शामिल हो सकते हैं जो जरूरी नहीं कि उपरोक्त प्रतिबंधों के अनुरूप हों।

आइए अब लघुगणक की गणना के लिए सामान्य योजना देखें। इसमें तीन चरण होते हैं:

  1. आधार a और तर्क x को एक घात के रूप में व्यक्त करें जिसका न्यूनतम संभव आधार एक से अधिक हो। साथ ही, दशमलव से छुटकारा पाना बेहतर है;
  2. चर b के लिए समीकरण हल करें: x = a b ;
  3. परिणामी संख्या b उत्तर होगी।

बस इतना ही! यदि लघुगणक अपरिमेय हो जाता है, तो यह पहले चरण में ही दिखाई देगा। यह आवश्यकता कि आधार एक से बड़ा हो, बहुत महत्वपूर्ण है: इससे त्रुटि की संभावना कम हो जाती है और गणनाएँ बहुत सरल हो जाती हैं। दशमलव भिन्नों के साथ भी ऐसा ही है: यदि आप उन्हें तुरंत सामान्य भिन्नों में बदल दें, तो बहुत कम त्रुटियाँ होंगी।

आइए विशिष्ट उदाहरणों का उपयोग करके देखें कि यह योजना कैसे काम करती है:

काम। लघुगणक की गणना करें: लघुगणक 5 25

  1. आइए आधार और तर्क की कल्पना पाँच की घात के रूप में करें: 5 = 5 1 ; 25 = 5 2 ;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 5 25 = बी ⇒(5 1) बी = 5 2 ⇒5 बी = 5 2 ⇒ बी = 2;

  3. हमें उत्तर मिला: 2.

काम। लघुगणक की गणना करें:

काम। लघुगणक की गणना करें: लघुगणक 4 64

  1. आइए आधार और तर्क की कल्पना दो की घात के रूप में करें: 4 = 2 2 ; 64 = 2 6 ;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 4 64 = बी ⇒(2 2) बी = 2 6 ⇒2 2बी = 2 6 ⇒2बी = 6 ⇒ बी = 3;
  3. हमें उत्तर मिला: 3.

काम। लघुगणक की गणना करें: लघुगणक 16 1

  1. आइए आधार और तर्क की कल्पना दो की घात के रूप में करें: 16 = 2 4 ; 1 = 2 0 ;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 16 1 = बी ⇒(2 4) बी = 2 0 ⇒2 4बी = 2 0 ⇒4बी = 0 ⇒ बी = 0;
  3. हमें उत्तर मिला: 0.

काम। लघुगणक की गणना करें: लघुगणक 7 14

  1. आइए आधार और तर्क की कल्पना सात की घात के रूप में करें: 7 = 7 1 ; 14 को सात की घात के रूप में प्रदर्शित नहीं किया जा सकता, क्योंकि 7 1< 14 < 7 2 ;
  2. पिछले पैराग्राफ से यह पता चलता है कि लघुगणक की गिनती नहीं होती है;
  3. उत्तर कोई परिवर्तन नहीं है: लॉग 7 14।

अंतिम उदाहरण पर एक छोटा सा नोट। आप यह कैसे सुनिश्चित कर सकते हैं कि एक संख्या किसी अन्य संख्या की सटीक घात नहीं है? यह बहुत सरल है - बस इसे अभाज्य गुणनखंडों में शामिल करें। यदि विस्तार में कम से कम दो अलग-अलग कारक हैं, तो संख्या सटीक शक्ति नहीं है।

काम। पता लगाएँ कि क्या संख्याएँ सटीक घात हैं: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - सटीक डिग्री, क्योंकि केवल एक गुणक है;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - एक सटीक घात नहीं है, क्योंकि दो कारक हैं: 3 और 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - सटीक डिग्री;
35 = 7 · 5 - फिर से कोई सटीक शक्ति नहीं;
14 = 7 · 2 - फिर भी कोई सटीक डिग्री नहीं;

यह भी ध्यान दें कि अभाज्य संख्याएँ हमेशा स्वयं की सटीक घातें होती हैं।

दशमलव लघुगणक

कुछ लघुगणक इतने सामान्य हैं कि उनका एक विशेष नाम और प्रतीक होता है।

तर्क का x आधार 10 का लघुगणक है, अर्थात संख्या x प्राप्त करने के लिए संख्या 10 को जिस शक्ति तक बढ़ाया जाना चाहिए। पदनाम: एलजी एक्स.

