Главная · Измерения · Черный фосфор применение. Области применения фосфора

Черный фосфор применение. Области применения фосфора

Всё о Красном Фосфоре

ФОСФОР (от греч. phosphoros - светоносный; лат. Phosphorus) - один из самых распространённых элементов земной коры, находящийся в 3 периоде, в 5 группе главной подгруппе. Его содержание составляет 0,08-0,09 % её массы. Концентрация в морской воде 0,07 мг/л. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3(F,Cl,OH) фосфорит Ca3(PO4)2 и другие. Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах. Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ, ДНК), является элементом жизни.

История

Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать философский камень, а получил светящееся вещество. Бранд сфокусировался на опытах с человеческой мочой, так как полагал, что она, обладая золотистым цветом, может содержать золото или нечто нужное для добычи. Первоначально его способ заключался в том, что сначала моча отстаивалась в течение нескольких дней, пока не исчезнет неприятных запах, а затем кипятилась до клейкого состояния. Нагревая эту пасту до высоких температур и доводя до появления пузырьков, он надеялся, что, сконденсировавшись, они будут содержать золото. После нескольких часов интенсивных кипячений получались крупицы белого воскоподобного вещества, которое очень ярко горело и к тому же мерцало в темноте. Бранд назвал это вещество phosphorus mirabilis (лат. «чудотворный носитель света»). Открытие фосфора Брандом стало первым открытием нового элемента со времён античности.

Несколько позже фосфор был получен другим немецким химиком - Иоганном Кункелем.

Независимо от Бранда и Кункеля фосфор был получен Р. Бойлем, описавшим его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году.

Усовершенствованный способ получения фосфора был опубликован в 1743 году Андреасом Маргграфом.

Существуют данные, что фосфор умели получать еще арабские алхимики в XII в.

То, что фосфор - простое вещество, доказал Лавуазье.

Происхождение Названия

В 1669 году Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём». Вторичное название «фосфор» происходит от греческих слов «φῶς» - свет и «φέρω» - несу. В древнегреческой мифологии имя Фосфор (или Эосфор, др.-греч. Φωσφόρος) носил страж Утренней звезды.

Получение Фосфора

Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре 1600 °С:

2Ca3(PO4)2 + 10C + 6SiO2 → P4 + 10CO + 6CaSiO3

Образующиеся пары белого фосфора конденсируются в приёмнике под водой. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:

4HPO3 + 12C → 4P + 2H2 + 12CO

Физические Свойства

Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций; вопрос аллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества - белый, красный, черный и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропических модификации фосфора, а в условиях сверхвысоких давлений - также металлическая форма. Все модификации различаются по цвету, плотности и другим физическим характеристикам; заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств.

Красный Фосфор

Красный Фосфор , также называемый фиолетовым фосфором, - это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления красного фосфора, имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии - тёмно-фиолетовый с медным оттенком металлический блеск. Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В. Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). Красный Фосфор на воздухе не самовоспламеняется, вплоть до температуры 240-250 °С (при переходе в белую форму во время возгонки), но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемолюминесценции. Нерастворим в воде, а также в бензоле, сероуглероде и других, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор.

Ядовитость Красного Фосфора в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков)

Состав «ТЁРКИ»

Красный Фосфор

30,8 %

Трёхсернистая Сурьма

41,8 %

Железный Сурик

12,8 %

Мел

2,6 %

Белила Цинковые

1,5 %

Стекло Молотое

3,8 %

Клей Костный

6,7 %

Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде. При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» - промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

Химические Свойства

Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов. В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

Взаимодействие с Простыми Веществами

Фосфор легко окисляется кислородом:

4P + 5O2 → 2P2O5 (с избытком кислорода)

4P + 3O2 → 2P2O3 (при медленном окислении или при недостатке кислорода)

Взаимодействует со многими простыми веществами - галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

с металлами - окислитель, образует фосфиды:

2P + 3Ca → Ca3P2, 2P + 3Mg → Mg3P2

фосфиды разлагаются водой и кислотами с образованием фосфина с неметаллами - восстановитель:

2P + 3S → P2S3, 2P + 3Cl2 → 2PCl3. Не взаимодействует с водородом.

Взаимодействие с Водой

Взаимодействует с водой, при этом диспропорционирует:

8Р + 12Н2О = 5РН3 + 3Н3РО4 (фосфорная кислота)

Взаимодействие со Щелочами

В растворах щелочей диспропорционирование происходит в большей степени:

4Р + 3KOH + 3Н2О → РН3 + 3KН2РО2

Восстановительные Свойства

Сильные окислители превращают фосфор в фосфорную кислоту:

3P + 5HNO3 + 2H2O → 3H3PO4 + 5NO

2P + 5H2SO4 → 2H3PO4 + 5SO2 + 2H2O

Реакция окисления также происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

6P + 5KClO3 → 5KCl + 3P2O5

Применение

Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Его вместе с тонко измельчённым стеклом и клеем наносят на боковую поверхность коробка. При трении спичечной головки, в состав которой входят хлорат калия и сера, происходит воспламенение.

Токсикология Элементарного Фосфора

Красный фосфор практически нетоксичен. Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.

Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора - 50-150 мг. Попадая на кожу, белый фосфор дает тяжелые ожоги.

Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2-3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. Первая помощь при остром отравлении - промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды. ПДК паров фосфора в воздухе производственных помещений - 0,03 мг/м³, временно допустимая концентрация в атмосферном воздухе - 0,0005 мг/м³, ПДК в питьевой воде - 0,0001 мг/дм³.

Фосфор известен в нескольких аллотропических модификациях: белый, красный, фиолетовый и черный. В лабораторной практике приходится встречаться с белой и красной модификациями.

Белый фосфор - твердое вещество. В обычных условиях он желтоватый, мягкий и по внешнему виду похож на воск. Он легко окисляется и воспламеняется. Белый фосфор ядовит - на коже оставляет болезненные ожоги. В продажу белый фосфор поступает в виде палочек разной длины диаметром 0,5-2 см .

