Главная · Прочее · Solar Green City. Архитектура для ХХI века. Большепролeтные светопрозрачные здания и сооружения. История и перспективы развития большепролетных конструкций Здания без души

Solar Green City. Архитектура для ХХI века. Большепролeтные светопрозрачные здания и сооружения. История и перспективы развития большепролетных конструкций Здания без души

Атриум одного из американских отелей, принадлежащих «Gaylord Hotels

будущее проистекает из настоящего
и определяется той дорогой, которой мы сегодня отдаём своё предпочтение

Большепролетные светопрозрачные конструкции становятся неотъемлемой частью городской архитектуры ХХI века. Лучшие зодчие сегодня все чаще создают удивительные комплексы зданий, центром притяжения в которых, неким пространственным ядром, являются большие атриумные пространства – объемные, наполненные светом и комфортом, хорошо защищенные от негативных внешних воздействий и накрытые надежными светопрозрачными покрытиями.
Дальнейшее активное развитие таких сооружений, вероятно, способно в недалеком будущем не только максимально расширить комфортное и безопасное пространство среды обитания человека, но также позволит в перспективе изменить облик наших городов и улучшить их сегодняшнее состояние.

Зодчество эпохи глобализации

Во все времена своей истории люди стремились оградить и защитить себя от многочисленных неблагоприятных и опасных воздействий со стороны среды своего обитания. Жара и холод, дождь и ветер, хищные животные и дикие люди всегда составляли известную проблему для спокойной жизни человека. Поэтому издревле наши предки начали строить для себя укрытия, которые, создавая защищенную от внешних воздействий искусственную среду, привносили в их жизнь больше желанного комфорта и безопасности. А возникшая архитектура, как удивительный и превосходный инструмент этих созидательных действий человека, с самого своего зарождения и на всех этапах развития, старалась максимально использовать имеющиеся технические возможности и существующие эстетические воззрения в обществе для лучшего удовлетворения этих важных человеческих потребностей: и в комфорте, и в безопасности.

Сегодня наступила эпоха невиданного развития технологий, и в строительной сфере это сделало возможным реализацию практически любых, самых смелых архитектурных идей. В связи с этим, основными факторами, ограничивающими воплощение в жизнь всех значимых проектов современных архитекторов, сегодня чаще является уже не отсутствие технических возможностей для строительства большого и сложного объекта, но лишь некоторые наши субъективные представления о нем, такие как: недостаточная польза будущего сооружения, его малая востребованность и низкая рентабельность, либо слишком продолжительное время будущего строительства и высокая цена реализации. Одновременно, с начинающимся бумом внедрения во всем мире принципов «устойчивого развития» и «зеленого строительства», наличие фактора экоустойчивости зданий также приобретает для их строительства всё больший вес.

С открывшимися широкими техническими возможностями для развития архитектуры XXI века, современные зодчие в своей работе, думается, должны начинать в большей мере учитывать то существенное воздействие, которое оказывают их проекты на развитие городской среды. Очевидно, что современные мегаполисы, став заложниками прошлого пути своего развития, и продолжающегося подхода к их застройке, постепенно все больше превращаются в многофакторную проблему для спокойствия и безопасности своих жителей.

Вступив в эпоху глобализации, наш мир сильно изменился за последние годы, и сегодня уже вряд ли можно найти разумные оправдания для продолжающегося формирования скученного проживания людей в отдельных точках пространства. Наше общество начинает понимать губительность этого процесса, но городская архитектура, к сожалению, все еще продолжает идти по пути создания высотных проектов и уплотнения городской застройки, провоцируя тем самым ещё большую концентрацию населения в отдельных точках уже и так излишне перенаселённого пространства.

Вместе с тем, обладая современными технологиями и используя свое колоссальное воздействие на жизнь общества, архитектура ХХI века может не только максимально расширить комфортное и безопасное пространство среды обитания человека, но также способна и должна попытаться шаг за шагом кардинально изменить облик наших городов и улучшить их сегодняшнее состояние. Кроме того, Архитектура, как непревзойденная повелительница пространства, времени и воображения многих людей, обязательно будет всё активнее способствовать возникновению принципиально новых экогородов и экопоселений.

Город под куполом

Мечта о светопрозрачных покрытиях, защищающих улицы и городские кварталы от дождя и снега, зародилась у людей очень давно. Но только с приходом промышленной революции, принесшей широкие технические и финансовые возможности, реализация подобных проектов становится осуществима. Лишь за период второй половины ХIХ века, большие крытые стеклом пассажи-галереи с рядами дорогих магазинов и уютных кафе появились в большинстве главных городов Европы и Америки. А одной из самых первых заметных жемчужин, того периода развития больших остекленных атриумных пространств является знаменитая Галерея Виктора Эммануила II в Милане, открытая для посетителей ещё в 1877 году.

Рис.2. Галерея Виктора Эммануила II в Милане.

Так как прогресс остановить невозможно, то активно участвовать в нем, а не оставаться на задворках истории – задача всех великих стран. Именно поэтому, со второй половины ХХ века строительная наука в СССР, США и некоторых других странах уже серьезно работала над возможностью обеспечить защиту своих городов большими светопрозрачными куполами от: нежелательных явлений погоды, негативных особенностей местного климата, излишнего уровня солнечного излучения и других, неблагоприятных для человека воздействий внешней среды. За последние годы к списку факторов стимулирующих дальнейшие исследования в этом направлении, можно добавить: быстрые и непредсказуемые изменения климата на планете, угрожающее увеличение загрязнения окружающей среды, возрастающие угрозы экстремизма, а также желание людей снизить чрезвычайно высокую энергозатратность жизнедеятельности своих городов.

Сегодня создание большепролетных светопрозрачных защитных сооружений (далее БСЗС), в которых много естественного света и комфорта, активизировалось как никогда ранее. Появляются новые идеи и создаются разнообразные уникальные проекты - такие, например, как «Купол над Хьюстоном» - , а некоторые из этих удивительных проектов уже реализуются. Так, в Астане, при помощи английских инженеров и турецких строителей, построен 100-метровый (без учета высоты шпиля) светопрозрачный шатер, в котором разместился самый большой и презентабельный в Казахстане торгово-развлекательный центр.

Еще более удивительное и грандиозное сооружение создали в Германии - это центр водных развлечений «Тропические острова» , который имеет внутренний объем около 5,5 млн. куб. м и по праву является на сегодня самой большой по этому показателю светопрозрачной постройкой в мире.


Рис.3-5. Центр водных развлечений «Tropical Islands» в Германии

Важным этапом на пути развития объемных светопрозрачных сооружений явилось научное обоснование возможности их ощутимой эффективности - и в экономичности энергопотребления, и в значительном сокращении теплопотерь, при одновременном существенном расширении вновь создаваемого удобного и востребованного общественного пространства.

Заслуга в этом обосновании принадлежит английским и американским архитекторам и ученым, но, в первую очередь, можно выделить работы Терри Фаррелла и Рольфа Лебенса, которые на границе 70-80-х годов ХХ века создали концепцию «буферного мышления». Результатом этой концепции стало активное внедрение в мировую архитектурную практику "буферного эффекта" или "принципа двойного ограждения".

При исследовании вопроса, возможности создания эффективных больших атриумных пространств, были выделены согревающий, охлаждающий и трансформируемый типы атриумов. С той поры прошло лишь немногим более 30 лет, но даже за этот небольшой период времени современные атриумные пространства завоевали весь цивилизованный архитектурный мир (фото американских атриумов, приведённые в этой статье – малая толика имеющегося множества и многообразия построенных за эти годы атриумных пространств). К сожалению, современная Россия, в этом смысле, пока не имеет больших достижений.

Соглашаясь с имеющимися доводами специалистов, по целесообразности применения в современной архитектуре больших атриумных пространств, и не пытаясь оспаривать их выводы, автор статьи далее предлагает рассмотреть возможность того, как, с помощью многопоясных тросовых конструкций, создавать (перекрывать) такие пространства дешевле и надёжнее, а также особо не ограничиваться размерами атриумов, внедрив новую технологию перекрытия больших пролетов. Думается, что в условиях России, даже лишь создание самого простого второго ограждения (буферного пространства) вокруг городских кварталов позволит благоразумно использовать те многочисленные теплопотери накрываемых зданий, которые не будут безвозвратно растворятся в окружающем пространстве, а обеспечат обогрев образовавшихся атриумных пространств. Только за счет качественного светопрозрачного защитного покрытия, температура в таких атриумных пространствах в зимний период может быть на 10-15 градусов выше уличной.

В летний период, кроме разумного регулируемого частичного затенения внутреннего пространства, от излишнего солнечного излучения и перегрева, можно предусмотреть раскрытие вентиляционных проемов в светопрозрачном покрытии, а так же осуществлять другие - известные и эффективные методы создания комфортного микроклимата внутри всего светопрозрачного комплекса. Очевидно, что создание комфортного и стабильного микроклимата в одном большом замкнутом пространстве будет осуществить намного проще и дешевле, чем обеспечить такие же комфортные условия одновременно в тысячах небольших помещений.
Сама природа объемных светопрозрачных сооружений располагает к тому, чтобы мы отбросили некоторые стереотипы своего мышления, на решение подобных задач, и взглянули заново на возможность создания комфортной среды в новых условиях больших объемных пространств. При этом уже есть новые эффективные технические решения, использующие важные преимущества больших пространств и позволяющие обеспечить стабильные комфортные условия для всего внутреннего пространства БСЗС при значительно меньших энергетических затратах.

Между тем, возможности применения многопоясных тросовых покрытий, видятся, шире. Так процесс строительства экогородов, который пока еще только зарождается и робко заявляет о себе, так же нельзя представить без большепролетных светопрозрачных сооружений. Хочется думать, что ХХI век, оценив новую большепролетную светопрозрачную архитектуру, будет активно её развивать и совершенствовать, а также постарается с её помощью быстрее совершить прорыв в градостроительстве, заменив унылые, энергонеэффективные и небезопасные каменные джунгли современных мегаполисов на удобные, комфортные и экологичные города.

Рис. 6-11 Masdar City (иллюстрации Foster + Partners).