उदाहरण के लिए, लॉग 10 = 1; एलजी 100 = 2; एलजी 1000 = 3 - आदि।

अब से, जब पाठ्यपुस्तक में "फाइंड एलजी 0.01" जैसा वाक्यांश दिखाई दे, तो जान लें कि यह कोई टाइपो त्रुटि नहीं है। यह दशमलव लघुगणक है. हालाँकि, यदि आप इस संकेतन से अपरिचित हैं, तो आप इसे हमेशा फिर से लिख सकते हैं:
लॉग एक्स = लॉग 10 एक्स

जो कुछ सामान्य लघुगणक के लिए सत्य है वह दशमलव लघुगणक के लिए भी सत्य है।

प्राकृतिक

एक और लघुगणक है जिसका अपना पदनाम है। कुछ मायनों में, यह दशमलव से भी अधिक महत्वपूर्ण है। हम प्राकृतिक लघुगणक के बारे में बात कर रहे हैं।

तर्क का x आधार e का लघुगणक है, अर्थात वह शक्ति जिससे संख्या x प्राप्त करने के लिए संख्या e को बढ़ाया जाना चाहिए। पदनाम: एलएन एक्स।

बहुत से लोग पूछेंगे: ई संख्या क्या है? यह एक अपरिमेय संख्या है, इसका सटीक मान न तो पाया जा सकता है और न ही लिखा जा सकता है। मैं केवल प्रथम आंकड़े दूँगा:
ई = 2.718281828459…

यह नंबर क्या है और इसकी आवश्यकता क्यों है, इसके बारे में हम विस्तार से नहीं बताएंगे। बस याद रखें कि ई प्राकृतिक लघुगणक का आधार है:
एलएन एक्स = लॉग ई एक्स

इस प्रकार ln e = 1; एलएन ई 2 = 2; एलएन ई 16 = 16 - आदि। दूसरी ओर, ln 2 एक अपरिमेय संख्या है। सामान्य तौर पर, किसी भी परिमेय संख्या का प्राकृतिक लघुगणक अपरिमेय होता है। बेशक, एक को छोड़कर: एलएन 1 = 0।

प्राकृतिक लघुगणक के लिए, वे सभी नियम मान्य हैं जो सामान्य लघुगणक के लिए सत्य हैं।

यह सभी देखें:

लघुगणक. लघुगणक के गुण (लघुगणक की शक्ति)।

किसी संख्या को लघुगणक के रूप में कैसे निरूपित करें?

हम लघुगणक की परिभाषा का उपयोग करते हैं।

लघुगणक एक घातांक है जिसके आधार को लघुगणक चिह्न के अंतर्गत संख्या प्राप्त करने के लिए ऊपर उठाया जाना चाहिए।

इस प्रकार, एक निश्चित संख्या c को आधार a के लघुगणक के रूप में दर्शाने के लिए, आपको लघुगणक के आधार के समान आधार वाली एक घात को लघुगणक के चिह्न के नीचे रखना होगा, और इस संख्या c को घातांक के रूप में लिखना होगा:

बिल्कुल किसी भी संख्या को लघुगणक के रूप में दर्शाया जा सकता है - सकारात्मक, नकारात्मक, पूर्णांक, भिन्नात्मक, तर्कसंगत, अपरिमेय:

किसी परीक्षण या परीक्षा की तनावपूर्ण परिस्थितियों में ए और सी को भ्रमित न करने के लिए, आप निम्नलिखित याद रखने के नियम का उपयोग कर सकते हैं:

जो नीचे है वह नीचे जाता है, जो ऊपर है वह ऊपर जाता है।

उदाहरण के लिए, आपको संख्या 2 को आधार 3 के लघुगणक के रूप में प्रस्तुत करने की आवश्यकता है।

हमारे पास दो संख्याएँ हैं - 2 और 3. ये संख्याएँ आधार और घातांक हैं, जिन्हें हम लघुगणक के चिह्न के नीचे लिखेंगे। यह निर्धारित करना बाकी है कि इनमें से कौन सी संख्या नीचे लिखी जानी चाहिए, डिग्री के आधार तक, और कौन सी - ऊपर, घातांक तक।

लघुगणक के अंकन में आधार 3 सबसे नीचे है, जिसका अर्थ है कि जब हम आधार 3 के लघुगणक के रूप में दो का प्रतिनिधित्व करते हैं, तो हम आधार के नीचे 3 भी लिखेंगे।

2 तीन से अधिक है. और डिग्री दो के अंकन में हम तीन के ऊपर लिखते हैं, यानी एक प्रतिपादक के रूप में:

लघुगणक. प्रथम स्तर।

लघुगणक

लोगारित्मसकारात्मक संख्या बीपर आधारित , कहाँ ए > 0, ए ≠ 1, वह घातांक कहलाता है जिससे संख्या बढ़ाई जानी चाहिए , प्राप्त करने के लिए बी.