Белый фосфор легко окисляется, и поэтому его хранят под водой в тщательно закупоренных сосудах из темного стекла в мало освещенных и не очень холодных помещениях (во избежание растрескивания банок из-за замерзания воды). Количество кислорода, содержащееся в воде и окисляющее фосфор, очень невелико; оно составляет 7-14 мг на литр воды.

Под воздействием света белый фосфор переходит в красный.

При медленном окислении наблюдается свечение белого фосфора, а при энергичном окислении происходит его воспламенение.

Белый фосфор берут пинцетом или металлическими щипцами; ни в коем случае нельзя дотрагиваться до него руками.

При ожоге белым фосфором промывают обожженное место раствором АgNO 3 (1:1) или КМnO 4 (1:10) и накладывают мокрую повязку, пропитанную теми же растворами или 5%-ным раствором сульфата меди, затем рану промывают водой и после разглаживания эпидермиса накладывают вазелиновую повязку с метиловым фиолетовым. При тяжелых ожогах обращаются к врачу.

Растворы нитрата серебра, перманганата калия и сульфата меди окисляют белый фосфор и тем прекращают его поражающее действие.

При отравлении белым фосфором принимают внутрь по чайной ложке 2%-ного раствора сульфата меди до появления рвоты. Затем при помощи пробы Митчерлиха на основе свечения устанавливают присутствие фосфора. Для этого к рвоте отравленного добавляют воды, подкисленной серной кислотой, и перегоняют в темноте; при содержании фосфора наблюдают свечение паров. В качестве прибора пользуются колбой Вюрца, к боковой трубке которой присоединяют холодильник Либиха, откуда перегоняемые продукты поступают в приемник. Если пары фосфора направлять в раствор нитрата серебра, то выпадает черный осадок металлического серебра, образующийся по уравнению, приведенному в опыте восстановления солей серебра белым фосфором.

Уже 0,1 г белого фосфора является смертельной дозой для взрослого человека.

Режут белый фосфор ножом или ножницами в фарфоровой ступке под водой. При пользовании водой комнатной температуры фосфор крошится. Поэтому лучше пользоваться теплой водой, но не выше 25-30°. После разрезания фосфора в теплой воде его переносят в холодную воду или охлаждают струей холодной воды.

Белый фосфор - очень огнеопасное вещество. Он воспламеняется при температуре 36-60° в зависимости от концентрации кислорода в воздухе. Поэтому при проведении опытов во избежание несчастного случая необходимо учитывать каждую его крупинку.

Высушивание белого фосфора производят быстрым прикладыванием к нему тонкой асбестовой или фильтровальной бумаги, избегая трения или надавливания.

При воспламенении фосфора его гасят песком, мокрым полотенцем или водой. Если горящий фосфор находится на листе бумаги (или асбеста), этот лист запрещается трогать, так как расплавленный горящий фосфор можно легко разлить.

Белый фосфор плавится при 44°, кипит при 281°. Плавят белый фосфор подводой, так как в соприкосновении с воздухом расплавленный фосфор воспламеняется. Сплавлением и последующим охлаждением белый фосфор можно легко извлечь из отходов. Для этого отходы белого фосфора от различных опытов, собранные в фарфоровом тигле с водой, нагревают на водяной бане. Если на поверхности расплавленного фосфора заметно образование корки, добавляют немного НNО 3 или хромовой смеси. Корка окисляется, мелкие крупинки сливаются в общую массу и после охлаждения струей холодной воды получают один кусок белого фосфора.

Остатки фосфора ни в коем случае нельзя бросать в раковину, так как, скопляясь в изгибах колена сточных труб, он может причинить ожоги ремонтным рабочим.

Опыт. Плавление и переохлаждение расплавленного белого фосфора. В пробирку с водой кладут кусочек белого фосфора величиной с горошину. Пробирку помещают в стакан, почти доверху наполненный водой, и укрепляют в вертикальном положении в зажиме штатива. Стакан слегка нагревают и при помощи термометра определяют температуру воды в пробирке, при которой плавится фосфор. После окончания плавления пробирку переносят в стакан с холодной водой и наблюдают застывание фосфора. Если пробирка находится в неподвижном состоянии, то при температуре ниже 44° (вплоть до 30°) белый фосфор остается в жидком состоянии.

Жидкое состояние белого фосфора, охлажденного ниже температуры его плавления, представляет собой состояние переохлаждения.

После окончания опыта, чтобы легче извлечь фосфор, его снова расплавляют и погружают пробирку отверстием вверх в наклонном положении в сосуд с холодной водой.

Опыт. Прикрепление кусочка белого фосфора к концу проволоки. Для плавления и застывания белого фосфора пользуются маленьким фарфоровым тиглем с фосфором и водой; его помещают в стакан с теплой, а затем с холодной водой. Проволоку для этой цели берут железную или медную длиной 25-30 см и диаметром 0,1-0,3 см . При погружении проволоки в застывающий фосфор он легко прикрепляется к ней. В отсутствие тигля пользуются пробиркой. Однако из-за недостаточно ровной поверхности пробирки иногда приходится ее разбивать, чтобы извлечь фосфор. Для удаления белого фосфора с проволоки ее погружают в стакан с теплой водой.

Опыт. Определение удельного веса фосфора. При 10° удельный вес фосфора равен 1,83. Опыт позволяет убедиться, что белый фосфор тяжелее воды и легче концентрированной Н 2 SO 4 .

При введении небольшого кусочка белого фосфора в пробирку с водой и концентрированной Н 2 SO 4 (уд. вес 1,84) наблюдают, что фосфор в воде тонет, но плавает на поверхности кислоты, расплавляясь за счет тепла, выделяемого при растворении концентрированной Н 2 SO 4 в воде.