Самым амбициозным и помпезным проектом экогорода сегодня можно назвать Masdar City . Вероятно, это первая по-настоящему серьезная попытка комплексного подхода к организации города будущего - обеспечиваемого энергией из возобновляемых источников (солнце, ветер и др) и имеющего устойчивую экологическую среду с минимальными выбросами углекислого газа в атмосферу, а также системой полной переработки отходов городской деятельности.
К сожалению, место для строительства Masdar City, выбрано не самое удачное и будущим жителям и эксплуатирующим организациям еще придется ощутить на себе некоторые неудобства месторасположения этого уголка пустыни. Так очевидно, что заложенные в проект города технические решения не смогут в полной мере справиться с 50-ти градусной летней жарой (исключение составят замкнутые пространства, в том числе все атриумы). Периоды дождей в декабре-январе, а позже сезон сильных туманов также не смогут быть комфортны для жителей нового города. А если мы вспомним о довольно частых зимне-весенних песчаных бурях в той части пустыни, то поймем, что без большепролетных светопрозрачных покрытий, накрывающих и защищающих городские кварталы от этих местных природных явлений, городским жителям периодически придется испытывать определенные неудобства.
Предлагаемая ниже концепция строительства большепролетных светопрозрачных сооружений хорошо вписывается в проекты подобные Masdar City и, думается, что вполне способна помочь таким проектам сэкономить средства как на строительстве, так и на эксплуатации современных городов. А также сделать эти города защищеннее и комфортнее.

Рис.6-11. Таким можно видеть будущий Masdar City на красочных рекламных проспектах и журнальных иллюстрациях (иллюстрации Foster + Partners).


В 2012 году российскими инженерами была разработана технически доступная сегодня и эффективная в реализации концепция перекрытия больших пролетов, позволяющая обеспечить строительство разнообразных большепролетных зданий и сооружений . Идея заключается в создании над комплексом зданий многопоясного тросового покрытия, которое, перекрывая большие пролеты между опорными зданиями, сможет нести любую расчетную нагрузку и создаст для всего комплекса единое прочное и надёжное светопрозрачное покрытие. Покрытие обеспечит возможность поддержания в замкнутом внутреннем пространстве такого объекта постоянных и комфортных для человека параметров: температуры, влажности, подвижности и чистоты воздуха, освещенности, безопасности и др.
В основу идеи многопоясных тросовых систем заложены известные принципы висячих конструкций, которые уже более полувека широко применяются в мире для строительства большепролетных зданий и сооружений. Но более широкого распространения в большепролетном строительстве висячие конструкции не получили из-за некоторых своих недостатков. Так большепролетные здания с висячими конструкциями покрытий, как правило, не могут обеспечить уклон кровли наружу здания, что создаёт дополнительные трудности с отводом атмосферных осадков с покрытия. Кроме этого, создавая очень значительные горизонтальные нагрузки в высоких опорах, вантовые конструкции вынуждают строителей решать эту проблему дополнительными финансовыми вложениями в мощные контрфорсы для этих нагрузок. Но самым основным недостатком висячих конструкций является их большая деформативность под действием местных нагрузок.

Многопоясным тросовым системам удалось преодолеть перечисленные недостатки большепролетных вантовых покрытий и даже создать возможность для успешного перекрытия гораздо больших пролетов, что сегодня может дать новый импульс в развитие большепролетного строительства.

Известно, что перекрытие больших пролетов во все времена развития нашей цивилизации интересовало и привлекало внимание не только архитекторов и строителей, но и обычных людей. Создание величественных сооружений с большепролетными пространствами всегда являлось показателем передового развития инженерного искусства, а также технического и финансового могущества стран, способных построить такие сооружения.


Что такое многопоясное тросовое покрытие и как оно работает?

Чтобы понять, как работает многопоясное тросовое покрытие надо представить конструкцию любого известного большепролётного покрытия, которым перекрыли пролёт между двумя опорными зданиями. (например, пространственную перекрёстно-стержневую плиту). Если пролёт достаточно большой, то это покрытие под собственным весом неизбежно прогнётся, а при воздействии на него дополнительных внешних нагрузок (от снега, ветра и др) может разрушиться. Но, чтобы этого не произошло и большепролётное покрытие не обрушилось, мы натягиваем под ним высокопрочные стальные тросы в несколько рядов (поясов), от одного опорного здания до другого, выполняем их натяжение и устанавливаем (через определённые расстояния по длине тросов) между поясами образовавшейся тросовой системы, распорные стойки, а между соседними тросами во всех поясах тросовой системы – распорки и/или растяжки. Многопоясность помогает добиться того, что на любой длине пролета тросовая система является двояковыпуклой и подпирает собой снизу рассматриваемое прогнувшееся покрытие.

При этом, в покрытии, за счёт натяжения тросов и работы распорных стоек, не только исчезнет образовавшийся прогиб, но и возникнет прогиб с обратным знаком – вверх. Это позволяет покрытию не только не разрушится под воздействием на него предельных нагрузок, но, напротив, будет способствовать возможности восприятия им значительных дополнительных нагрузок, в соответствие тем расчётными характеристиками тросовой системы, которые ей будут заданы проектом.
Специалистам понятно, что система преднапряжённых тросовых конструкций, несущих жёсткое, прочное и устойчивое покрытие, невозможна без мощных опорных элементов (воспринимающих горизонтальные составляющие от распора тросовой системы), а также стабилизирующей системы, воспринимающей все временные нагрузки на покрытие, в том числе отрицательное давление ветра. Поэтому предлагаемая концепция строительства БСЗС учитывает все необходимые для этих сооружений условия.
Так, чтобы придать многопоясному тросовому покрытию неизменяемость под действием временных нагрузок, дополнительно предусмотрено, с помощью оттяжек, догрузить покрытие на расчетную величину. При этом, оттяжки покрытия крепятся к фундаментам опорных зданий, что позволяет избежать увеличения нагрузки на эти фундаменты от дополнительного веса большепролетного покрытия, вызванного натяжением оттяжек.

В результате совместной работы многопоясной тросовой системы и расположенного на ней остекленного рамного покрытия образовалось единое, легкое и надёжное большепролётное светопрозрачное тросовое покрытие, которое уже сегодня способно перекрывать пролёты в 200-350 и более метров.
Понятно, что кровельное покрытие, основой для которого являются большепролетные многопоясные тросовые системы, по желанию, можно выполнить из любого гидро-теплоизоляционного материала,в том числе и светопрозрачного. Например, в условиях низких температур окружающего воздуха, лучшим на сегодня светопрозрачным материалом являются многокамерные стектопакеты.

Преимущества многопоясных тросовых систем перед известными сегодня техническими решениями, применяющимися при перекрытии больших пролетов, очевидны. Это очень значительная прочность и надежность таких систем, превосходная несущая способность, легкость конструкций, возможность перекрывать существенно бОльшие пролеты, лучшая светопропускная способность покрытия, в несколько раз меньшая металлоемкость конструкций и, как следствие, относительно невысокая стоимость всего покрытия.

Применение многопоясных тросовых систем.

Надо отметить, что технология перекрытия больших и сверхбольших пролетов с помощью многопоясных тросовых систем позволит строить самые разнообразные по объему, форме и назначению сооружения. Это могут быть: самые большие по размерам ангары и производственные цеха, крытые легкоатлетические и футбольные стадионы, большепролетные общественные пространства, развлекательные и торговые центры, жилые кварталы под светопрозрачной оболочкой, большие стеклянные пирамиды и купола (в которых можно размещать самые разнообразные многофункциональные комплексы объектов недвижимости или корпоративные центры). Многопоясные тросовые системы также могут пригодиться в строительстве большепролетных висячих мостов нового дизайна, особенно в тех местах, где строительство других типов мостов невозможно, либо слишком дорого .


Рис.12. Светопрозрачное сооружение в виде ПИРАМИДЫ высотой 200м.

Представляется, что строительство большепролетных светопрозрачных комплексов должно развиваться как квартальная застройка. А одним из самых эффектных и оптимальным первоначальным вариантом для такой функциональной застройки может послужить, например, форма светопрозрачного квартала в виде правильной четырёхугольной ПИРАМИДЫ (рис. 11) со следующими параметрами:

  • высота пирамиды – 200 м;
  • размеры основания - 300х300 м;
  • площадь основания (территория, защищаемая светопрозрачными покрытиями) – 9,0 Га;
  • площадь ограждающих конструкций - 150 000 м 2 ;
  • геометрический объём пирамиды (П200) - 6,0 миллионов кубических метров.

В таком застекленном квартале, чтобы не перенаселять внутреннее пространство комплекса, разумно иметь лишь 320-450 тыс.кв.м полезных площадей (надземных), занятых под коммерческую и/или жилую недвижимость и расположенных, в основном, в опорных зданиях этого светопрозрачного комплекса. Остальной объем сооружения (более 4,0 млн.куб.м) – это многофункциональные атриумы.

Для сравнения, при увеличении высоты такой пирамиды П200 (геометрически идеальная пирамида имеет соотношения 3:4:5) всего на 50 метров, параметры П250 составят: основание – 375х375 м; Sосн = 14,1 га, Sостекл = 235,0 тыс.кв.м. Произойдёт почти двукратное увеличение внутреннего объёма светопрозрачного сооружения, который в этом случае будет равен - 11,7 млн. куб м., а количество площадей занятых под коммерческую недвижимость может возрасти до 0,8 - 1,0 млн. квадратных метров. При этом, что является особенно привлекательным, площадь ограждающих конструкций пирамиды П250 будет почти вдвое! меньше суммарной площади ограждающих конструкций внутренних опорных зданий. Для специалистов должна быть понятна важность этого соотношения.
При дальнейшем увеличении внутреннего объема БСЗС и придания ему куполообразной формы, уменьшение коэффициента соотношения площади ограждающих конструкций светопрозрачного комплекса, к сумме всех полезных площадей внутренних помещений (как и к сумме площадей ограждающих конструкций внутренних зданий), будет изменяться в очень приятной глазу прогрессии, т.е. процесс такого строительства будет становиться экономически всё более привлекательным!

Спортивные центры со светопрозрачным покрытием.
Другим перспективным направлением применения многопоясных тросовых светопрозрачных покрытий, сегодня видится строительство крытых футбольных стадионов и других большепролетных спортивных сооружений. С каждым годом спрос на крытые спортивные стадионы в мире возрастает (например, уже не только европейцы и североамериканцы строят для себя большие крытые стадионы, но и менее богатые страны, такие как Аргентина и Казахстан недавно построили такие сооружения, а Филиппины сегодня возводят, как уверяют, самый большой крытый стадион в мире). В преддверии подготовки к футбольному чемпионату 2018 года востребованность подобных объектов может наметиться и в России.