लघुगणक की परिभाषासंक्षेप में इस प्रकार लिखा जा सकता है:

यह समानता के लिए मान्य है बी > 0, ए > 0, ए ≠ 1.इसे आमतौर पर कहा जाता है लघुगणकीय पहचान.
किसी संख्या का लघुगणक ज्ञात करने की क्रिया कहलाती है लघुगणक द्वारा.

लघुगणक के गुण:

उत्पाद का लघुगणक:

भागफल का लघुगणक:

लघुगणक आधार को बदलना:

डिग्री का लघुगणक:

मूल का लघुगणक:

शक्ति आधार के साथ लघुगणक:





दशमलव और प्राकृतिक लघुगणक.

दशमलव लघुगणकसंख्याएँ इस संख्या के लघुगणक को आधार 10 पर कॉल करें और   lg लिखें बी
प्राकृतिकसंख्याओं को आधार से उस संख्या का लघुगणक कहा जाता है , कहाँ - एक अपरिमेय संख्या लगभग 2.7 के बराबर। साथ ही वे एलएन लिखते हैं बी.

बीजगणित और ज्यामिति पर अन्य नोट्स

लघुगणक के मूल गुण

लघुगणक के मूल गुण

लघुगणक, किसी भी संख्या की तरह, हर तरह से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लघुगणक बिल्कुल सामान्य संख्याएं नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है मुख्य गुण.

आपको निश्चित रूप से इन नियमों को जानने की आवश्यकता है - इनके बिना, एक भी गंभीर लघुगणकीय समस्या का समाधान नहीं किया जा सकता है। इसके अलावा, उनमें से बहुत कम हैं - आप एक दिन में सब कुछ सीख सकते हैं। तो चलो शुरू हो जाओ।

लघुगणक जोड़ना और घटाना

समान आधार वाले दो लघुगणक पर विचार करें: लघुगणक x और लघुगणक y। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉग ए एक्स + लॉग ए वाई = लॉग ए (एक्स वाई);
  2. लॉग ए एक्स - लॉग ए वाई = लॉग ए (एक्स: वाई)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल के लघुगणक के बराबर है। कृपया ध्यान दें: यहां मुख्य बिंदु यह है समान आधार. यदि कारण भिन्न हों तो ये नियम काम नहीं करते!

ये सूत्र आपको एक लघुगणकीय अभिव्यक्ति की गणना करने में मदद करेंगे, भले ही इसके अलग-अलग हिस्सों पर विचार न किया गया हो (पाठ "लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

लॉग 6 4 + लॉग 6 9।

चूँकि लघुगणक का आधार समान होता है, हम योग सूत्र का उपयोग करते हैं:
लॉग 6 4 + लॉग 6 9 = लॉग 6 (4 9) = लॉग 6 36 = 2।

काम। व्यंजक का मान ज्ञात कीजिए: log 2 48 − log 2 3.

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
लॉग 2 48 - लॉग 2 3 = लॉग 2 (48:3) = लॉग 2 16 = 4।

काम। व्यंजक का मान ज्ञात कीजिए: log 3 135 − log 3 5.

फिर से आधार वही हैं, इसलिए हमारे पास है:
लॉग 3 135 - लॉग 3 5 = लॉग 3 (135:5) = लॉग 3 27 = 3।

जैसा कि आप देख सकते हैं, मूल अभिव्यक्तियाँ "खराब" लघुगणक से बनी हैं, जिनकी गणना अलग से नहीं की जाती है। लेकिन परिवर्तनों के बाद, पूरी तरह से सामान्य संख्याएँ प्राप्त होती हैं। कई परीक्षण इसी तथ्य पर आधारित होते हैं. हाँ, एकीकृत राज्य परीक्षा में परीक्षण जैसी अभिव्यक्तियाँ पूरी गंभीरता से (कभी-कभी वस्तुतः बिना किसी बदलाव के) पेश की जाती हैं।

लघुगणक से घातांक निकालना

अब कार्य को थोड़ा जटिल बनाते हैं। क्या होगा यदि लघुगणक का आधार या तर्क एक शक्ति है? फिर इस डिग्री के घातांक को निम्नलिखित नियमों के अनुसार लघुगणक के चिह्न से बाहर निकाला जा सकता है:

यह देखना आसान है कि अंतिम नियम पहले दो का पालन करता है। लेकिन फिर भी इसे याद रखना बेहतर है - कुछ मामलों में यह गणनाओं की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम तब समझ में आते हैं जब लघुगणक का ODZ देखा जाता है: a > 0, a ≠ 1, x > 0. और एक और बात: सभी सूत्रों को न केवल बाएं से दाएं, बल्कि इसके विपरीत भी लागू करना सीखें , अर्थात। आप लघुगणक पर हस्ताक्षर करने से पहले की संख्याओं को लघुगणक में ही दर्ज कर सकते हैं।

लघुगणक कैसे हल करें

इसकी सबसे अधिक आवश्यकता होती है।

काम। व्यंजक का मान ज्ञात कीजिए: लॉग 7 49 6।

आइए पहले सूत्र का उपयोग करके तर्क में डिग्री से छुटकारा पाएं:
लॉग 7 49 6 = 6 लॉग 7 49 = 6 2 = 12

काम। अभिव्यक्ति का अर्थ खोजें:

ध्यान दें कि हर में एक लघुगणक होता है, जिसका आधार और तर्क सटीक घात हैं: 16 = 2 4 ; 49 = 7 2. हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण में कुछ स्पष्टीकरण की आवश्यकता है। लघुगणक कहाँ चले गए? अंतिम क्षण तक हम केवल हर के साथ काम करते हैं। हमने वहां खड़े लघुगणक के आधार और तर्क को घातों के रूप में प्रस्तुत किया और घातांक निकाले - हमें एक "तीन-कहानी" अंश मिला।

अब आइए मुख्य अंश पर नजर डालें। अंश और हर में समान संख्या होती है: लघुगणक 2 7. चूँकि लघुगणक 2 7 ≠ 0, हम भिन्न को कम कर सकते हैं - हर में 2/4 रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो कि किया गया था। परिणाम यह उत्तर था: 2.

एक नई नींव में परिवर्तन

लघुगणक जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल समान आधारों के साथ काम करते हैं। यदि कारण भिन्न हों तो क्या होगा? क्या होगा यदि वे एक ही संख्या की सटीक घातें नहीं हैं?

नई नींव में परिवर्तन के सूत्र बचाव में आते हैं। आइए हम उन्हें एक प्रमेय के रूप में तैयार करें:

मान लीजिए कि लघुगणक लॉग a x दिया गया है। फिर किसी भी संख्या c के लिए जैसे कि c > 0 और c ≠ 1, समानता सत्य है:

विशेष रूप से, यदि हम c = x सेट करते हैं, तो हमें मिलता है:

दूसरे सूत्र से यह पता चलता है कि लघुगणक के आधार और तर्क की अदला-बदली की जा सकती है, लेकिन इस मामले में संपूर्ण अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में प्रकट होता है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। लघुगणकीय समीकरणों और असमानताओं को हल करते समय ही यह मूल्यांकन करना संभव है कि वे कितने सुविधाजनक हैं।

हालाँकि, ऐसी समस्याएँ हैं जिन्हें नई नींव पर जाने के अलावा बिल्कुल भी हल नहीं किया जा सकता है। आइए इनमें से कुछ पर नजर डालें:

काम। व्यंजक का मान ज्ञात कीजिए: लॉग 5 16 लॉग 2 25।

ध्यान दें कि दोनों लघुगणक के तर्कों में सटीक शक्तियाँ होती हैं। आइए संकेतक निकालें: लॉग 5 16 = लॉग 5 2 4 = 4लॉग 5 2; लॉग 2 25 = लॉग 2 5 2 = 2 लॉग 2 5;

अब दूसरे लघुगणक को "उल्टा" करते हैं:

चूंकि कारकों को पुनर्व्यवस्थित करने पर उत्पाद नहीं बदलता है, इसलिए हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक से निपटा।

काम। व्यंजक का मान ज्ञात कीजिए: लॉग 9 100 एलजी 3।

प्रथम लघुगणक का आधार और तर्क सटीक घात हैं। आइए इसे लिखें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

बुनियादी लघुगणकीय पहचान

अक्सर समाधान प्रक्रिया में किसी संख्या को किसी दिए गए आधार पर लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है।

इस मामले में, निम्नलिखित सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में प्रतिपादक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल एक लघुगणक मान है।

दूसरा सूत्र वास्तव में एक संक्षिप्त परिभाषा है। इसे ही कहते हैं: .