Для наливания концентрированной Н 2 SO 4 в пробирку с водой пользуются воронкой с длинной и узкой шейкой, доходящей до конца пробирки. Наливать кислоту и вынимать воронку из пробирки следует осторожно, чтобы не вызвать перемешивания жидкостей.

По окончании опыта содержимое пробирки перемешивают стеклянной палочкой и охлаждают извне струей холодной воды до тех пор, пока не застынет фосфор, чтобы можно было его извлечь из пробирки.

При пользовании красным фосфором наблюдают, что он тонет не только в воде, но и в концентрированной Н 2 SO 4 , так как его удельный вес (2,35) больше удельного веса как воды, так и концентрированной серной кислоты.

БЕЛЫЙ ФОСФОР, СВЕЧЕНИЕ

Из-за медленного окисления, протекающего даже при обычной температуре, белый фосфор светится в темноте (отсюда и название «светоносный»). Вокруг кусочка фосфора в темноте появляется зеленоватое светящееся облачко, которое при колебании фосфора приводится в волнообразное движение.

Фосфоресценция (свечение фосфора) объясняется медленным окислением кислородом воздуха паров фосфора до фосфористого и фосфорного ангидрида с выделением света, но без выделения тепла. При этом выделяется озон, а воздух вокруг ионизируется (см. опыт, показывающий медленное горение белого фосфора).

Фосфоресценция зависит от температуры и концентрации кислорода. При 10° и нормальном давлении фосфоресценция протекает слабо, а в отсутствие воздуха не происходит вовсе.

Вещества, реагирующие с озоном (Н 2 S, SO 2 , Сl 2 , NН 3 , С 2 Н 4 , скипидарное масло), ослабляют или вовсе прекращают фосфоресценцию.

Превращение химической энергии в световую называется «хеми-люминесценцией».

Опыт. Наблюдение свечения белого фосфора. Если наблюдать в темноте за кусочком белого фосфора, находящегося в стакане и не полностью покрытого водой, то заметно зеленоватое свечение. В этом случае влажный фосфор медленно окисляется, но не воспламеняется, так как температура воды ниже точки воспламенения белого фосфора.

Свечение белого фосфора можно наблюдать после того, как кусочек белого фосфора непродолжительное время побудет на воздухе. Если в колбу на стеклянную вату положить несколько кусочков белого фосфора и наполнить колбу углекислым газом, опустив конец отводной трубки на дно колбы под стеклянную вату, а затем колбу слегка нагреть, опустив ее в сосуд с теплой водой, то в темноте можно наблюдать образование холодного бледного зеленоватого пламени (можно безопасно внести в него руку).

Образование холодного пламени объясняется тем, что выходящий из колбы углекислый газ увлекает пары фосфора, которые начинают окисляться при соприкосновении с воздухом у отверстия колбы. В колбе белый фосфор не воспламеняется, ибо находится в атмосфере углекислого газа. По окончании опыта колбу наполняют водой.

При описании опыта получения белого фосфора в атмосфере водорода или углекислого газа уже упоминалось, что проведение этих опытов в темноте позволяет наблюдать свечение белого фосфора.

Если фосфорным мелом сделать надпись на стене, листе картона или бумаги, то благодаря фосфоресценции надпись длительное время остается заметной в темноте.

Такую надпись нельзя делать на классной доске, так как после этого к ней не пристает обыкновенный мел и доску приходится мыть бензином или другим растворителем стеарина.

Фосфорный мел получают растворением жидкого белого фосфора в расплавленном стеарине или парафине. Для этого в пробирку к одной весовой части сухого белого фосфора добавляют приблизительно две весовые части стеарина (кусочков свечи) или парафина, закрывают пробирку ватой, чтобы предохранить от поступления кислорода, и нагревают при непрерывном взбалтывании. После окончания плавления пробирку охлаждают струей холодной воды, затем разбивают пробирку и извлекают застывшую массу.

Фосфорный мел хранят под водой. При пользовании кусочек такого мела обертывают мокрой бумагой.

Фосфорный мел можно также получить внесением небольших кусочков просушенного белого фосфора в расплавленный в фарфоровой чашке парафин (стеарин). Если при внесении фосфора парафин воспламенится, его гасят, накрывая чашку куском картона или асбеста.

После некоторого охлаждения раствор фосфора в парафине разливают в сухие и чистые пробирки и охлаждают струей холодной воды до тех пор, пока он не застынет в твердую массу.

После этого разбивают пробирки, извлекают мел и хранят его под водой.

РАСТВОРИМОСТЬ БЕЛОГО ФОСФОРА

В воде белый фосфор труднорастворим, слабо растворяется в спирте, эфире, бензоле, ксилоле, йодистом метиле и глицерине; хорошо растворяется в сероуглероде, хлористой сере, треххлористом и трех-бромистом фосфоре, четыреххлористом углероде.

Опыт. Растворение белого фосфора в сероуглероде. Сероуглерод - бесцветная, очень летучая, легко воспламеняющаяся, ядовитая жидкость. Поэтому при работе с ней избегают вдыхать ее пары и выключают все газовые горелки.

Три-четыре кусочка белого фосфора величиной с горошину растворяют при легком взбалтывании в стакане с 10-15 мл сероуглерода.

Если небольшой листок фильтровальной бумаги смочить этим раствором и подержать на воздухе, бумага через некоторое время воспламеняется. Это происходит потому, что сероуглерод быстро испаряется, а оставшийся на бумаге тонко измельченный белый фосфор быстро окисляется при обычной температуре и воспламеняется вследствие выделяющегося при окислении тепла. (Известно, что температура воспламенения различных веществ зависит от степени их измельчения.) Бывает, что бумага не воспламеняется, а только обугливается. Бумагу, смоченную раствором фосфора в сероуглероде, держат на воздухе при помощи металлических щипцов.

Опыт проводят осторожно, чтобы капли раствора фосфора в сероуглероде не попали на пол, на стол, на одежду или на руки.