Уникальность и высокая стоимость ныне существующих большепролётных спортивных сооружений (с пролетом 120-150 м и более) состоит том, что каждое такое сооружение выполняется на максимуме возможностей строительной индустрии места своего строительства, сопряжено с многочисленными сложными и точными расчётами несущих конструкций, повышенной ответственностью и значительной материалоёмкостью реализуемых решений. Недостатки перекрытий всех этих большепролетных сооружений одни и те же: они сложны, громоздки, металлоёмки, и поэтому нерациональны и чрезвычайно дороги. Кроме этого, из-за мощных несущих металлоконструкций покрытия, инсоляция всех крытых стадионов сегодня чрезвычайно низка, что сильно затрудняет поддержание натурального травяного покрытия современных спортивных арен в надлежащем состоянии.

Рис.13.Футбольный стадион в Польше. На ЕВРО-2012.
Рис.14. Стадион Уэмбли – самый знаменитый стадион Англии

Думается, что применение светопрозрачных многопоясных тросовых покрытий должно кардинально изменить такое неблагоприятное положение дел при строительстве большепролётных спортивных объектов (на эскизах Рис.15-19 показан один из возможных вариантов для строительства относительно недорогого крытого многофункционального спорткомплекса).




Рис. 15-18 эскизные решения большого крытого стадиона.
.
1 и 2 – здания, служашие опорными конструкциями для светопрозрачного покрытия;
4 – многопоясные тросовые системы;
10 – оттяжки-пригрузы;
11 – 3-х поясное тросовое светопрозрачное покрытие;
18 и 19 – зрительские трибуны;
21 – самонесущие светопрозрачные конструкции


Рис. 19. Разрез 3-х поясного тросового светопрозрачного покрытия (см. обознач 4 и 11, на рис. 17)

5 - высокопрочный металический трос;
6 - пояс тросового покрытия;
7 - распорная стойка;
8 - горизонтальная распорка-растяжка:
12 - светопрозрачное элементы покрытия;
13 - рамная конструкция светопрозрачного покрытия.

Многопоясные тросовые системы (4) (перекрывающие пролет между опорами (1 и 2) наклонены наружу сооружения за счет разницы высот опорных зданий и являются основанием для размещения поверх них раздвижного светопрозрачного покрытия (11), выполненного из рамных конструкций (13) и светопрозрачных элементов (12) .
Многопоясность тросовой системы, оттяжки (10) и др специальные технические решения обеспечат тросовому покрытию необходимую жесткость и устойчивость к восприятию всех расчётных нагрузок.
Между опорными зданиями (1 и 2), по контуру наружных стен стадиона, предусмотрены самонесущие светопрозрачные конструкции (21), которые делают контур наружных стен замкнутым.
Применение многопоясных тросовых покрытий, сможет обеспечить всем новым стадионам самую простую, надежную и относительно недорогую конструкцию светопрозрачного покрытия, одновременно, обеспечивающую лучшую инсоляцию арены, чем на всех построенных до сего дня крытых стадионах.

Возведение большепролетных многопоясных тросовых светопрозразных покрытий сегодня не является сверхсложной задачей, так как в строительной практике существует многолетний опыт применения большепролетных вантовых покрытий, которые, в основном, используют теже самые технические решения, материалы, изделия и оборудование, и тех же самых технических специалистов.

Большой и красивый, крытый и комфортный современный спортивный центр необходим каждому развивающемуся городу не только для проведения в достойных условиях спортивных соревнований в течение всего года, но и для широкого вовлечения городского населения в активные занятия спортом и своим личным здоровьем. Для этого многофункциональный спортивный комплекс может включать в себя не только высококлассное футбольное поле, многочисленные спортивные залы, бассейны и фитнес-центры, но любой на выбор перечень объектов для оздоровительных и учебно-тренировочных занятий различными видами спорта, а высотная часть спорткомплекса, при желании, может принять, близкие профилю объекта, гостиничные и офисные центры.

С помощью лучших специализированных строительных компаний (например, французской «Freyssinet International & Cie» или японской «TOKYO ROPE MFG.CO, LTD.» , которые являются мировыми лидерами в проектировании и изготовлении вантовых конструкций) можно уже сегодня начинать строить предложенные большепролетные светопрозрачные объекты.


Рис.20.Защитное сооружение куполообразной формы со светопрозрачным покрытием.


Перспективы архитектуры большепролетных светопрозрачных комплексов.

Огромные атриумные пространства БСЗС могут объединять множество задач. Например, в атриумах с объемами в миллионы кубических метров смогут разместиться и самый большой роскошный аквапарк, и полноценный спортивный стадион, и многое другое одновременно. Но, думается, что в перспективе, большинство БСЗС предпочтет возможность размещения в своих атриумных пространствах обширных и уютных ландшафтных садов со спортивными и детскими площадками, фонтанами и водопадами, вольерами с экзотическими животными и живописными прудами, открытыми бассейнами и кафе на лужайках. Ведь каждый такой вечнозеленый цветущий сад даст возможность жителям и гостям БСЗС ежедневно общаться с живой природой - и в самые жаркие летние месяцы, и долгие дождливые дни осени, и в снежные холодные месяцы зимы.

Борцам за сохранение природы должен понравиться тот факт, что при строительстве БСЗС активизируется процесс проникновения живой природы внутрь огромных рукотворных светопрозрачных сооружений. Занимая в БСЗС специально подготовленные для нее пространства и образовывая в них (при активной помощи человека) устойчивые экосистемы, природа сможет качественно наполнить собой архитектурные объекты будущего, делая их функциональнее и привлекательнее для людей. При этом, в организованных людьми атриумных пространствах, лучших БСЗС, несомненно, произойдет мутуализм (взаимовыгодное сожительство) природы и человека.


Рис.21-22. Атриумы американских отелей, принадлежащие знаменитой «Gaylord Hotels.

Положительные результаты, которые будут получены при строительстве БСЗС, полностью отвечают запросам современного градостроительства. Это экономическая и экологическая привлекательность сооружений; интенсивное развитие искусственной среды обитания человека, тесно связанное с природным окружением и обеспечением высокого качества жизни людей; образование нового типа экогородов и улучшение экологической обстановки в существующих мегаполисах; появление новых востребованных направлений для развития технического прогресса и существенная экономия природных ресурсов.

БСЗС по многим критериям наилучшим образом соответствуют принципам «Зеленого строительства» (GreenBuildings), и будут способствовать не только улучшению качества строительных объектов, но и сохранению окружающей среды.

Строительство БСЗС поможет решить следующие важные задачи «устойчивого развития» и требований «зеленых» стандартов LEED, BREEAM, DGWB:
- снижение уровня потребления энергетических и материальных ресурсов зданиями;
- снижение неблагоприятного воздействия на природные экосистемы;
- обеспечение гарантированного уровня комфорта среды обитания человека;
- создание новых энергоэффективных и энергосберегающих продуктов, новых рабочих мест в производственном и эксплуатационном секторах;
- формирование общественной потребности в новых знаниях и технологиях в сфере возобновляемой энергетики.

Атриумы светопрозрачных сооружений обязательно вернут нашим дворам их былую актуальность и востребованность, как вновь созданное очаровательное во многих отношениях общественное пространство, освобожденное от автомобилей и наполненное солнечным светом, уютом, комфортом.

Конструктивные особенности БСЗС и разумное их использование, в перспективе позволят так оптимизировать строительство таких сооружений, что построить комплекс зданий накрытых светопрозрачным куполом окажется значительно дешевле, чем строительство в идентичных условиях такого же комплекса зданий, но без защитного купола.
Так, очевидно, что стоимость светопрозрачного покрытия и эксплуатационные расходы (при правильном и целенаправленном движении в этом направлении) будут уменьшаться при увеличении объёма сооружения (не в абсолютном измерении, но относительно расходов на 1 кв метр полезной площади). Этот естественный вывод подтверждают: и обычная логика, и здравый смысл, и математика.
А снижение в несколько раз площади ограждающий конструкций БСЗС, относительно суммы площадей ограждающих конструкций внутренних зданий, неминуемо приведёт к снижению расхода потребляемой энергии на отопление комплекса БСЗС и на его кондиционирование, относительно такого же объема обычных зданий, не защищённых светопрозрачной оболочкой.
При этом, все внутренние здания БСЗС будут иметь упрощенную отделку внешних стен (без дорогостоящих покрытий и отсутствия утеплителей), а оконные проемы - будет необязательно остеклять стеклопакетами, что неизбежно отразится и на стоимости фундаментов. Основные системы отопления и кондиционирования внутренних зданий могут быть вынесены в атриумные пространства, что сделает внутренние жилые и офисные помещения более простыми, эффективными и т.д.

Новые экогорода в будущем, думается, вполне могут состоять, в основном, из расположенных вблизи друг к другу и максимально автономных БСЗС. Такие светопрозрачные сооружения будут построены среди живой природы и вписаны в естественный ландшафт, а также связаны между собой и с другими городами самыми современными высокоскоростными транспортными коммуникациями. Вероятно, это приведет не только к полному отказу многими жителями экогородов будущего от личных транспортных средств, из-за их ненадобности, но так же сможет навсегда устранить места опасного пересечения потоков людей с потоками автомобилей.

Но самый главный результат строительства экоустойчивых большепролетных светопрозрачных сооружений - расширение и улучшение комфортной среды обитания человека, без негативных последствий для природы.

Санкт-Петербург
09.06.2013 г

Примечания :
. Купол над Хьюстоном" - http://youtu.be/vJxJWSmRHyE ;
. Самый большой шатёр в мире
- http://yo www.youtube.com/watchutu.be/W3PfL2WY5LM ;
. "Tropical Islands" - www.youtube.com/watch ;
. Masdar City - www.youtube.com/watch;
. Большепролетный висячий мост -
.