वास्तव में, यदि संख्या b को इतनी घात तक बढ़ा दिया जाए कि इस घात की संख्या b, संख्या a दे दे तो क्या होगा? यह सही है: परिणाम वही संख्या है। इस पैराग्राफ को दोबारा ध्यान से पढ़ें - कई लोग इस पर अटक जाते हैं।

नए आधार पर जाने के सूत्रों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभावित समाधान होती है।

काम। अभिव्यक्ति का अर्थ खोजें:

ध्यान दें कि लॉग 25 64 = लॉग 5 8 - बस लघुगणक के आधार और तर्क से वर्ग लिया। समान आधार से घातों को गुणा करने के नियमों को ध्यान में रखते हुए, हम पाते हैं:

यदि कोई नहीं जानता है, तो यह एकीकृत राज्य परीक्षा का एक वास्तविक कार्य था :)

लघुगणकीय इकाई और लघुगणकीय शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें शायद ही गुण कहा जा सकता है - बल्कि, वे लघुगणक की परिभाषा के परिणाम हैं। वे लगातार समस्याओं में दिखाई देते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लॉग ए ए = 1 है. एक बार और हमेशा के लिए याद रखें: किसी भी आधार का लघुगणक स्वयं एक के बराबर होता है।
  2. लॉग ए 1 = 0 है. आधार कुछ भी हो सकता है, लेकिन यदि तर्क में एक है, तो लघुगणक शून्य के बराबर है! क्योंकि 0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

बस इतनी ही संपत्ति है. उन्हें अभ्यास में लाने का अभ्यास अवश्य करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

आइए इसे और अधिक सरलता से समझाएं। उदाहरण के लिए, \(\log_(2)(8)\) उस शक्ति के बराबर है जिससे \(8\) प्राप्त करने के लिए \(2\) को बढ़ाया जाना चाहिए। इससे यह स्पष्ट है कि \(\log_(2)(8)=3\).

उदाहरण:

\(\log_(5)(25)=2\)

क्योंकि \(5^(2)=25\)

\(\log_(3)(81)=4\)

क्योंकि \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

क्योंकि \(2^(-5)=\)\(\frac(1)(32)\)

लघुगणक का तर्क और आधार

किसी भी लघुगणक में निम्नलिखित "शरीर रचना" होती है:

लघुगणक का तर्क आमतौर पर उसके स्तर पर लिखा जाता है, और आधार लघुगणक चिह्न के करीब सबस्क्रिप्ट में लिखा जाता है। और यह प्रविष्टि इस प्रकार है: "पच्चीस से आधार पाँच का लघुगणक।"

लघुगणक की गणना कैसे करें?

लघुगणक की गणना करने के लिए, आपको इस प्रश्न का उत्तर देने की आवश्यकता है: तर्क प्राप्त करने के लिए आधार को किस शक्ति तक बढ़ाया जाना चाहिए?

उदाहरण के लिए, लघुगणक की गणना करें: a) \(\log_(4)(16)\) b) \(\log_(3)\)(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) \(16\) प्राप्त करने के लिए \(4\) को किस शक्ति तक बढ़ाया जाना चाहिए? जाहिर है दूसरा. इसीलिए:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

ग) \(1\) प्राप्त करने के लिए \(\sqrt(5)\) को किस शक्ति तक बढ़ाया जाना चाहिए? कौन सी शक्ति किसी भी नंबर को एक बनाती है? बिल्कुल शून्य!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) प्राप्त करने के लिए \(\sqrt(7)\) को किस शक्ति तक बढ़ाया जाना चाहिए? सबसे पहले, पहली घात वाली कोई भी संख्या स्वयं के बराबर होती है।

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(\sqrt(3)\) प्राप्त करने के लिए \(3\) को किस शक्ति तक बढ़ाया जाना चाहिए? हम जानते हैं कि यह एक भिन्नात्मक शक्ति है, जिसका अर्थ है कि वर्गमूल \(\frac(1)(2)\) की शक्ति है।

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

उदाहरण : लघुगणक की गणना करें \(\log_(4\sqrt(2))(8)\)

समाधान :

\(\log_(4\sqrt(2))(8)=x\)

हमें लघुगणक का मान ज्ञात करना होगा, आइए इसे x के रूप में निरूपित करें। आइए अब लघुगणक की परिभाषा का उपयोग करें:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

\(4\sqrt(2)\) और \(8\) को क्या जोड़ता है? दो, क्योंकि दोनों संख्याओं को दो द्वारा दर्शाया जा सकता है:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

बाईं ओर हम डिग्री के गुणों का उपयोग करते हैं: \(a^(m)\cdot a^(n)=a^(m+n)\) और \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

आधार समान हैं, हम संकेतकों की समानता की ओर बढ़ते हैं

\(\frac(5x)(2)\) \(=3\)


समीकरण के दोनों पक्षों को \(\frac(2)(5)\) से गुणा करें


परिणामी मूल लघुगणक का मान है

उत्तर : \(\log_(4\sqrt(2))(8)=1,2\)

लघुगणक का आविष्कार क्यों किया गया?