При попадании раствора на руку ее быстро моют водой с мылом, а затем раствором КМnO 4 (чтобы окислить попавшие на руки частицы белого фосфора).

Оставшийся после опытов раствор фосфора в сероуглероде в лаборатории не хранят, так как он легко может воспламениться.

ПРЕВРАЩЕНИЕ БЕЛОГО ФОСФОРА В КРАСНЫЙ

Белый фосфор превращается в красный по уравнению:

Р (белый) = Р (красный) + 4 ккал .

Установка для получения белого фосфора из красного: пробирка-реактор 1, трубка 2, по которой в пробирку-реактор поступает углекислый газ, газоотводная трубка 3, по которой пары белого фосфора вместе с углекислым газом выходят из пробирки и охлаждаются водой

Процесс превращения белого фосфора в красный значительно ускоряется при нагревании, под действием света и в присутствии следов иода (1 г иода на 400 г белого фосфора). Иод, соединяясь с фосфором, образует йодистый фосфор, в котором белый фосфор растворяется и быстро превращается в красный с выделением тепла.

Красный фосфор получают при длительном нагревании белого фосфора в замкнутом сосуде в присутствии следов иода до 280-340°

При длительном хранении белого фосфора на свету он постепенно превращается в красный.

Опыт. Получение небольшого количества красного фосфора из белого. В закрытую на одном конце стеклянную трубку длиной 10-12 см и диаметром 0,6-0,8 см вводят кусочек белого фосфора величиной с пшеничное зерно и очень маленький кристаллик иода. Трубку запаивают и подвешивают в воздушной бане над подносом с песком, затем нагревают до 280-340° и наблюдают превращение белого фосфора в красный.

Частичное превращение белого фосфора в красный можно также наблюдать при слабом нагревании пробирки с небольшим кусочком белого фосфора и очень маленьким кристалликом иода. Перед началом нагревания пробирку закрывают тампоном из стеклянной (асбестовой или обычной) ваты и подставляют под пробирку поднос с песком. Пробирку нагревают в течение 10-15 минут (не доводя фосфор до кипения) и наблюдают превращение белого фосфора в красный.

Оставшийся в пробирке белый фосфор можно удалить нагреванием с концентрированным раствором щелочи или сжиганием.

Превращение белого фосфора в красный можно также наблюдать при нагревании в пробирке небольшого кусочка фосфора в атмосфере углекислого газа до температуры ниже кипения.

ГОРЕНИЕ БЕЛОГО ФОСФОРА

При горении белого фосфора образуется фосфорный ангидрид:

Р 4 + 5O 2 = 2Р 2 O 5 + 2 x 358,4 ккал .

Можно наблюдать горение фосфора на воздухе (медленное и быстрое) и под водой.

Опыт. Медленное горение белого фосфора и состав воздуха. Этот опыт не был описан как способ получения азота, так как он не позволяет полностью связать кислород, содержащийся в воздухе.

Медленное окисление белого фосфора кислородом воздуха происходит в две стадии; на первой стадии образуются фосфористый ангидрид и озон по уравнениям:

2Р + 2O 2 = Р 2 O 3 + O, O + O 2 = O 3 .

Во второй стадии фосфористый ангидрид окисляется до фосфорного ангидрида.

Медленное окисление белого фосфора сопровождается свечением и ионизацией окружающего воздуха.

Опыт, показывающий медленное горение белого фосфора, должен продолжаться не менее трех часов. Необходимый для опыта прибор изображен на рис.

В расширенный у отверстия цилиндр, почти наполненный водой, опускают в перевернутом положении градуированную трубку с закрытым концом, содержащую около 10 мл воды. Длина трубки 70 см , диаметр 1,5-2 см . После опускания градуированной трубки отводят от отверстия трубки палец, приводят воду в трубке и цилиндре к одинаковому уровню и отмечают объем воздуха, содержащегося в трубке. Не поднимая трубки выше уровня воды в цилиндре (чтобы не впустить дополнительное количество воздуха), вводят в воздушное пространство трубки закрепленный на конце проволоки кусочек белого фосфора.

Через три-четыре часа или даже через два-три дня отмечают поднятие воды в трубке.

По окончании опыта вынимают из трубки проволоку с фосфором (не поднимая трубки выше уровня воды в цилиндре), приводят воду в трубке и цилиндре к одинаковому уровню и отмечают объем воздуха, оставшийся после медленного окисления белого фосфора.

Опыт показывает, что в результате связывания фосфором кислорода объем воздуха уменьшился на одну пятую, что соответствует содержанию кислорода в воздухе.

Опыт. Быстрое горение белого фосфора. Ввиду того что при реакции соединения фосфора с кислородом выделяется большое количество тепла, на воздухе белый фосфор самовоспламеняется и сгорает ярким желтовато-белым пламенем, образуя фосфорный ангидрид - твердое белое вещество, очень энергично соединяющееся с водой.

Ранее уже упоминалось о том, что белый фосфор воспламеняется при 36-60°. Чтобы наблюдать за его самовоспламенением и сгоранием, кусочек белого фосфора кладут на лист асбеста и прикрывают стеклянным колоколом или большой воронкой, на шейку которой надевают пробирку.

Фосфор легко можно поджечь стеклянной палочкой, нагретой в горячей воде.

Опыт. Сравнение температур воспламенения белого и красного фосфора. На один конец медной пластинки (длиной 25 см , шириной 2,5 см и толщиной 1 мм ) кладут небольшой кусочек просушенного белого фосфора, на другой конец насыпают небольшую кучку красного фосфора. Пластинку кладут на треножник и одновременно к обоим концам пластинки подносят приблизительно одинаково горящие газовые горелки.

Белый фосфор воспламеняется немедленно, а красный только тогда, когда его температура достигнет приблизительно 240°.