Список используемой литературы :
1. Marcus Vitruvius Pollio, de Architectura - труд Витрувия в английском переводе Гвилта (1826);
2. Л Г. Дмитриев, А. В. Касилов. «Вантовые покрытия». Киев. 1974 г;
3. Зверев А.Н. Большепролетные конструкции покрытий общественных и промышленных зданий. СПб ГАСУ - 1998 г;
4. Кирсанов Н.М. Висячие и вантовые конструкции. Стройиздат - 1981 г;
5. Смирнов В.А. Висячие мосты больших пролетов. Высшая школа.1970 г;
6. Евразийский патент № 016435 - Защитное сооружение с большепролётным светопрозрачным покрытием - 2012 г;
7.


Рис.23-28. Атриумы американской сети высококлассных отелей «Gaylord Hotels".

Конструктивные решения металлических покрытий большепролетных зданий могут быть балочными, арочными, пространственными, висячими Байтовыми, мембранными и др. Учитывая, что в таких конструкциях основной нагрузкой является собственный вес, следует стремиться к его уменьшению, что достигается применением сталей повышенной прочности и алюминиевых сплавов.

Балочные системы (как правило, фермы) включаются в состав поперечных рам, что улучшает статическую схему работы. При пролетах более 60-80 м целесообразно использовать арочные покрытия (рис. 1). Такие покрытия при больших пролетах целесообразно проектировать предварительно-напряженными. В арочном покрытии, представленном на рис. 2, верхний пояс предусмотрен жестким, а нижний пояс и решетка арки выполнены из тросов. После монтажа арки осуществляют принудительное смещение опорных узлов наружу, что вызывает предварительное растяжение в нижнем поясе и раскосах арки.

Рисунок 1. 1 - арка; 2 - затяжка; 3 - неподвижная шарнирная опора; 4 - подвижная шарнирная опора

Рисунок 2. 1 - трос; 2 - жесткий пояс

Пространственные решетчатые конструкции покрытий могут быть плоскими двухслойными (двухсетчатыми) и криволинейными однослойными (односетчатыми) или двухслойными. В двухсетчатых конструкциях две параллельные сетчатые поверхности соединяются между собой решетчатыми связями.

Сетчатые системы регулярного строения называются структурными и применяются, как правило, в виде плоских покрытий. Они представляют собой различные системы перекрестных ферм (рис. 3). Структурные плоские перекрытия благодаря большой пространственной жесткости имеют небольшую высоту (1/16-1/20 пролета), ими можно перекрывать большие пролеты. Устройством консольных свесов за линией опор достигается уменьшение изгибающих моментов и веса покрытия.

Рисунок 3. 1,2 - верхняя и нижняя поясные сетки; 3 - раскосы; 4 - тетраэдр; 5 - октаэдр; 6 - опорная капитель

Криволинейные пространственные покрытия имеют, как правило, цилиндрическую или купольную поверхность.

Цилиндрические покрытия могут быть односетчатыми или двухсетчатыми (криволинейные структуры). Они в поперечном направлении работают как свод, распор которого воспринимается стенами или затяжками.

Купольные покрытия могут иметь ребристую (или ребристо-кольцевую) конструктивную схему (рис. 4а) или сетчатую (рис. 4б). В ребристых куполах радиально расположенные ребра соединены между собой кольцевыми прогонами. Если последние составляют с ребрами единую жесткую пространственную систему, то тогда кольцевые прогоны работают не только на местный изгиб, но в составе купольной системы воспринимают также кольцевые сжимающие или растягивающие усилия. В сетчатых куполах в состав конструкции кроме ребер и кольцевых элементов входят раскосы, что создает условия, при которых стержни работают только на осевые усилия.

Рисунок 4. а - ребристое; б - сетчатое

Висячие покрытия состоят из опорного контура и основных несущих элементов в виде вант или тонких стальных листов, работающих на растяжение. Поскольку основные элементы покрытия работают на растяжение, их несущая способность определяется прочностью (а не устойчивостью), что позволяет эффективно использовать высокопрочные канаты или листовую сталь. Такие покрытия весьма экономичны, однако повышенная деформативность ограничивает их применение для покрытий производственных зданий. Кроме того, учитывая большую распорность таких систем, форму в плане целесообразно принимать круглой, овальной или многоугольной, что облегчает восприятие распора. В связи с этим они применяются, в основном, для покрытий спортивных зданий, крытых рынков, выставочных павильонов, складов, гаражей и других зданий больших пролетов.

В состав вантовых висячих покрытий входят гибкие ванты (стальные канаты или арматурные стержни), располагаемые в радиальном направлении (рис. 5а), в ортогональных направлениях (рис. 5б) или параллельно друг другу в одном направлении (рис. 6). Криволинейные замкнутые опорные контуры работают преимущественно на сжатие, а центральное кольцо - на растяжение. В этих случаях на поддерживающие покрытие конструкции (стены, колонны, рамы) передаются только вертикальные силы. В отличие от этого при незамкнутых контурах распор передается на несущие конструкции здания, что требует устройства анкерных фундаментов, работающих на выдергивание, или стен с контрфорсами и т. п. На систему вант укладываются плиты из легкого железобетона или металлические с полимерным утеплителем, трехслойные и др.

Рисунок 5. а - радиальное расположение вант; б - ортогональное; 1 - ванты; 2 - опорный контур; 3 - центральное кольцо

Рисунок 6. 1,2 - ванты соответственно в середине и в торце; 3 - опорный контур; 4 - железобетонные плиты; 5 - анкерный фундамент

Системы висячих вантовых покрытий отличаются большим разнообразием. Нередко применяют шатровую вантовую систему, при которой центральное кольцо покоится на колонне и поднимается на более высокую отметку, чем опорное контурное.

Примером такой системы может служить покрытие автобусного парка в Киеве диаметром 161м. Описанные выше системы являются однопоясными. Кроме них применяются также двухпоясные системы (особенно при больших ветровых нагрузках), в которых стабилизация покрытия осуществляется с помощью контура обратной кривизны. В таких системах несущие ванты имеют выгиб вниз, а стабилизирующие - вверх. Стабилизирующие ванты с установленным на них настилом могут быть расположены над несущими, что вызывает сжатие распорок (рис. 7а). При расположении стабилизирующих тросов под несущими вантами связи между ними будут растянутыми (рис. 7б). Возможен и третий вариант, при котором несущие и стабилизирующие тросы пересекаются, а стойки сжаты в средней части покрытия и растянуты - в крайних (рис. 7б).

Рисунок 7. 1 - стабилизирующие ванты; 2 - стойки; 3 - несущие ванты

Большое распространение в зарубежной и отечественной практике получили также висячие тонколистовые системы - мембранные покрытия.

Они представляют собой пространственную конструкцию из тонкого металлического листа (стального или из алюминиевых сплавов) толщиной в несколько миллиметров, закрепленного по периметру в опорном контуре. Их преимущества состоят в совмещении несущей и ограждающей функций, а также в повышенной индустриальности изготовления. В некоторых случаях вместо сплошной мембраны покрытие образуется из отдельных, не соединяемых друг с другом, тонких стальных лент. Располагаемые в двух взаимоперпендикулярных направлениях ленты могут переплетаться, что предотвращает их расслаивание.

Сплошное мембранное покрытие успешно применено для универсального стадиона на проспекте Мира в Москве, размеры, в плане которого достигают 183x224 м (рис. 8).

Рисунок 8. Конструктивная схема покрытия универсального стадиона на проспекте Мира в Москве (стальная мембрана толщиной 5 мм): а - план; б - продольный разрез; в - поперечный

В состав спортивного комплекса, построенного в г. Бишкеке, входит зал на 3 тысячи зрителей, покрытие которого решено в виде предварительно напряженной мембранно-балочной висячей системы (рис. 9). Каркас здания выполнен из монолитного здания железобетона в виде раскосных ферм, расположенных по периметру размерами в плане 42,5x65,15 м. Покрытие состоит из собственно мембраны толщиной 2 мм, продольных прогонов и поперечных балок - распорок. Утеплитель в виде минераловатных матов подвешен к мембране снизу, потолок выполнен из штампованных алюминиевых элементов.

Мембранные покрытия использованы и в ряде других большепролетных зданиях. Так, в Санкт-Петербурге универсальный спортивный зал диаметром 160 м перекрыт мембранной оболочной толщиной 6 мм. Подобными оболочками перекрыты также универсальный спортивный зал с размерами в плане 66x72 м на 5 тысяч зрителей в Измайлово (Москва), здание плавательного бассейна «Пионер» с размерами в плане 30x63 м в Харькове и др.

Складчатые своды покрытий - пространственная конструкция, которая может быть выполнена из металла (стали, алюминиевых сплавов), железобетона, пластмасс.

Особенно эффективны такие покрытия из алюминиевых сплавов. Основным конструктивным элементом в последних может служить лист ромбовидной формы (рис. 10), согнутый вдоль большей диагонали. Сопряжения ромбовидных элементов между собой может осуществляться при помощи цилиндрических шарниров или жесткими фланцевыми сочленениями. Для повышения пространственной жесткости покрытия (особенно при шарнирных сопряжениях) необходимо

предусматривать установку продольных затяжек по выступающим узлам складчатого свода.

Рисунок 9. 1 - каркас здания; 2 - мембрано-балочная висячая система

Рисунок 10.

По функциональному назначению большепролётные здания можно разделить на:

1) здания общественного назначения (театры, выставочные павильоны, кинотеатры, концертные и спортивные залы, крытые стадионы, рынки, вокзалы);

2) здания специального назначения (ангары, гаражи);

3) промышленные здания (авиационных, судостроительных и машиностроительных заводов, лабораторные корпуса различных производств).

Несущие конструкции по конструктивной схеме подразделяются на:

Блочные,

Арочные,

Структурные,

Купольные,

Висячие,

Сетчатые оболочки.

Выбор той или иной схемы несущих конструкций здания зависит от целого ряда факторов: пролёта здания, архитектурно-планировочного решения и формы здания, наличия и типа подвесного транспорта, требований к жёсткости покрытия, типа кровли, аэрации и освещения, основания под фундаменты и т.д.

Сооружения с большими пролётами являются объектами индивидуального строительства, их архитектурные и конструктивные решения весьма индивидуальны, что ограничивает возможности типизации и унификации их конструкций.

Конструкции таких зданий работают в основном на нагрузки от собственного веса конструкций и атмосферных воздействий.

1.1 Балочные конструкции

Балочные большепролётные конструкции покрытий состоят из главных несущих поперечных конструкций в виде плоских или пространственных ферм (пролёт ферм от 40 до 100 м) и промежуточных конструкций в виде связей, прогонов и кровельного настила.