इसे समझने के लिए, आइए समीकरण को हल करें: \(3^(x)=9\). समीकरण को कार्यान्वित करने के लिए बस \(x\) का मिलान करें। बेशक, \(x=2\).

अब समीकरण हल करें: \(3^(x)=8\).x किसके बराबर है? यही तो बात है।

सबसे चतुर लोग कहेंगे: "X दो से थोड़ा कम है।" इस संख्या को वास्तव में कैसे लिखें? इस प्रश्न का उत्तर देने के लिए लघुगणक का आविष्कार किया गया। उनके लिए धन्यवाद, यहां उत्तर \(x=\log_(3)(8)\) के रूप में लिखा जा सकता है।

मैं इस बात पर जोर देना चाहता हूं कि \(\log_(3)(8)\), जैसे कोई भी लघुगणक सिर्फ एक संख्या है. हाँ, यह असामान्य दिखता है, लेकिन यह संक्षिप्त है। क्योंकि अगर हम इसे दशमलव के रूप में लिखना चाहें, तो यह इस तरह दिखेगा: \(1.892789260714...\)

उदाहरण : समीकरण को हल करें \(4^(5x-4)=10\)

समाधान :

\(4^(5x-4)=10\)

\(4^(5x-4)\) और \(10\) को एक ही आधार पर नहीं लाया जा सकता। इसका मतलब है कि आप लघुगणक के बिना काम नहीं कर सकते।

आइए लघुगणक की परिभाषा का उपयोग करें:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

आइए समीकरण को पलटें ताकि X बाईं ओर हो

\(5x-4=\log_(4)(10)\)

हमारे सामने। आइए \(4\) को दाईं ओर ले जाएं।

और लघुगणक से डरो मत, इसे एक सामान्य संख्या की तरह समझो।

\(5x=\log_(4)(10)+4\)

समीकरण को 5 से विभाजित करें

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


यह हमारी जड़ है. हाँ, यह असामान्य लगता है, लेकिन वे इसका उत्तर नहीं चुनते हैं।

उत्तर : \(\frac(\log_(4)(10)+4)(5)\)

दशमलव और प्राकृतिक लघुगणक

जैसा कि लघुगणक की परिभाषा में बताया गया है, इसका आधार एक \((a>0, a\neq1)\) को छोड़कर कोई भी धनात्मक संख्या हो सकता है। और सभी संभावित आधारों में से, दो ऐसे आधार हैं जो इतनी बार घटित होते हैं कि उनके साथ लघुगणक के लिए एक विशेष लघु अंकन का आविष्कार किया गया था:

प्राकृतिक लघुगणक: एक लघुगणक जिसका आधार यूलर की संख्या \(e\) है (लगभग \(2.7182818...\) के बराबर), और लघुगणक को \(\ln(a)\) के रूप में लिखा जाता है।

वह है, \(\ln(a)\) \(\log_(e)(a)\) के समान है

दशमलव लघुगणक: एक लघुगणक जिसका आधार 10 है उसे \(\lg(a)\) लिखा जाता है।

वह है, \(\lg(a)\) \(\log_(10)(a)\) के समान है, जहां \(a\) कोई संख्या है।

बुनियादी लघुगणकीय पहचान

लघुगणक में कई गुण होते हैं। उनमें से एक को "बेसिक लॉगरिदमिक आइडेंटिटी" कहा जाता है और यह इस तरह दिखता है:

\(a^(\log_(a)(c))=c\)

यह गुण सीधे परिभाषा से अनुसरण करता है। आइए देखें कि वास्तव में यह फॉर्मूला कैसे आया।

आइए हम लघुगणक की परिभाषा का एक संक्षिप्त विवरण याद करें:

यदि \(a^(b)=c\), तो \(\log_(a)(c)=b\)

अर्थात्, \(b\) \(\log_(a)(c)\) के समान है। फिर हम सूत्र \(a^(b)=c\) में \(b\) के बजाय \(\log_(a)(c)\) लिख सकते हैं। यह \(a^(\log_(a)(c))=c\) निकला - मुख्य लघुगणकीय पहचान।

आप लघुगणक के अन्य गुण पा सकते हैं। उनकी मदद से, आप लघुगणक के साथ अभिव्यक्तियों के मूल्यों को सरल और गणना कर सकते हैं, जिनकी सीधे गणना करना मुश्किल है।

उदाहरण : अभिव्यक्ति का मान ज्ञात कीजिए \(36^(\log_(6)(5))\)

समाधान :

उत्तर : \(25\)

किसी संख्या को लघुगणक के रूप में कैसे लिखें?