Опыт. Воспламенение белого фосфора под водой. Пробирку с водой, в которой находится несколько небольших кусочков белого фосфора, опускают в стакан с горячей водой. Когда вода в пробирке нагреется до 30-50°, в нее по трубке начинают пропускать ток кислорода. Фосфор воспламеняется и сгорает, разбрасывая яркие искры.

Если опыт проводится в самом стакане (без пробирки), стакан помещают на треножник, установленный на подносе с песком.

ВОССТАНОВЛЕНИЕ СОЛЕЙ СЕРЕБРА И МЕДИ БЕЛЫМ ФОСФОРОМ

Опыт. При внесении кусочка белого фосфора в пробирку с раствором нитрата серебра наблюдают выпадение осадка металлического серебра (белый фосфор является энергичным восстановителем):

Р + 5AgNO 3 + 4Н 2 O = Н 3 РO 4 + 5Ag + 5HNO 3 .

Если белый фосфор внести в пробирку с раствором сульфата меди, то выпадает металлическая медь:

2Р + 5CuSO 4 + 8Н 2 O = 2Н 3 РO 4 + 5H 2 SO 4 + 5Cu.

Общие сведения и методы получения

Фосфор (Р)-неметалл. Открыт в 1669 г. Брэндом (Германия), полу­чившим светящееся в темноте вещество. Первоначальное название «холлодный огонь», более позднее - фосфор, от греческого «phosph6ros» - светоносный.

Лавуазье установил элементарную природу фосфора. В 1771 г. Шее-ле предложил метод получения фосфора из костной золы путем прока­ливания ее с углем.

Во второй половине XIX в. было организовано промышленное про­изводство фосфора из фосфоритов в ретортных печах; в начале XX в. иа смену им пришли электрические печи.

Важнейшими из минералов, содержащих фосфор, являются апатиты и фосфориты. Содержание фосфора (в пересчете на Р2О5) в апатитах составляет от 20 до 41 %.

Фосфориты - минералы осадочного происхождения, главная состав­ляющая которых - фосфаты кальция; кроме того, в них присутствуют многочисленные включения кварца, кальцита, глауконита и др., а также органические вещества. Содержание фосфора (в пересчете на Р2О5) в фосфоритах 5-36 %.

В настоящее время фосфор получают, прокаливая фосфориты или апатиты в электрических печах с песком (Si0 2) и углем (С) без до­ступа воздуха. Выделяющиеся пары фосфора конденсируются в приемнике под водой.

Физические свойства

Атомные характеристики. Атомный номер 15, атомная масса 30,973 а. е.м. атомный объем 13,93-10 _в м 3 /моль. Атомный радиус 0,134 нм, ионные радиусы Р 6 +, Р 3 +, Р 3 - 0,035; 0,044; 0,186 нм соответ­ственно. Электроотрицательность 2,1. Конфигурация внешних электрон­ных оболочек 3s 2 3p 3 . Значения потенциалов ионизации / (эВ): 10,55; 19,65; 30,16.

Красный фосфор - аморфное вещество; цвет - от коричневого до фиолетового; образуется при нагревании белого фосфора без доступа воздуха до 250-300 °С в течение нескольких часов. При длительном нагревании красного фосфора выше 450 °С существуют его различные кристаллические формы: триклннная, кубическая, тетрагональная и др.

Черный фосфор образуется при нагревании белого фосфора до 200-220 °С и давлении 1,2-1,7 ГПа. Указанное превращение в присут­ствии ртути и небольшого количества кристаллов черного фосфора осу­ществляется-при нормальном давлении и температуре 370°С в течение 8 сут.

Существуют аморфная и кристаллическая формы черного фосфора. Кристаллы черного фосфора имеют ромбическую решетку с парамет­рами: л = 0,331 нм, 6 = 0,438 нм, с=1,050 нм. В элементарной ячейке - 8 атомов.

Энергия кристаллической решетки 315 мкДж/кмоль. Сродство ато­мов к электрону 0,8-0,9 эВ; энергия диссоциации молекул 5,0 эВ. Эф­фективное поперечное сечение захвата тепловых нейтронов 19-Ю -30 м г.

Плотность. Белый фосфор: а-модификация имеет плотность р = = 1,828 Мг/м 3 , 6-модификация 1,880 Мг/м 3 . Плотность желтого 2,223 Мг/м 3 , кристаллического черного 2,702 Мг/м 3 , аморфного черного 2,250 Мг/м 3 , красного от 2,000 до 2,400 Мг/м 3 .

Химические свойства

Фосфор проявляет степени окисления +5, 4-3, -3. Электрохимический эквивалент фосфора со степенью окисления +5 равен 0,06421 мг /Кл.

Различные модификации фосфора резко различаются по химической активности: белый, красный, черный (в порядке уменьшения активно* сти).

Мелко измельченный белый фосфор самовоспламеняется на возду» хе, в компактной форме возгорается при нагреве выше 50 °С.

Красный фосфор при нормальной температуре и влажности с пара» ми воды и кислородом реагирует медленно, однако большие количест­ва его при хранении на воздухе воспламеняются.

Черный фосфор более устойчив: его можно безопасно обрабатывать на воздухе.

С водородом фосфор в обычных условиях ие взаимодействует, по­этому соединения этих элементов получают косвенными путями, а имен­но: действием кислоты или воды на фосфиды металлов, кипячением бе­лого фосфора с раствором едкого кали, термическим разложением низ­ших кислот фосфора и др.

Известны следующие водородные соединения фосфора: фосфин РНз, дифосфин Р 2 Н 4 и твердые низшие гидриды фосфора, отвечающие общей формуле РгпН„. Фосфин - сильный восстановитель.

Твердые низшие гидриды фосфора (РгпН„) являются полимерами н во многих отношениях напоминают органические пластмассы и фос­фатные стекла.

Фосфор образует с кислородом ряд оксидов.

Оксид фосфора (V) Р 2 0 5 , или фосфорный ангидрид, - белый, гиг­роскопичный порошок, который возгоняется при 360 °С и атмосферном давлении. Под действием света Р2О5 светится зеленым светом.