По очертанию фермы бывают : с параллельными поясами, трапециевидные, полигональные, треугольные, сегментные (см. схемы на рис. 1).

Высота ферм hф=1/8 ÷ 1/14L; уклон i=1/ 2 ÷ 1/15.

Треугольные фермы hф= 1/12 ÷ 1/20L; уклон поясов i=1/5 ÷ 1/7.

Рис.1 - Схемы строительных ферм

Поперечные сечения ферм:

При L > 36м одну из опор балочной фермы устанавливают подвижной.

Компоновка покрытия - вертикальные и горизонтальные связи по покрытию решаются аналогично промышленным зданиям со стропильными фермами.

А) нормальная компоновка

стена

б) усложнённая компоновка - с подстропильными фермами:

ПФ

Балочные схемы покрытий применяются:

При любых видах подопорных конструкций - кирпичные или бетонные стены, колонны (металлические или железобетонные);

Когда подопорные конструкции не могут воспринимать распорных усилий;

При строительстве зданий на просадочных или карстовых грунтах и подрабатываемых территориях.

Следует отметить, что балочные схемы покрытий тяжелее рамных и арочных, но просты в изготовлении и монтаже.

Расчёт ферм выполняют методами строительной механики (аналогично расчёту стропильных ферм промышленных зданий).

1.2 Рамные конструкции

Рамные конструкции для покрытий зданий применяют при пролёте

L=40 - 150м, при пролёте L > 150м они становятся неэкономичными.

Преимущества рамных конструкций по сравнению с балочными - это меньший вес, большая жёсткость и меньшая высота ригелей.

Недостатки - большая ширина колонн, чувствительность к неравномерным осадкам опор и изменениям T о.

Рамные конструкции эффективны при погонных жесткостях колонн, близких к погонным жесткостям ригелей, что позволяет перераспределить усилия от вертикальных нагрузок и значительно облегчить ригели.

При перекрытии больших пролётов применяют, как правило, двухшарнирные и бесшарнирные рамы самых разнообразных очертаний (см. рис.2).

Рис. 2 - Схемы сквозных рам

Бесшарнирные рамы более жёсткие и экономичные по расходу материала, однако, они требуют устройства мощных фундаментов, чувствительны к изменению Т о.

При больших пролётах и нагрузках ригели рам конструируют как тяжёлые фермы, при сравнительно малых пролётах (40-50м) они имеют такие же сечения и узлы, как лёгкие фермы.

Поперечные сечения рам аналогичны балочным фермам.

Компоновка каркаса и покрытия из рамных конструкций аналогична решению каркасов промышленных зданий и балочных покрытий.

Статический расчёт рамных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ.

Тяжелые сквозные рамы рассчитывают как решёточные системы с учётом деформации всех стержней решётки.

1.3 Арочные конструкции

Арочные конструкции покрытий большепролётных зданий оказываются более выгодными по затрате материала, чем балочные и рамные системы. Однако в них возникает значительный распор, который передаётся через фундаменты на грунт или устраивается затяжка для его восприятия (т.е. погашение распора внутри системы).

Схемы и очертания арок весьма разнообразны: двухшарнирные, трёхшарнирные, бесшарнирные (см. рис. 3).

Наиболее выгодная высота арок: f=1/4 ÷ 1/6 пролёта L.

Высота сечения арок:

Сплошностенчатых 1/50 ÷ 1/80 L,

Решёточных 1/30 ÷ 1/60 L.

Рис. 3 - Схемы арок. Самыми распространёнными являются двухшарнирные арки - они экономичны по расходу материала, просты в изготовлении и монтаже легко деформируются вследствие свободного поворота в шарнирах в них не возникает значительных дополнительх напряжений от Т о и осадок опор. В трёхшарнирных арках - всё аналогично двухшарнирным, однако ключевой шарнир осложняет конструкцию самих арок и покрытия. Бесшарнирные арки - самые лёгкие, наиболее благоприятно происходит распределение изгибающих моментов. Однако они требуют устройства мощных фундаментов. Их нужно рассчитывать на воздействие Т о. Сквозные арки конструируют аналогично фермам балочных схем покрытий. Компановка каркаса и покрытия из арочных конструкций аналогична решению каркасов из рамных конструкций. Статический расчёт арочных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ. Раскосы в сквозных арках проектируют как в фермах. Наиболее сложными в конструктивном плане являются опорные и ключевые шарниры (см. рис. 4 и 5)


Рис.4 - Схемы опорных шарниров арок и рам (а - плиточный,

б - пятниковый, в - балансирный:

1 - плита, 2 - цапфа, 3 -балансир).

Рис. 5 - Ключевые шарниры и арок

(а -плиточный; б -балансирный; в -листовой; г -болтовой)

После определения M, N, Q сечения стержней арки подбирают также, как сечения стерней ферм:

1.4 Пространственные конструкции покрытий большепролётных зданий

В балочных, рамных и арочных системах покрытий, состоящих из отдельных несущих элементов, нагрузка передаётся только в одном направлении - вдоль несущего элемента. В этих системах покрытий несущие элементы соединены между собой лёгкими связями, которые не предназначены для перераспределения нагрузок между несущими элементами, а только обеспечивают их пространственную устойчивость, т.е. с их помощью обеспечивается жёсткий диск покрытия.

В пространственных системах связи усиливают и привлекают к распределению нагрузок и передаче их на опоры. Приложенная к пространственной конструкции нагрузка передаётся в двух направлениях. Такая конструкция получается обычно легче плоской.

Пространственные конструкции могут быть плоскими (плиты) и криволинейными (оболочки).

Плоские пространственные системы (исключая висячие) для обеспечения необходимой жёсткости должны быть двухпоясными - по поверхности образующие сетчатую систему. Двухпоясные конструкции имеют две параллельные сетчатые поверхности, соединённые между собой жёсткими связями.

Однослойные конструкции, имеющие криволинейную систему поверхности, называются односетчатыми.

В таких конструкциях принцип концентрации материала заменён принципом многосвязности системы. Изготовление и монтаж таких конструкций очень трудоёмок, требует специальных приёмов изготовления и монтажа, что является одной из причин их ограниченного применения.

1.5 Пространственные сетчатые системы плоских покрытий

В строительстве получили распространение сетчатые системы регулярного строения, так называемые структурные конструкции или просто структуры , которые применяются в виде плоских покрытий большепролётных общественных и производственных зданий.

Плоские структуры представляют собой конструкции, образованные из различных систем перекрёстных ферм (см. рис.6):

1) Структуры, образованные из перекрёстных ферм, идущих в трёх направлениях. Поэтому они являются наиболее жёсткими, однако более сложными в изготовлении. Это структуры с поясными сетками из разносторонних треугольников.

2) Структуры, образованные из ферм, идущих в двух направлениях. Это структуры с поясными сетками из квадратных ячеек.

3) Структуры, образованные из ферм, также идущих в двух направлениях, но усиленных диагоналями в угловых зонах. Поэтому они более жёсткие.

Достоинства структур:

Большая пространственная жёсткость: можно перекрывать большие пролёты при различных опорных контурах или сетках колонн; получать выразительные архитектурные решения при высоте структуры.

Hструктур=1/12 - 1/20 L

Повторяемость стержней - из стандартных и однотипных стержней можно монтировать покрытия разных пролётов и конфигураций в плане (прямоугольные, квадратные, треугольные и криволинейные).

Позволяет крепить подвесной транспорт и изменять при необходимости направление его движения.

Системы покрытий из структур могут быть как одно-, так и многопролётными с опиранием как на стены, так и на колонны.

Устройством консольных свесов за линией опор уменьшают расчётный пролётный изгибающий момент и существенно облегчают конструкцию покрытия.

Рис. 6 - Схемы решёток структурных покрытий (а - с поясными сетками из равносторонних треугольных ячеек; б - с поясными сетками из квадратных ячеек; в - то же, усиленных диагоналями в условных зонах: 1 - верхние пояса,

2 - нижние пояса, 3 - наклонные раскосы, 4 - верхние диагонали, 5 -нижние диагонали, 6 - опорный контур).

Недостатки структур - повышенная трудоёмкость изготовления и монтажа. Пространственные узлы сопряжений стержней (см. рис. 7) - самые сложные элементы в структурах:

Шаровая вставка (а);

На винтах (б);

Цилиндрический сердечник с прорезями, стянутый одним болтом с шайбами (в, г);

Сварной узел сплюснутых концов стержней (д).

Рис. 7 - Узлы сопряжений стержней структур

Структурные конструкции представляют собой многократно статически неопределённые системы. Точный расчёт их сложен и выполняется на ЭВМ.

При упрощённом подходе структуры рассчитывают способами строительной механики - как изотропные плиты или как системы перекрёстных ферм без учёта крутящих моментов.

Величины моментов и поперечных сил определяют по таблицам для расчёта плит: Mплиты; Qплиты - далее переходят к расчёту стержней.

1.6 Оболочные покрытия

Для покрытий зданий применяют односетчатые, двухсетчатые цилиндрические оболочки и оболочки двоякой кривизны.

Цилиндрические оболочки (см. рис. 8) выполняют в виде сводов с опиранием:

а) прямолинейным образующим контура

б) на торцовые диафрагмы

в) на торцовые диафрагмы с промежуточными опорами

Рис.8 - Схемы опирания цилиндрических оболочек (1 - оболочка;

2 - торцовая диафрагма; 3 - связи; 4 - колонны).

Односетчатые оболочки применяют при пролётах В не более 30м.

Двухсетчатые - при больших пролётах В>30м.

По цилиндрической поверхности расположены стержни, образующие сетки различной системы (см. рис. 9):

Ромбическая сетка (а);

Ромбическая сетка с продольными рёбрами (б);

Ромбическая сетка с поперечными рёбрами (в);

Ромбическая сетка с поперечными и продольными рёбрами (г).

Наиболее простая сетка ромбического рисунка, которую получают из лёгких стандартных стержней (∟, ○, □) прокатных профилей. Однако такая схема не обеспечивает необходимой жёсткости в продольном направлении при передаче нагрузки на продольные стены.

Рис. 9 - Система сеток односетчатых оболочек

Жёсткость конструкции значительно увеличивается при наличии продольных стержней (схема "б") - конструкция может работать как оболочка пролётом L. В этом случае опорой могут служить торцовые стены или четыре колонны с торцовыми диафрагмами.

