Главная · Электробезопасность · Урок на тему работа и мощность в электрической цепи

Урок на тему работа и мощность в электрической цепи

Когда ток протекает по определённому участку электрической цепи, электрическое поле совершает определённую работу. Это называется работой электрического тока. Для переноса заряда энергии по этой цепи нужно затратить некоторое количество энергии. Она сообщается приёмнику, часть энергии при этом затрачивается на преодоление сопротивления проводов и источников в электрической цепи.

Это говорит о том, что не вся затрачиваемая энергия распределяется эффективно и не вся она является полезной. Следовательно, совершаемая работа также не полностью эффективна. В данном случае формула будет выглядеть так: А = U·Q .

U – это напряжение на зажимах приёмника, а Q – это заряд, переносимый по участку цепи. В этом случае нужно учитыватьзакон Ома для участка цепи , тогда формула будет выглядеть следующим образом: R I2 Δt = U I Δt = ΔA .

По этой формуле можно проследить действие закона сохранения энергии, который применяется для однородного участка цепи.

В 1850 году английский физик Джоуль Прескотт, вложивший немалый вклад в изучение электричества, открыл новый закон. Суть его заключалась в определении путей, которыми работа электрического тока преобразовывается в тепловую энергию. В это же время другой физик – Ленц смог сделать аналогичное открытие и доказать закон, поэтому он получил название «закон Джоуля-Ленца», в честь обоих выдающихся физиков того времени.

Мощность электрического тока

Мощность – это другая характеристика, использующаяся при определении работы электрического тока. Это некая физическая величина, которая характеризует преобразование и скорость передачи энергии.

При определении мощности электрического тока нужно учитывать такой показатель, как мгновенную мощность. Она представляет собой соотношение мгновенных значений таких показателей как сила тока и напряжение в виде произведения. Это соотношение применяется к определённому участку цепи.

Такие показатели как работа и мощность электрического тока учитываются при создании любых электрических цепей. Наравне с другими законами они являются основными, их несоблюдение приведёт к серьёзным нарушениям.

Чтобы получит наибольшую мощность электрического тока, нужно учитывать и характеристики генератора, т. е. сопротивление во внешней цепи должно быть не больше и не меньше внутреннего сопротивления генератора.

Только в этом случае эффективность работы будет максимальной, потому что иначе вся энергия генератора будет затрачиваться на преодоление сопротивления, а вся работа будет неэкономичной. Естественно, такая схема работы может негативно повлиять на эффективность всей электрической цепи.

Баланс мощностей это выражение закона сохранения энергии, в электрической цепи . Определение баланса мощностей звучит так:сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками . То есть если источник ЭДС в цепи отдает 100 Вт, то приемники в этой цепи потребляют ровно такую же мощность.

Или

Проверим это соотношение на простом примере.


Для начала свернем схему и найдем эквивалентное сопротивление. R 2 и R 3 соединены параллельно.

Найдем по закону Ома ток источника и напряжение на R 23 , учитывая, что r 1 и R 23 соединены последовательно, следовательно, сила тока одинаковая.

Найдем токи I 2 и I 3

Теперь проверим правильность с помощью баланса мощностей.

Небольшое различие в значениях связано с округлениями в ходе расчета.

С помощью баланса мощностей, можно проверить не только простую цепь, но и сложную. Давайте проверим сложную цепь из статьи метод контурных токов.


Коэффицие́нт поле́зного де́йствия (КПД ) - характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта») . КПД является безразмерной величиной и часто измеряется в процентах

Определение[править | править вики-текст]

Коэффициент полезного действия

Математически определение КПД может быть записано в виде:

{\displaystyle \eta ={\frac {A}{Q}},}

где А - полезная работа (энергия), а Q - затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

{\displaystyle \eta ={\frac {A}{Q}}100.}

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя - отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

П л а н у р о к а № 5 Дата____________

Работа и мощность в электрической цепи. ( 2 часа )

П 00. Профессиональный цикл

ОПД 13. Основы электротехники

Преподаватель: А.А. Гурьянов

О соотношении электрических величин между собою;

Об определении работы и мощности в электрической цепи

О единицах измерения работы и мощности.

Воспитательная цель

Сформировать у учащихся усидчивость, внимательность, аккуратность, ответственность; организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

Развивающая цель

Сформировать у учащихся навыки:

Рассчитывать параметры электрических цепей;

Подбирать устройства электронной техники, электрические приборы и оборудование с определенными параметрами и характеристиками.

Тип учебного

занятия

изучение нового материала.