Фосфорный ангидрид взаимодействует с металлами, образуя смесь фосфатов и фосфидов; с галогенидами, кроме фтора, не реагирует; де­гидратирует многие органические вещества; реагирует со спиртами, фе­нолами, эфирами, алкилфосфатами и др.; при сплавлении с основными оксидами образует твердые фосфаты.

Оксид фосфора (III) Р 2 0 3 , или фосфористый ангидрид, представля­ет собой летучие белые кристаллы, ядовит, хорошо растворяется в ор­ганических растворителях, при продолжительном хранении самопроиз­вольно распадается. Обладает сильно выраженными восстановительны­ми свойствами, реагирует с хлором и бромом, образуя оксигалогениды.

Оксид фосфора (IV), или тетраоксид фосфора Р0 2 (Р20 4), является полимером (Р0 2)„, представляет собой блестящие прозрачные кристал­лы, которые возгоняются выше 780 °С, на воздухе расплываются, по­глощая влагу, хорошо растворяются в воде.

С фтором фосфор реагирует со взрывом; в атмосфере хлора и брома белый фосфор воспламеняется на холоду; с красным фосфором реакция протекает спокойно; с иодом белый фосфор взаимодействует при охлаж­дении, красный фосфор - прн подогревании. Галогениды фосфора чрез­вычайно реакционноспособны; химическая активность уменьшается от фторидов к иодидам, аналогично уменьшается прочность.

При сплавлении фосфора с серой ниже 100 °С образуются твердые растворы; выше 100 °С - кристаллические сульфиды P 4 S 3 , P 4 S 5 , P4S7, P 4 S, 0 .

При смешении свежеперегнанного оксида фосфора (III) Р 4 0б с рас­считанным количеством серы в атмосфере азота образуются оксисуль-фиды фосфора: P 2 0 3 S 2 , P 2 0 2 S 3 , P 4 0 4 S 3 , P 6 O 10 S5. Известны и полимерные сульфиды, состав которых соответствует молярному отношению 0 < Я/5 < 0,4.

С углеродом фосфор реагирует в парах при высоких температурах (выше 2000 °С).

При взаимодействии хлорида фосфора (III) РС1 3 с ацетиленмагний-иодндом (C 2 Mg 2 l2) образуется желтовато-белый аморфный осадок карбида (РС 3), ие растворяющийся в обычных растворителях и не разру­шающийся кислотами и щелочами, но загорающийся при самом слабом нагревании с выделением углерода

Пары фосфора реагируют с азотом в электрическом разряде, обра­зуя твердые нитриды. Чистые нитриды белого цвета, при комнатной тем­пературе инертны, не взаимодействуют с водой, хлором, соляной кис­лотой и разбавленной серной кислотой. Полностью разлагаются кипя­щей концентрированной серной кислотой. Выше 500-700 °С нитриды фосфора диссоциируют с образованием азота и элементарного фосфора.

С металлами, а также с более электроположительными элементами (В, Si, As и др.) фосфор образует фосфиды, бурно реагирующие с водой н минеральными кислотами.

Фосфиды металлов подгруппы меди термически неустойчивы, не растворяются в азотной кислоте даже при кипячении, являются полупро­водниками.

Фосфиды металлов подгруппы цинка легко разлагаются водой и кис­лотами, в токе кислорода легко сгорают, сухой водород на них не дей­ствует, фтор действует уже при комнатной температуре, а хлор, бром и иод - только при нагревании.

Фосфиды переходных металлов, а также лантаноидов и актиноидов по физическим свойствам близки либо к полупроводникам (VP, NbP, ТаР, CrP, МоР, WP, МпР), либокметаллам (TiP, ZrP, HtP). В химичес­ком отношении они относительно устойчивы, их химическая стойкость по­нижается с уменьшением содержания фосфора. Фосфиды неметаллов и так называемых полуметаллов - ковалентные соединения, представля­ющие собой либо диэлектрики, либо полупроводники. Фосфиды элемен­тов подгруппы бора уменьшают химическую активность от BP к InP, а ТеР при обычных условиях вообще не образуется.

Фосфиды элементов IV группы (Si, Ge, Sn, Pb) и V группы Периоди­ческой системы (As, Sb) в химическом отношении нестойки.

С кремнием фосфор образует Si 2 P и SiP, с германием GeP, с оловом Sn 4 P 3 и SnP 4 , со свинцом РЬ 3 Р 2 , с мышьяком AsP, с сурьмой SbP. Фос­фиды висмута не образуются.

При нагревании фосфора в парах НС! образуется фосфин РН 3 , в продуктах взаимодействия фосфора с НВг выделен бромид фосфония РН 4 Вг, с HI - диноднд фосфора Р 2 1 4 и иодид фосфония РН 4 1.

При нагревании фосфора с водными растворами сильных щелочей об­разуется фосфин РН 3 .

С водой фосфор не взаимодействует, но прн температурах 600- 900 °С под давлением и в присутствии катализаторов (Pt, Ti, Zr, Си) об­разуются фосфорная кислота Н 3 Р0 4 и водород.

Белый фосфор легко окисляется водными растворами солей метал­лов, имеющих низкий окислительно-восстановительный потенциал (Си, Ag, Аи, РЬ и др.); красный и черный фосфор не окисляются.

Фосфорорганические соединения по своей структуре можно условно разделить на фосфорсодержащие карбоновые кислоты и их производные (эфиры, амиды и т. д.), а также фосфины, их производные и родствен­ные им вещества. Во всех этих соединениях имеется непосредственная связь между фосфором и углеродом.

Области применения

Элементарный фосфор применяется в военном деле, в спичечной промыш­ленности, для производства термической фосфорной кислоты, полифосфа­тов, хлоридов, сульфидов, фосфидов и других соединений.