Наиболее жёсткими и выгодными являются сетки (схема "в"), у которых есть и продольные и поперечные рёбра (стержни), а решётка сетки направлена под углом 45 .

Расчёт оболочек выполняют методами теории упругости и методами теории оболочек. Оболочки без поперечных рёбер рассчитывают как безмоментные складки (способ Эллерса). При наличии поперечных рёбер , обеспечивающих жёсткость контура, - по моментной теории Власова (она сводится к решению восьмичленных уравнений).

При расчёте сквозных сетчатых оболочек, сквозные грани конструкций заменяются сплошными пластинами эквивалентной толщины при работе на сдвиг, осевое растяжение и сжатие.

Более точный расчёт сетчатых оболочек выполняют на ЭВМ по специально разработанным программам.

Двухсетчатые оболочки применяют при перекрытии пролётов шириной более B>30м.

Конструктивные схемы их аналогичны схемам двухсетчатых плоских плит - структур. Как и в структурах, они образуются системами перекрёстных ферм, связанных по верхним и нижним поясам специальными связями - решёткой. Но при этом в оболочках основная роль в восприятии усилий принадлежит криволинейным сетчатым плоскостям, соединяющая их решётка меньше участвует в передаче усилий, но придаёт конструкции большую жёсткость.

По сравнению с односетчатыми двухсетчатые оболочки обладают большей жёсткостью и несущей способностью. Ими можно перекрывать пролёты зданий от 30 до 700м.

Проектируют их в виде цилиндрической поверхности, опирающиеся на продольные стены или на металлические колонны. По торцам оболочки опираются на жёсткие диафрагмы (стены, фермы, арки с затяжкой и т.д.).

Наилучшее распределение усилий в оболочке при B=L.

Расстояние между сетчатыми поверхностями h=1/20÷1/100R при f/B=1/6÷1/10.

Как и в структурах, наиболее сложным является узел сопряжения стержней.

Расчёт двухсетчатых оболочек производят на ЭВМ по специально составленным программам.

Для приближённого расчёта оболочки необходимо стержневую систему привести к эквивалентной сплошной оболочке и установить модуль сдвига среднего слоя, эквивалентного по жёсткости соединительной решётке.

1.7 Купольные покрытия

Конструкции куполов бывают четырёх видов (см. рис.6): ребристые (а), ребристо-кольцевые (б), сетчатые (в), радиально-балочные (г).

Рис. 10 - Схемы куполов

Ребристые купола

Конструкции ребристых куполов состоят из отдельных плоских или пространственных рёбер в виде балок, ферм или полуарок, расположенных в радиальном направлении и связанных между собой прогонами.

Верхние пояса рёбер образуют поверхность купола (обычно сферическую). По прогонам устраивают кровлю.

В вершине для перестыковки рёбер устраивают жёсткое кольцо, работающее на сжатие. Рёбра к центральному кольцу могут крепиться шарнирно или иметь жёсткое закрепление. Пара рёбер купола, расположенных в одной диаметральной плоскости и прерванных центральным кольцом, рассматривается как единая, например арочная, конструкция (двухшарнирная, трёхшарнирная или бесшарнирная).

Ребристые купола являются распорными системами. Распор воспринимается стенами или специальным распорным кольцом в форме окружности или многогранника с жёсткими или шарнирными сопряжениями в углах.

Между рёбрами с определённым шагом укладывают кольцевые прогоны, на которые опирается кровельный настил. Погоны, помимо своего основного назначения, обеспечивают общую устойчивость верхнего пояса ребер из плоскости, уменьшая их расчётную длину.

Для обеспечения общей жёсткости купола в плоскости прогонов устраиваются с определённым шагом скатные связи между рёбрами, а также вертикальные связи для развязки внутреннего пояса арки - между вертикальными связями устраивают распорки.

Расчётные нагрузки - собственный вес конструкции, вес оборудования и атмосферные воздействия.

Расчётными элементами купольного покрытия являются: рёбра, опорное и центральное кольцо, прогоны, скатные и вертикальные связи.

Если распор купола воспринимают распорным кольцом, то при расчёте арки кольцо может быть заменено условной затяжкой, находящейся в плоскости каждой пары полуарок (образующих плоскую арку).

При расчёте опорного кольца - при частом расположении арок (рёбер) купола действия их распоров можно заменить эквивалентной равномерно распределённой нагрузкой:

Ребристо-кольцевые купола

В них погоны с рёбрами составляют одну жёсткую пространственную систему. В этом случае кольцевые прогоны работают не только на изгиб от нагрузки на покрытие, но и от реакций промежуточных рёбер и воспринимают растягивающие или сжимающие кольцевые усилия, возникающие от распоров в месте опирания многопролётных полуарок.

Вес рёбер (арок) в таком куполе уменьшается благодаря включению в работу кольцевых прогонов, как промежуточных опорных колец. Кольцевые рёбра в таком куполе работают так же, как и опорное кольцо в ребристом куполе, и при расчёте арок могут быть заменены условными затяжками.

При симметричной нагрузке расчет купола можно вести, расчленяя его на плоские арки с затяжками на уровне кольцевых рёбер (прогонов).

Сетчатые купола

Если в ребристом или ребристо-кольцевом куполе увеличить связность системы, то можно получить сетчатые купола с шарнирным соединением стержней в узлах.

В сетчатых куполах между рёбрами (арками) и кольцами (кольцевыми прогонами) располагают раскосы, благодаря которым усилия распределяются по поверхности купола. Стержни в этом случае работают в основном только на осевые силы, что уменьшает вес рёбер (арок) и колец.

Стержни сетчатых куполов выполняют из замкнутых профилей (круглого, квадратного или прямоугольного сечения). Узлы соединений стержней как и в структурах или сетчатых оболочках.

Расчёт сетчатых куполов производят на ЭВМ по специально разработанным программам.

Приблизительно их рассчитывают по безмоментной теории оболочек - как сплошную осесимметричную оболочку по формулам из соответствующих расчётно-теоретических справочников.

Радиально-балочные купола

Представляют собой ребристые купола, составленные из сегментных полу-ферм, расположенных радиально. В центре сегментные полуфермы присоединяются к жёсткому кольцу (решётчатому или сплошностенчатому с диафрагмами жёсткости).

1.8 Висячие покрытия

Висячими называются покрытия, в которых основные несущие элементы работают на растяжение.

В этих элементах наиболее полно используются высокопрочные стали, поскольку их несущая способность определяется прочностью, а не устойчивостью.

Несущие растянутые стержни - ванты - могут выполняться гибкими или жёсткими.

Жёсткие - выполняют из выгнутых двутавровых балок.

Гибкие - выполняют из стальных канатов (тросов) свитых из высокопрочной проволоки с R= 120 кН/см2 ÷ 240 кН/см2.

Висячие конструкции покрытий являются одной из наиболее перспективных конструктивных форм для применения высокопрочных материалов. Конструктивные элементы висячих покрытий легко транспортировать, относительно легко монтировать. Однако сооружение висячих покрытий имеет ряд трудностей, от удачного инженерного решения которых зависит эффективность покрытия в целом:

Первый недостаток - висячие покрытия - системы распорные и для восприятия распора необходима опорная конструкция, стоимость которой может составлять значительную часть стоимости всего покрытия. Уменьшения стоимости опорных конструкций можно достичь за счёт повышения эффективности их работы - созданием покрытий круглой, овальной и других не прямолинейных форм плана;

второй недостаток - повышенная деформативность висячих систем. Это вызвано тем, что модуль упругости витых тросов меньше чем у прокатной стали (Етроса=1,5 ÷ 1,8×10 5 МПа; Е прокатных стержней = 2,06×10 5 Мпа), а область упругой работы высокопрочной стали значительно больше, чем у обычной стали. Таким образом, относительная деформация троса в упругой стадии работы ε=G/Е получается в несколько раз больше чем у элементов из обычной стали.

Большинство висячих систем покрытия являются системами мгновенной жёсткости, т.е. системами, которые работают упруго лишь на равновесные нагрузки, а при действии неравномерных нагрузок в них, помимо упругих деформаций, появляются ещё и кинематические перемещения системы, ведущие к изменению целостности геометрической системы покрытия.

Для уменьшения кинематических перемещений висячие системы покрытий часто снабжают специальными стабилизирующими устройствами и предварительно напрягают.

Типы схем висячих покрытий

1. Однопоясные системы с гибкими вантами

Такие системы покрытий в плане проектируют прямоугольными или изогнутыми, например, круглыми (см. рис.11).

Они представляют собой предварительно напряжённые железобетонные оболочки, работающие на растяжение. Напряжённой арматурой в них является система из гибких вант, на которые во время монтажа укладывают сборные железобетонные плиты. В это время на ванты даётся дополнительный пригруз, который после укладки всех железобетонных плит и замоноличивания швов снимают. Ванты обжимают железобетонные плиты и образовавшаяся железобетонная оболочка получает предварительное напряжение сжатия, позволяющее ей воспринимать растягивающее напряжение от внешних нагрузок и обеспечивает общую устойчивость конструкции. Несущая способность покрытия обеспечивается растяжением вант.

В покрытиях прямоугольного плана распор вант воспринимает опорная конструкция из оттяжек и анкеров, закреплённых в грунте.

Рис. 11 - Однопоясные покрытия с гибкими вантами

(а - прямоугольные в плане; б - круглые в плане)

В покрытиях круглого (овального) плана распор передаётся на наружное сжатое кольцо, лежащее на колоннах и внутреннее (растянутое) металлическое кольцо.

Стрела провеса вант таких покрытий обычно составляет f=1/10÷1/20 L. Такие оболочки являются пологими.

Сечение вант покрытия определяют по монтажной нагрузке. В этом случае ванты работают как отдельные нити, и распор в них можно определять без учёта их деформаций H=M/f , где M - балочный момент от расчётной нагрузки, f - стрела провисания нити.


Наибольшее усилие в ванте будет на опоре

где V - балочная реакция.

2. Однопоясные системы с жёсткими вантами

Рис. 12 - 1 - продольные изгибно-жёсткие рёбра; 2 - поперечные рёбра;

3 - мембрана алюминиевая, t = 1,5 мм

В таких покрытиях гнутые жёсткие ванты, прикреплённые к опорному поясу, работают под действием нагрузки на растяжение с изгибом. Причём при действии равномерной нагрузки доля изгиба в напряжениях невелика. При действии неравномерной нагрузки жёсткие ванты начинают сильно сопротивляться местному изгибу, чем значительно уменьшают деформативность всего покрытия.