Формируемые компетенции

ПК 1.2. Взаимодействовать с о специалистами смежного профиля при разработке методов, средств и технологий применения объектов профессиональной деятельности.

ПК 1.3. Производить модификацию отдельных модулей информационной системы в соответствии с рабочим заданием, документировать произведенные изменеия.

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

Вид учебного

занятия

смешанный

Межпредметные связи

математика, физика

Оснащение,

оборудование

Учебник, компьютер, проектор, экран, интерактивная доска

Структура урока.

    Организационный момент.

    Актуализация знаний.

    Формирование новых понятий и способов действий.

    Формирование умений и навыков.

    Итог урока.

    Домашнее задание.

Ход урока.

1. Организационный момент.

Учет отсутствующих, проверка домашнего задания, сообщение темы и постановка целей урока.

2. Актуализация знаний.

Сформулируйте законы Кирхгофа.

3. Формирование новых понятий и способов действий.

Найдем работу, совершаемую электрическим током, протекающим по участку электрической цепи с напряжением U (см. рис.).

Мы уже отмечали (см. урок 3), что напряжение равно работе совершаемой источником ЭДС при перемещении единичного заряда вдоль рассматриваемого участка цепи. Если перемещается не единичный заряд, а некоторый заряд Q , то совершаемая при этом работа А будет в Q раз большей:

А = UQ .

Выразив заряд через силу тока и время, получим

А = UIt .

За бесконечно малое время d t совершается бесконечно малая работа d A = UI d t .

Определим мощность Р как работу, совершаемую в единицу времени. Тогда


;

Из этих формул определяются единица измерения мощности и единица измерения работы электрического тока:

[ Р ] = [ U ] [ I ] = В ·А = Вт.

Единица измерения мощности, равная одному вольту, умноженному на один ампер, называется ваттом (Вт). Единицу мощности, в 1000 раз большую, чем ватт, называют киловаттом (кВт).

Работа электрического тока измеряется в джоулях (Дж):

[ A ] = [ P ]·[ t ] = Вт·с = Дж.

Джоуль или ватт-секунда - сравнительно небольшая единица, поэтому на практике часто применяется единица в 3600 раз большая, которую называют ватт-часом (час содержит 3600 с):

1 Вт·ч = 3600 Дж.

Таким образом, ватт-час (Вт·ч) - это работа, совершаемая источником электрической энергии мощностью один ватт в течение одного часа.

Единицу в 1000 раз большую называют киловатт-часом (кВт·ч).

1 кВт·ч = 1000 Вт·ч = 3,6·10 6 Дж.

Итак, мощность измеряется в ваттах (вольт-амперах), киловаттах; работа измеряется в джоулях, ватт-часах, киловатт-часах.

Работа и мощность электрического тока (282)

А В

φ А = 10 В;

φ В = 5 В.

Из точки А в точку В переместился заряд 10 Кл. Определите величину работы.

50 В·А·с

149

150 В·А·с

500 В·А·с

150

Задача не определяется, так как неизвестно напряжение между точками АВ

Генератор при напряжении 110 В вырабатывает ток силой 10 А. Определите работу электрич еского тока в течение 1 ч.

1100 В·А·ч

151

110 В·А·ч

110 В·А·с

152

Ток в цепи увеличился в 2 раза, напряжение источника уменьшилось в 2 раза. Как изменилась мощность, отдаваемая источником?

Уменьшилась в 2 раза

Не изменилась

153

Увеличилась в 2 раза

Генератор при напряжении 110 В вырабатывает ток силой 10 А. Определите мощность, развива­емую генератором.

1100 Вт

154

110 кВт

110 Вт·ч

155

В течение 1 мин генератор выра ботал 3,610 б Дж энергии. Определите мощность, развиваемую генератором.

3,6·10 6 Вт

60 кВт

156

600 кВт

4. Формирование умений и навыков.

77. Заполните таблицу.

55 кВт

1500 Вт

1,5 МВт

0,33 кВт

0,12 МВт

312 кВт

Вт

КВт

КВт

Вт

КВт

МВт


78. Определите мощность, потребляемую электрическим двигателем, если ток в цепи равен 6 А, а двигатель включен в сеть напряжением 220 В.

79. Электродвигатель, подключенный к сети напряжением 220 В, потребляет ток 6 А. Определите мощность двигателя и количество энергии, которую он потребляет за 8 ч работы.

5. Итог урока.

Проверка выполнения задач, выставление оценок, сообщение домашнего задания.

6. Домашнее задание.