В металлургии фосфор используют для легирования сталей (авто­матная сталь до 0,15% Р, нержавеющие стали до 0,3 % Р и и т. д.),

чугуна (фосфористый чугун до 0,8 % Р). Сплав медь - магний фосфор (до 1,4 % Р) обладает высокой электропроводностью и слабо разупроч-няется при нагреве; промышленный сплав меди с фосфором (7 % Р) от­личается сверхпластичностью в области температур деформирования (400-600 °С); многие фосфорсодержащие сплавы применяют в качест­ве припоев; спеченные антифрикционные фосфорсодержащие сплавы (до 2 % Р), обладающие высокой механической прочностью, износостойко­стью, прирабатываемостью, используют взамен железографита, бронзо-графита и бронзы; спеченные фрикционные сплавы (до 1 % Р) применяют для создания магнитио-мягких материалов, магнитопроводов и других изделий; фосфорсодержащие сплавы наносят в виде покрытий для за­щиты материалов от изнашивания, коррозии; пленки из сплавов Со- Р, Ni -Р, Со- Fe -Р, Со- W -Р ферромагнитны, их применяют для созда­ния элементов памяти в вычислительных машинах.

Фосфор вводят в состав некоторых бронз (фосфористая бронза - 0,5-1,2 % Р), повышая их жидкотекучесть и стойкость против истира­ния.

Поверхностная обработка стальных изделий - фосфатирование - обеспечивает защиту их от коррозии.

Фосфор используют как раскислитель в производстве сплавов цвет­ных металлов (до 1 % Р), что увеличивает их жаропрочность (фехраль, хромаль и др.).

Применяют фосфор также для получения полупроводников - фосфи­дов галлия и индия, в состав других полупроводников его вводят в не­больших количествах в качестве необходимой добавки.

Фосфорная кислота используется для изготовления концентрирован­ных фосфорных удобрений (двойной суперфосфат, преципитат, нитро­фоска, нитрофос и др.). реактивов.

Фосфаты аммония применяют для пропитки тканей, пластика, дерева для придания им огнестойких свойств; Фосфаты Fe, Na, К, Са - компо­ненты буровых жидкостей, зубных паст; фоефаш Са и аммония исполь­зуют для производства эмалей и в фармацевтической промышленности.

Мегафосфаты применяют в промышленноеш для умягчения воды и снижения ее коррозионной активности, для удаления накипи в паровых котлах, вводят в состав некоторых моюших средств.

Полифосфаты применяют в производстве синтетических моющих средств.

Фосфиды имеют следующие области применения: Фосфид бора - для датчиков э. д. с Холла, полупроводниковых приборов, приемников ИК-излучения, рабочих тел квантовых генераторов; фосфид меди - для пайки лаауни: фосфид никеля - для создания износостойких покры­тий на деталих машин.

Оксид (V) фосфора Р 2 О ч используется в качестве осушающего агента, для дегидратации при получении метнлмечакрнлатных смол.

Широкое применение в промышленное m нашли хлориды фосфора в производстве красителей, инсектицидов, лекарств, поверхностно-активных веществ и как эффективное хлорирующее средство

Области применения сульфидов фосфора - производство флотацион­ных реагентов, антикоррозионных добавок к маслам и горючему, фос-форорганических инсектицидов (тиофос, карбофос и др.). Фосфороргани-ческие соединения - термостойкие ч огнестойкие лаки, клеи - для мо­дификации полимеров, для получения неорганического каучука.

Атомная промышленность использует комплексные соединения фос­фора для извлечения редких и трансурановых элементов из руд.

ОПРЕДЕЛЕНИЕ

Фосфор - пятнадцатый элемент Периодической таблицы. Обозначение - P от латинского «phosphorus». Расположен в третьем периоде, VА группе. Относится к неметаллам. Заряд ядра равен 15.

Фосфор принадлежит к числу довольно распространенных элементов; содержание его в земной коре составляет около 0,1% (масс.). Вследствие легкой окисляемости фосфор в свободном состоянии в природе не встречается.

Из природных соединений фосфора самым важным является ортофосфат кальция Ca 3 (PO 4) 2 , который в виде минерала фосфорина иногда образует большие залежи. Часто встречается также минерал апатит, содержащий кроме Ca 3 (PO 4) 2 , еще CaF 2 или CaCl 2 .

Атомная и молекулярная масса фосфора

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Значения атомной и молекулярной масс фосфора совпадают; они равны 30,9737.

Аллотропия и аллотропные модификации фосфора

Фосфор образует несколько аллотропических модификаций.

Белый фосфор получается в твердом состоянии при быстром охлаждении паров фосфора; его плотность 1,83 г/см 3 . В чистом виде белый фосфор совершенно бесцветен и прозрачен (рис. 1). На холоду хрупок, но при температуре выше 15 o С становится мягким и легко режется ножом.

На воздухе белый фосфор очень быстро окисляется и при этом светится в темноте. Уже при слабом нагревании, для чего достаточно просто трения, фосфор воспламеняется и сгорает. Имеет молекулярную кристаллическую решетку, в узлах которой находятся тетраэдрические молекулы P 4 . Сильный яд.

Рис. 1. Аллотропные модификации фосфора. Внешний вид.

Если белый фосфор нагреть до температуры 250-300 o С он переходит в другую модификацию имеющую красно-фиолетовую окраску и называемую красным фосфором. Это превращение происходит очень медленно и под действием света.

Красный фосфор по своим свойствам сильно отличается от белого: медленно окисляется на воздухе, не светится в темноте, загорается только при 260 o С и неядовит.

При сильном нагревании красный фосфор, не плавясь, испаряется (сублимируется). При охлаждении паров получается белый фосфор.

Черный фосфор образуется из белого при нагревании его до 200-220 o С под очень высоким давлением. По виду он похож на графит, жирен на ощупь и тяжелее других модификаций. Полупроводник.

Изотопы фосфора

Известно, что в природе фосфор находится в виде единственного изотопа 31 P (23,99%). Массовое число равно 31. Ядро атома изотопа фосфора 31 P содержит пятнадцать протонов и шестнадцать нейтронов.