Стрела провеса вант таких покрытий обычно составляет 1/20 ÷ 1/30 L. Однако, использование жёстких нитей возможно лишь при небольших пролётах, т.к. с увеличением пролёта значительно усложняется монтаж и увеличивается их масса. По таким жёстким вантам можно укладывать лёгкую кровлю, отсутствует необходимость в предварительном напряжении (его роль выполняет изгибная жёсткость ванты).

При равномерной нагрузке распор в ванте определяют по формуле

H = 8/3 ×[(EA)/(l 2 mо)] × (f+fо) × ∆f +Hо;

где ∆f=f–fо,

f - прогиб под нагрузкой,

fо – начальный провес;

m1=1+(16/3)/(fо/l) 2

Изгибный момент в середине ванты находят по формуле

M= q I 2 /8–Hf .


3. Однопоясные висячие покрытия, напрягаемые с помощью поперечных балок или ферм

Рис. 13

Стабилизация таких канатно-балочных систем достигается либо увеличенной массой поперечных и жёстких на изгиб элементов, либо предварительным напряжением оттяжек, которые соединяют поперечные балки или фермы с фундаментами или опорами. Таким способом напрягаются покрытия с лёгким кровельным настилом.

Благодаря изгибной жёсткости поперечных балок или ферм покрытие приобретает пространственную жёсткость, которая особенно проявляется при загружении пролётной конструкции местной нагрузкой.

4. Двухпоясные системы

Рис. 14

В покрытиях такого типа имеется две системы вант :

- Несущие - имеющие изгиб вниз;

- Стабилизирующие - имеющие изгиб вверх.

Это делает такую систему мгновенно жёсткой - способной воспринимать нагрузки, действующие в двух различных направлениях. Вертикальная нагрузка вызывает у несущей нити растяжение , а у стабилизирующей - сжатие . Отсос ветра вызывает в вантах усилия обратного знака.

В покрытиях данного типа можно применять лёгкие кровли.

5. Седловидные напряжённые сетки

Рис. 15

Покрытия такого типа применяются для капитальных зданий и временных сооружений.

Сетка покрытия: несущие (продольные) тросы изогнуты вниз, стабилизирующие (поперечные) тросы изогнуты вверх.

Такая форма покрытия позволяет предварительно напрягать сетку. Поверхность покрытия лёгкая из различных материалов: от стального листа до плёнки и тента.

Шаг сеток приблизительно один метр. Точный расчёт сеток таких покрытий возможен только на ЭВМ.

6. Металлические оболочки-мембраны

Рис. 16

По форме в плане это эллипс или круг, а форма оболочек довольно разнообразная: цилиндрическая, коническая, чашеобразная, седловидная и шатровая. Большинство из них работает по пространственной схеме, делает её весьма выгодной и позволяет применять листы толщиной 2 - 5мм.

Расчёт таких систем производят на ЭВМ.

Главное преимущество таких систем покрытий - это совмещение несущих и ограждающих функций.

Утеплитель и гидроизоляцию укладывают на несущую оболочку, не применяя кровельных плит.

Полотнища оболочки выпускают на заводе-изготовителе и доставляют на монтаж в виде рулонов, из которых на площадке строительства собирают всю оболочку без применения лесов.

Раздел 2. Листовые конструкции

Листовыми называют конструкции, состоящие в основном из металлических листов и предназначенные для хранения, транспортирования жидкостей, газов и сыпучих материалов.

К этим конструкциям относятся:

Резервуары для хранения нефтепродуктов, воды и других жидкостей.

Газгольдеры для хранения и распределения газов.

Бункера и силосы для хранения и перегрузки сыпучих материалов.

Трубопроводы больших диаметров для транспортирования жидкостей, газов и размельчённых или разжиженных твёрдых веществ.

Специальные конструкции металлургической, химической и др. отраслей промышленности:

Кожухи доменных печей

Воздухонагреватели

Пылеуловители - скрубера, корпуса электрофильтров и рукавных фильтров

Дымовые трубы

Сплошностенчатые башни

Градирни и т.д.

Такие листовые конструкции занимают 30% от всех металлических конструкций.

Условия работы листовых конструкций достаточно разнообразны:

Они могут быть надземными, наземными, полузаглублёнными, подземными, подводными;

Могут воспринимать статические и динамические нагрузки;

Работать под низким, средним и высоким давлением;

Под воздействием низких и высоких температур, нейтральных и агрессивных сред.

Для них характерно двухосновное напряжённое состояние, а в местах сопряжения с днищем и рёбрами жёсткости, в местах сопряжения оболочек различной кривизны (т.е. на границе изменения радиуса кривизны) возникают местные высокие напряжения, быстро затухающие по мере удаления от этих участков это - так называемое явление краевого эффекта.

Листовые конструкции всегда совмещают несущую и ограждающую функции.

Сварные соединения элементов листовых конструкций выполняют встык, внахлёстку и впритык. Соединения выполняют автоматической и полуавтоматической дуговой сваркой.

Большинство листовых конструкций являются тонкостенными оболочками вращения.

Рассчитывают оболочки методами теории упругости и теории оболочек.

Листовые конструкции рассчитывают на прочность, устойчивость и выносливость.

1.1 Резервуары

В зависимости от положения в пространстве и геометрической формы они делятся на цилиндрические (вертикальные и горизонтальные), сферические и каплевидные.

По расположению относительно планировочного уровня земли различают: надземные (на опорах), наземные, полузаглублённые, подземные и подводные.

Они могут быть постоянного и переменного объёмов.

Тип резервуара выбирают в зависимости от свойств хранимой жидкости, режима эксплуатации, климатических особенностей района строительства.

Наибольшее распространение получили вертикальные и горизонтальные цилиндрические резервуары как самые простые при изготовлении и монтаже.

Вертикальные резервуары со стационарной крышей являются сосудами низкого давления, в которых хранят нефтепродукты при малой их оборачиваемости (10 - 12 раз в год). В них образуется избыточное давление в паро-воздушной зоне до 2кПа, а при опорожнении вакуум (до 0,25кПа).

Вертикальные резервуары с плавающей крышей и понтоном применяют при хранении нефтепродуктов при большой оборачиваемости. В них практически отсутствует избыточное давление и вакуум.

Резервуары повышенного давления (до 30кПа) используют для длительного хранения нефтепродуктов при их оборачиваемости не более 10 - 12 раз в год.

Шаровидные резервуары - для хранения больших объёмов сжиженных газов.

Каплевидные резервуары - для хранения бензина с высокой упругостью паров.

Вертикальные резервуары


Рис. 17

Основные элементы:

Стенка (корпус);

Крыша (покрытия).

Все элементы конструкций изготавливают из листовой стали. Они просты в изготовлении и монтаже, достаточно экономичны по расходу стали.

Установлены оптимальные размеры вертикального цилиндрического резервуара постоянного объёма, при которых расход металла будет наименьшим. Так, резервуар со стенкой постоянной толщины имеет минимальную массу, если

[(mдн + mпок) / mст] = 2, а значение оптимальной высоты резервуара определяется по формуле

где V - объём резервуара,

∆= t дн.+t прив. покр. - сумма приведённой толщины днища и покрытия,

tст. - толщина стенки корпуса.

В резервуарах больших объёмов толщина стенки переменна по высоте. Масса такого резервуара получится минимальной, если суммарная масса днища и покрытия равна массе стенки, т.е. mдн.+mпокр.= mст.

В этом случае

где ∆= tдн. + tприв. покр.,

n - коэффициент перегрузки,

γ ж. - удельный вес жидкости.

Днище резервуара

Так как днище резервуара опирается по всей своей площади на песчаное основание, то от давления жидкости оно испытывает незначительные напряжения. Поэтому толщину листа днища не рассчитывают, а принимают конструктивно с учётом удобств монтажа и сопротивляемости коррозии.

При V≤1000м и Д<15м → tдн = 4мм; при V>1000м и Д=18-25м → tдн = 5мм; при Д > 25м → tдн = 6мм. Рис. 18

Листы полотнищ днища соединяют между собой по продольным кромкам внахлёстку с перекрытием 30 - 60мм при tдн. = 4 - 5мм, а при tдн.= 6мм - выполняются встык. Крайние листы - "окрайки" - принимают на 1-2мм толще листов средней части днища. Из завода-изготовителя всё поставляется в рулонах (Q ≤ 60т).

Конструирование стенок:

Рис. 19

Стенка резервуара состоит из ряда поясов высотой, равной ширине листа. Соединяют пояса между собой встык или внахлёстку в телескопическом или ступенчатом порядке. Сопряжение встык выполняют в основном на заводе изготовителе (реже на монтаже), внахлёстку - как на заводе, так и на монтаже.

Распространён метод строительства резервуаров методом рулонирования.

Расчёт на прочность - стенка корпуса является несущим элементом и рассчитывается по методу предельных состояний в соответствии с требованиями СНиП 11-23-81

"...Большепролетные здания - здания, перекрытие которых в зависимости от назначения здания, может быть выполнено только большепролетными несущими строительными конструкциями. Эти конструкции могут быть металлическими, железобетонными, сталежелезобетонными и др..."

Источник:

(утв. ГУП "НИИМосстрой" 14.08.2008)

"...Большепролетные здания и сооружения - покрытие которых выполнено с применением большепролетных (более 36 м) конструкций..."

Источник:

" МРДС 02-08. Пособие по научно-техническому сопровождению и мониторингу строящихся зданий и сооружений, в том числе большепролетных, высотных и уникальных (Первая редакция)"

  • - Высотное здание Министерства иностранных дел.Москва. высо́тные зда́ния здания высотой, как правило, более 26 этажей...

    Москва (энциклопедия)

  • - общественные здания, предназначенные для размещения финансовых учреждений...

    Санкт-Петербург (энциклопедия)

  • - филат. назв. серии почт, марок СССР 1950 «Архитектура Москвы» . На марках проекты высотных зданий Москвы...

    Большой филателистический словарь

  • - изменение формы и размеров, а также потеря устойчивости здания под влиянием различных нагрузок и воздействий. Источник: "Дом: Строительная терминология", М.: Бук-пресс, 2006...