जैसा कि ऊपर बताया गया है, कोई भी लघुगणक सिर्फ एक संख्या है। इसका विपरीत भी सत्य है: किसी भी संख्या को लघुगणक के रूप में लिखा जा सकता है। उदाहरण के लिए, हम जानते हैं कि \(\log_(2)(4)\) दो के बराबर है। फिर आप दो की जगह \(\log_(2)(4)\) लिख सकते हैं.

लेकिन \(\log_(3)(9)\) भी \(2\) के बराबर है, जिसका अर्थ है कि हम \(2=\log_(3)(9)\) भी लिख सकते हैं। इसी तरह \(\log_(5)(25)\), और \(\log_(9)(81)\), आदि के साथ। यानी यह पता चला है

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ लॉग_(7)(49)...\)

इस प्रकार, यदि हमें आवश्यकता हो, तो हम कहीं भी किसी भी आधार के साथ दो को लघुगणक के रूप में लिख सकते हैं (चाहे वह किसी समीकरण में हो, किसी अभिव्यक्ति में हो, या किसी असमानता में हो) - हम बस आधार वर्ग को एक तर्क के रूप में लिखते हैं।

यह ट्रिपल के साथ भी ऐसा ही है - इसे \(\log_(2)(8)\), या \(\log_(3)(27)\), या \(\log_(4)( के रूप में लिखा जा सकता है) 64)\)... यहां हम आधार को घन में एक तर्क के रूप में लिखते हैं:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ लॉग_(7)(343)...\)

और चार के साथ:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ लॉग_(7)(2401)...\)

और शून्य से एक के साथ:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

और एक तिहाई के साथ:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

किसी भी संख्या \(a\) को आधार \(b\) के साथ लघुगणक के रूप में दर्शाया जा सकता है: \(a=\log_(b)(b^(a))\)

उदाहरण : अभिव्यक्ति का अर्थ खोजें \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

समाधान :

उत्तर : \(1\)

एक धनात्मक संख्या b का आधार a (a>0, a 1 के बराबर नहीं है) का लघुगणक एक संख्या c है जैसे कि a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)

ध्यान दें कि एक गैर-धनात्मक संख्या का लघुगणक अपरिभाषित है। इसके अलावा, लघुगणक का आधार एक धनात्मक संख्या होनी चाहिए जो 1 के बराबर न हो। उदाहरण के लिए, यदि हम -2 का वर्ग करते हैं, तो हमें संख्या 4 मिलती है, लेकिन इसका मतलब यह नहीं है कि आधार -2 का लघुगणक 4 है 2 के बराबर है.

बुनियादी लघुगणकीय पहचान

ए लॉग ए बी = बी (ए > 0, ए ≠ 1) (2)

यह महत्वपूर्ण है कि इस सूत्र के दाएं और बाएं पक्ष की परिभाषा का दायरा अलग-अलग है। बाईं ओर को केवल b>0, a>0 और a ≠ 1 के लिए परिभाषित किया गया है। दाईं ओर को किसी भी b के लिए परिभाषित किया गया है, और यह बिल्कुल भी a पर निर्भर नहीं करता है। इस प्रकार, समीकरणों और असमानताओं को हल करते समय मूल लघुगणकीय "पहचान" के अनुप्रयोग से OD में परिवर्तन हो सकता है।

लघुगणक की परिभाषा के दो स्पष्ट परिणाम

लॉग ए ए = 1 (ए > 0, ए ≠ 1) (3)
लॉग ए 1 = 0 (ए > 0, ए ≠ 1) (4)

दरअसल, जब संख्या a को पहली घात तक बढ़ाया जाता है, तो हमें वही संख्या मिलती है, और जब इसे शून्य घात तक बढ़ाया जाता है, तो हमें एक मिलता है।

उत्पाद का लघुगणक और भागफल का लघुगणक

लॉग ए (बी सी) = लॉग ए बी + लॉग ए सी (ए > 0, ए ≠ 1, बी > 0, सी > 0) (5)

लॉग ए बी सी = लॉग ए बी - लॉग ए सी (ए > 0, ए ≠ 1, बी > 0, सी > 0) (6)