Существуют искусственные изотопы фосфора с массовыми числами от 24-х до 46-ти, среди которых наиболее стабильным является 32 P с периодом полураспада равным 14 суток.

Ионы фосфора

На внешнем энергетическом уровне атома фосфора имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 3 .

В результате химического взаимодействия фосфор может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

P 0 -5e → P 5+ ;

P 0 -3e → P 3+ ;

P 0 -1e → P 1+ ;

P 0 +3e → P 3- .

Молекула и атом фосфора

Молекула фосфора одноатомна — Р. Приведем некоторые свойства, характеризующие атом и молекулу фосфора:

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Фосфин можно получить действием соляной кислоты на фосфид кальция. Рассчитайте объем фосфина (н.у.), который образуется из 9,1 г фосфида кальция. Массовая доля выхода продукта составляет 90%.
Решение Запишем уравнение реакции получения фосфина из фосфида кальция:

Ca 3 P 2 + 6HCl = 2PH 3 + 3CaCl 2 .

Рассчитаем количество вещества фосфида кальция (молярная масса - 182 г/моль):

n(PH 3) = m(PH 3) / M(PH 3);

n(PH 3) = 9,1 / 182 = 0,05 моль.

Согласно уравнению реакции n(PH 3) : n(Ca 3 P 2) = 2:1, значит:

n(PH 3) = 2 × n(Ca 3 P 2);

n(PH 3) = 2 × 0,05 = 0,1 моль.

Тогда, объем выделившегося фосфина будет равен:

V(PH 3) = n (PH 3) × V m ;

V(PH 3) = 0,1 × 22,4 = 2,24 л.

Учитывая выход продукта реакции, объем фосфина составляет:

V(PH 3) = V(PH 3) × η/100%;

V(PH 3) = 2,24 × 90/100% = 2,016 л.

Ответ Объем фосфина равен 2,016 л

Лесостепные почвы

характеризуются содержанием в гумусовом веществе в количестве 1,78-2,46 %.

Мощные черноземы

содержат в гумусовом веществе 0,81-1,25 %.

Обыкновенные черноземы

содержат в гумусовом веществе 0,90-1,27 %.

Выщелоченных черноземы

содержат в гумусовом веществе 1,10-1,43 %.

Темно-каштановые почвы содержат

в гумусовом веществе 0,97-1,30 %.

Роль в растении

Биохимические функции

Окисленные соединения фосфора необходимы всем живым организмам. Ни одна живая клетка не сможет существовать без них.

В растениях фосфор содержится в органических и минеральных соединениях. При этом, содержание минеральных соединений составляет от 5 до 15 %, органических - 85-95 %. Минеральные соединения представлены калиевыми, кальциевыми, аммонийными и магниевыми солями ортофосфорной кислоты. Минеральный фосфор растений - запасное вещество, резерв для синтеза фосфорсодержащих органических соединений. Он увеличивает буферность клеточного сока, поддерживает тургор клетки и другие не менее важные процессы.

Органические соединения - нуклеиновые кислоты, аденозинфосфаты, сахарофосфаты, нуклеопротеиды и фосфатопротеиды, фосфатиды, фитин.

На первом месте по важности для жизнедеятельности растений стоят нуклеиновые кислоты (РНК и ДНК) и аденозинфосфаты (АТФ и АДФ). Данные соединения участвуют во многих процессах жизнедеятельности растительного организма: синтезе белков, энергетическом обмене, передаче наследственных свойств.

Нуклеиновые кислоты

Аденозинфосфаты

Особая роль фосфора в жизни растений заключается в участии в энергетическом обмене растительной клетки. Главная роль в данном процессе принадлежит аденозинфосфатам. В их составе присутствуют остатки фосфорной кислоты, связанные макроэргическими связями. При гидролизе они способны выделять значительное количество энергии.

Они представляют собой своеобразный аккумулятор энергии, поставляя ее по мере необходимости для осуществления всех процессов в клетке.

Различают аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ). Последний по запасам энергии значительно превосходит два первых и занимает ведущую роль в энергетическом обмене. Он состоит из аденина (пуринового основания) и сахара (рибозы), а также трех остатков ортофосфорной кислоты. Синтез АТФ осуществляется в растениях в процессе дыхания.

Фосфатиды

Фосфатиды, или фосфолипиды - сложные эфиры глицерина, высокомолекулярных жирных кислот и фосфорной кислоты. Они входят в состав фосфолипидных мембран, регулируют проницаемость клеточных органелл и плазмалеммы для различных веществ.

Цитоплазма всех растительных клеток содержит представителя группы фосфатидов лецитин. Это производное диглицеридфосфорной кислоты, жироподобное вещество, имеющее в составе 1,37 % .

Сахарофосфаты

Сахарофосфаты, или фосфорные эфиры сахаров, присутствуют во всех тканях растений. Известно более десятка соединений данного типа. Они выполняют важную роль в процессах дыхания и фотосинтеза в растениях. Образование сахарофосфатов носит название фосфорилирование. Содержание сахарофосфатов в растении, в зависимости от возраста и условий питания, варьирует от 0,1 до 1,0 % сухой массы.

Фитин

Фитин - это кальциево-магниевая соль инозитфосфорной кислоты, содержит 27,5 % . Он занимает первое место по содержанию в растениях среди других фосфорсодержащих соединений. Фитин присутствует в молодых органах и тканях растений, особенно много его в семенах, где он служит запасным веществом и используется проростками в процессе прорастания.

Основные функции фосфора

Большая часть фосфора присутствует в репродуктивных органах и молодых частях растений. Фосфор отвечает за ускорение формирования корневых систем растений. Основное количество фосфора потребляется в первые фазы развития и роста. Фосфорные соединения обладают способностью легко передвигаться из старых тканей в молодые и использоваться повторно (реутилизироваться).