80. В квартире имеются восемь ламп, из которых шесть мощностью по 40 Вт горят 6 ч в сутки, а две мощностью по 60 Вт – 8 ч в сутки. Сколько нужно заплатить за горение всех ламп в течение месяца (30 дней) при тарифе 3,45 р. за 1 кВт·ч?

Совокупность объектов и устройств, обеспечивающих постоянный и непрерывный путь для движения электрического тока можно назвать электрической цепью.

Напряжение и сила тока - это неотъемлемые элементы каждой электрической цепи. Такие явления, наряду с прочими магнитными и электрическими явлениями, изучает наука, называемая электротехникой. Еще одной целью этой науки является поиск возможности практических применений, а не только теоретического изучения.

Если учесть, что в электрической цепи имеются разные элементы, то можно сказать, что существует несколько режимов работы цепи. Эти элементы подразделены на три основных вида - это источники энергии, проводники и приёмники, т.е. первые элементы служат для выработки электроэнергии, приёмники преобразуют электроэнергию в другие ее виды, а проводники передают энергию от источников к приёмникам. Все элементы цепи - источники тока, проводники и приёмники - это устройства, без которых невозможно существование электрической цепи. При отсутствии одного из этих элементов работа цепи просто невозможна. В зависимости от того какое строение и какие элементы в цепи содержатся, все электрические цепи бывают линейные и нелинейные. При этом каждую цепь можно изобразить в схеме, что позволяет сделать работу с цепями более удобной.

Три режима работы электрических цепей

Как уже говорилось выше, электрическая цепь несет в себе сложнейшую структуру и имеет в составе множество различных элементов и разветвлённостей. К тому же в цепях действуют определенные законы, а для того, чтобы охарактеризовать цепь используют такие понятия как ток, сопротивление, электродвижущая сила и т.д. Все это способствует тому, что цепь может работать в разных режимах.

Выделяют три режима работы цепи:

Основное отличие между этими режимами - это уровень нагрузки на электрическую цепь. Стоит отметить, что электрическая цепь имеет еще один режим работы, называемый номинальным. При таком режиме все элементы цепи работают по оптимальным для них условиям. Эти условия указываются в паспортных данных заводом-изготовителем.

Согласованный (нагрузочный) режим работы

Любой приемник, подключенный к источнику электроэнергии в цепи, обладает определенным сопротивлением. Наглядным примером такого приёмника может быть электрическая лампочка. При наличии напряжения начинает действовать закон Ома. При этом электродвижущая сила источника тока складывается из суммы напряжения на внешних участках цепи и внутреннего сопротивления источника. Когда падает напряжение внешней цепи, это оказывает влияние на изменении напряжения на зажимах источника. А само падение напряжения зависит от сопротивления и силы тока. Иными словами, согласованный (нагрузочный) режим работы электрической цепи - это процесс передачи нагрузки, при котором мощность превышает номинальные показатели. Но использование такого режима нерационально, ведь при длительном превышении установленных заводом значений, приборы могут попросту прийти в негодность.

Режим работы холостого хода



В таком режиме работы электрическая цепь находится в незамкнутом состоянии. Попросту говоря, в цепи отсутствует электрический ток, следовательно, каждый элемент цепи не подключен к источнику тока. При таком положении падение напряжения во внутренней цепи равно нулю, а ЭДС источника равно напряжению на зажимах источника питания. Иными словами, при режиме холостого хода в цепи, не подключенной к электрическому току, отсутствует сопротивление нагрузки.

Режим короткого замыкания

Это тот режим работы, который смело можно назвать аварийным, т.к. обеспечение нормальной работы цепи при таком режиме становится невозможным, ведь ток короткого замыкания показывает высокие значения, которые превышают номинальные в несколько раз. Короткое замыкание появляется, когда происходит соединение двух разных точек электрической цепи, у которых отличается разница потенциалов. При таком положении цепи нарушается ее нормальная работа. При режиме короткого замыкания зажимы в источнике питания замыкаются проводником, сопротивление у которого равняется нулю. Зачастую такой режим возникает в тот момент, когда соединяются два провода, связывающие между собой источник питания и приёмник цепи. Их сопротивление, в основном, ничтожно мало, поэтому его можно приравнять к нулю. Из-за отсутствия сопротивления при режиме короткого замыкания ток превышает номинальные показатели в несколько раз. За счет этого источники питания и приёмники электрической цепи могут прийти в негодность. В ряде случаев это может возникнуть при неправильном обращении с электрическим оборудованием обслуживающего его персонала.