मैं स्कूली बच्चों को लघुगणकीय समीकरणों और असमानताओं को हल करते समय इन सूत्रों का बिना सोचे-समझे उपयोग करने के खिलाफ चेतावनी देना चाहता हूं। उनका उपयोग "बाएं से दाएं" करते समय, ODZ संकीर्ण हो जाता है, और जब लघुगणक के योग या अंतर से उत्पाद या भागफल के लघुगणक की ओर बढ़ते हैं, तो ODZ फैलता है।

दरअसल, अभिव्यक्ति लॉग ए (एफ (एक्स) जी (एक्स)) को दो मामलों में परिभाषित किया गया है: जब दोनों फ़ंक्शन सख्ती से सकारात्मक होते हैं या जब एफ (एक्स) और जी (एक्स) दोनों शून्य से कम होते हैं।

इस अभिव्यक्ति को योग लॉग ए एफ (एक्स) + लॉग ए जी (एक्स) में परिवर्तित करते हुए, हम खुद को केवल उस स्थिति तक सीमित करने के लिए मजबूर होते हैं जब एफ (एक्स)> 0 और जी (एक्स)> 0। स्वीकार्य मूल्यों की सीमा में कमी आ रही है, और यह स्पष्ट रूप से अस्वीकार्य है, क्योंकि इससे समाधानों का नुकसान हो सकता है। सूत्र (6) के लिए भी ऐसी ही समस्या मौजूद है।

डिग्री को लघुगणक के चिन्ह से निकाला जा सकता है

लॉग ए बी पी = पी लॉग ए बी (ए > 0, ए ≠ 1, बी > 0) (7)

और मैं फिर से सटीकता की मांग करना चाहूँगा। निम्नलिखित उदाहरण पर विचार करें:

लॉग ए (एफ (एक्स) 2 = 2 लॉग ए एफ (एक्स)

समानता का बायाँ भाग स्पष्ट रूप से शून्य को छोड़कर f(x) के सभी मानों के लिए परिभाषित है। दाहिना भाग केवल f(x)>0 के लिए है! लघुगणक से डिग्री निकालकर, हम फिर से ODZ को संकीर्ण कर देते हैं। विपरीत प्रक्रिया से स्वीकार्य मूल्यों की सीमा का विस्तार होता है। ये सभी टिप्पणियाँ न केवल घात 2 पर लागू होती हैं, बल्कि किसी भी सम घात पर भी लागू होती हैं।

नई नींव पर जाने का सूत्र

लॉग ए बी = लॉग सी बी लॉग सी ए (ए > 0, ए ≠ 1, बी > 0, सी > 0, सी ≠ 1) (8)

वह दुर्लभ मामला जब परिवर्तन के दौरान ODZ नहीं बदलता है। यदि आपने आधार सी को बुद्धिमानी से चुना है (सकारात्मक और 1 के बराबर नहीं), तो नए आधार पर जाने का फॉर्मूला पूरी तरह से सुरक्षित है।

यदि हम संख्या b को नए आधार c के रूप में चुनते हैं, तो हमें सूत्र (8) का एक महत्वपूर्ण विशेष मामला प्राप्त होता है:

लॉग ए बी = 1 लॉग बी ए (ए > 0, ए ≠ 1, बी > 0, बी ≠ 1) (9)

लघुगणक के साथ कुछ सरल उदाहरण

उदाहरण 1. गणना करें: लॉग2 + लॉग50।
समाधान। लॉग2 + लॉग50 = लॉग100 = 2। हमने लघुगणक सूत्र (5) के योग और दशमलव लघुगणक की परिभाषा का उपयोग किया।


उदाहरण 2. गणना करें: lg125/lg5.
समाधान। लॉग125/लॉग5 = लॉग 5 125 = 3। हमने नए आधार (8) पर जाने के लिए सूत्र का उपयोग किया।

लघुगणक से संबंधित सूत्रों की तालिका

ए लॉग ए बी = बी (ए > 0, ए ≠ 1)
लॉग a a = 1 (a > 0, a ≠ 1)
लॉग ए 1 = 0 (ए > 0, ए ≠ 1)
लॉग ए (बी सी) = लॉग ए बी + लॉग ए सी (ए > 0, ए ≠ 1, बी > 0, सी > 0)
लॉग ए बी सी = लॉग ए बी - लॉग ए सी (ए > 0, ए ≠ 1, बी > 0, सी > 0)
लॉग ए बी पी = पी लॉग ए बी (ए > 0, ए ≠ 1, बी > 0)
लॉग ए बी = लॉग सी बी लॉग सी ए (ए > 0, ए ≠ 1, बी > 0, सी > 0, सी ≠ 1)
लॉग ए बी = 1 लॉग बी ए (ए > 0, ए ≠ 1, बी > 0, बी ≠ 1)