    Строительный словарь

  • - вид основных фондов, включающий архитектурно-строительные объекты, назначением которых является создание условий для труда, жилья, социально-культурного обслуживания населения и хранения материальных ценностей. 3...

    Большой бухгалтерский словарь

  • - общий термин для обозначения совокупности общественных и жилых зданий - съвкупност от обществени ь жилищни сгради - obytné a občanské budovy - Gesellschaftsbau...

    Строительный словарь

  • - та часть основных фондов, под которой понимаются строительные объекты...

    Словарь бизнес терминов

  • - вид основных фондов, включающий архитектурно-строительные объекты, назначением которых является создание условий для труда, жилья, социально-культурного обслуживания населения и хранения материальных ценностей...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "...Жилое здание - жилой дом постоянного типа, рассчитанный на длительный срок службы..." Источник: "Методическое пособие по содержанию и ремонту жилищного фонда. МДК 2-04.2004" ".....

    Официальная терминология

  • - "...Каркасные здания: здания с несущими рамами, полностью воспринимающими вертикальные и горизонтальные нагрузки...

    Официальная терминология

  • - группа в классификации основных средств, включающая корпуса цехов, мастерские, заводоуправление, здания и другие строительные объекты производственного, административно-хозяйственного и социально-бытового...

    Энциклопедический словарь экономики и права

  • - общественные здания, предназначенные служить в известные часы сборным пунктом для купечества данного города...
  • - сооружения в крепостях и городах для войск и их потребностей...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Многоэтажные здания...

    Большая Советская энциклопедия

  • - сущ., кол-во синонимов: 1 окладывание...

    Словарь синонимов

"Здания большепролетные" в книгах

Строители Здания

Из книги автора

Строители Здания Время для художественных работ еще не настало. Только два художника - Хайнц Митчер из Кёльна и Освальд Дубах, русский швейцарец, помогали доктору Штейнеру разрабатывать пластические мотивы для наружной отделки Здания. Похожий на великана швейцарский

Здания театров

Из книги Великие шедевры архитектуры. 100 зданий, которые восхитили мир автора Мудрова Анна Юрьевна

Здания театров Театр Дионисия Афины В V – IV веках до н. э. непременной частью религиозного культа в Древней Греции стали торжественные шествия в честь того или иного божества, принесение ему жертвы перед главным храмом и праздничные мероприятия, среди которых основными

Общественные здания

Из книги Архитектура Петербурга середины XIX века автора Пунин Андрей Львович

Общественные здания Середина XIX века в истории русской архитектуры представляет собой переходный этап от зодчества периода позднего классицизма к архитектуре пореформенной эпохи, когда бурное развитие капиталистических отношений, начавшееся после реформ 1860-х годов,

Захват здания

Из книги Многоточие сборки автора Андреева Юлия

Захват здания Это было удивительное время, когда можно было придти в Дом культуры, представиться руководителем курсов или желающим открыть свой театр режиссером, и тебе предоставляли помещение! Не на один день – на месяцы или даже годы. Тебя вписывали в расписание, и в

О чем говорят здания

Из книги Инвестиции в недвижимость автора Кийосаки Роберт Тору

О чем говорят здания Как я уже упоминал, здания сами по себе – это последняя вещь, на которую я обращаю внимание, знакомясь с городом или каким-то конкретным районом. Даже оценивая само здание, первым делом я обращаю внимание не на его вертикальную структуру,

Здания и сооружения

Из книги Бизнес-план на 100%. Стратегия и тактика эффективного бизнеса автора Абрамс Ронда

Здания и сооружения Как гласит старая поговорка, в торговле недвижимостью есть три важнейших фактора – место, место и еще раз место. Местоположение бизнеса может оказаться решающим условием его успеха. Например, в розничной торговле плохое местоположение означает, что

25.1. Здания без души

Из книги Стратагемы. О китайском искусстве жить и выживать. ТТ. 1, 2 автора фон Зенгер Харро

25.1. Здания без души «Раз за разом убирали новые жильцы все то, что прежде отличало здание: замечательный овальный читальный зал, бывший общедоступным центром и символическим сердцем библиотеки, «расчистили» и тем самым разрушили; от совершенно-функциональной и вместе с Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Многоэтажные здания

Из книги Большая Советская Энциклопедия (МН) автора БСЭ

Учебные здания

Из книги Большая Советская Энциклопедия (УЧ) автора БСЭ

Универсальные здания

Из книги Большая Советская Энциклопедия (УН) автора БСЭ

Из книги Над Евангелием автора (Грибановский) Михаил

VIII. "И когда выходил Он из храма, говорит Ему один из учеников Его: Учитель! Посмотри, какие камни и какие здания! Иисус сказал ему в ответ: видишь сии великие здания? все это будет разрушено так что не останется здесь камня на камне" Мк.13:1–2; Лк.21:5–6 Глубокая и

К большепролетным зданиям относятся здания театров, концертных и спортивных залов, выставочных павильонов, гаражей, ангаров, самолетостроительных и судостроительных заводов и другие здания с пролетами основньщ несущих конструкций 50 м и более. Как правило, такие здания проектируют однопролетными. Перекрывают их балочными системами (в основном фермами), рамами, арками, вантов"ыми (висячими), комбинированными и другими конструкциями.

В стержнях ферм больших пролетов возникают значительные усилия, поэтому вместо традиционных сечений из двух уголков применяют двухстенчатые составные сечения. Высоту ферм назначают в пределах l/s-Vis пролета, при этом она получается более 3,8 м. Перевозить фермы такой высоты по железной дороге нельзя, их собирают на строительной площадке.-

Рамы применяют в покрытиях зданий пролетами 60-120 м. Благодаря жесткому сопряжению ригеля со стойками изгибающие моменты в пролете будут меньше, чем в балочной конструкции:, Это позволяет не только уменьшить площадь сечения поясов, но и высоту ригеля, а следовательно, и высоту здания. Применяют как бесшарнирные, так и двухшариирные рамы. Бесшарнирные легче двухшарнирных, однако для них требуются фундаменты больших размеров и они более чувствительны к изменениям температуры и осадкам опор. Применять их при просадочных грунтах не рекомендуется. Двухстенчатые сечения поясов ферм

Арки применяют в покрытиях ч большепролетных Зданий с пролетами до:200 м. Они выгоднее балочных и рамных систем. Арки бывают: сплошные и сквозные; бесшарнирные, двухшариирные и трех-шарнирные. Бесшарнирные арки при одной и той же нагрузке легче двухшарнирных, но для них, как и для бесшарнирных рам, требуются массивные фундаменты и они так. же более чувствительны к изменениям"температуры и осадке опор.

Чаще всего применяют сквозные двухшарнирные арки со стрелой подъема, равной Vs-Ve. пролета. При увеличении стрелы подъема уменьшается продольная сила в арке и увеличивается изгибающий момент;

Сечения стержней арки могут быть одностенчатыми или двухстенчатыми

Устойчивость основных несущих конструкций (ферм, рам, арок) обеспечивается горизонтальными и вертикальными связями. В первую очередь должны, быть поставлены связи, закрепляющие сжатые пояса сквозных конструкций

Рамы и арки являются статически неопределимыми системами. Бесшарнирные рамы и арки-трижды статически неопределимы, двухшарнирные-однажды статиг чески неопределимы. Обычно за лишнее неизвестное принимают распор - усилие, приближенное значение которого для сквозных рам и арок можно найти по формулам, приведенным в справочнике проектировщика.

Зная распор, определяют изгибающие моменты М, продольные N и поперечные Q силы в раме или арке как в статически определимой конструкции, а по ним - и усилия в стержнях.

Усилия в стержнях сквозных рам и арок можно также определять построением диаграмм усилий. По полученным усилиям подбирают сечения стержней, рассчитывают узлы и сопряжения аналогично тому, как это делают для ферм.

Собственный вес несущих конструкций и вес кровли в< большепролетных сооружениях является основной нагрузкой, существенно влияющей на расход металла на покрытие, поэтому при выборе их конструктивной фор-» мы следует отдавать предпочтение более легким конструкциям. Особенно следует стремиться к снижению соб-» ственного веса кровли, применяя алюминиевые и другие панели покрытий с легким эффективным утеплителем.

Висячими и вантовыми называют покрытия, в которых в качестве несущей конструкции применяют гибкие нити, в основном тросы.

Основные несущие конструкции висячей системы - ванты - работают только на растяжение, поэтому в них полностью используется несущая способность материала

и представляется возможность применять сталь самой высокой прочности.

Транспортирование и монтаж их значительно, упрощаются, что удешевляет сооружение. Отмеченное выше является весьма важным преимуществом висячих систем по сравнению с фермами, рамами и арками. Однако у висячих конструкций есть и серьезные недостатки: они обладают повышенной деформативностью и нуждаются в устройстве специальных опор, для погашения распора.

Для уменьшения деформативности вант применяют различные способы их стабилизации. Например, в двух- поясных вантовых системах жесткость вант увеличивают благодаря устройству так называемых стабилизирующих вант, соединяемых с несущими вантами подвесками и распорками или решеткой из гибких предварительно-напряженных элементов.

Распор зависит от отношения ///. При ///>Ую приращение стрелы провисания нити с увеличением нагрузки незначительно и им можно пренебречь. В этом случае распор можно определять по формуле. По усилию Т подбирают сечение ванты.

Для вант применяют стальные канаты, пучки и пряди из высокопрочной проволоки, круглую горячекатаную сталь повышенной прочности И тонкие листы.

В комбинированных системах сосредоточенные силы передаются на гибкую нить через жесткий элемент, что позволяет значительнр уменьшить их деформативность.

Для большепролетных зданий, в частности для ангаров, применяют консольную комбинированную систему,состоящую из жесткого элемента и подвесок. В качестве Жесткого элемента служит ферма] которая перераспределяет сосредоточенные силы между подвесками. Последние служат ферме промежуточными опорами, и она работает как неразрезная балка на упруго-оседающих опорах. .

Достоинством консольной комбинированной системы является то, что для жесткого элемента (фермы) не требуется устраивать жесткую опору на втором конце. Благодаря этому для ангаров можно легко создать конструкцию ворот больших размеров.

Большепролетные здания могут быть перекрыты также пространственными системами в виде сводов, складок и куполов.