Главная · Сети · Потенциал действия, определения, кривая ПД. Фазы ПД, ионные механизмы их возникновения. Биопотенциалы

Потенциал действия, определения, кривая ПД. Фазы ПД, ионные механизмы их возникновения. Биопотенциалы

(ПД) — это кратковременные амплитудные изменения мембранного потенциала покоя (МПС), возникающие при возбуждении живой клетки. По сути это электрический разряд — быстрая кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона или мышечного волокна), в результате которого внешняя поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, который играет сигнальную (регуляторную) роль.

Общая характеристика

Потенциалы действия могут отличаться по своим параметрам в зависимости от типа клетки и даже на разных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Все же, в основе любого потенциала действия лежат следующие явления:

  1. «Мембрана живой клетки поляризована» — ее внутренняя поверхность заряжена отрицательно по отношению к наружной благодаря тому, что в растворе у ее внешней поверхности находится большее количество положительно заряженных частиц (катионов), а у внутренней поверхности — большее количество отрицательно заряженных частиц (анионов).
  2. «Мембрана имеет избирательную проницаемость ‘- ее проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. «Мембрана возбудимой клетки способна быстро менять свою проницаемость ‘для определенного вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю

Первые два свойства характерны для всех живых клеток. Третья же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Основной математической моделью, описывающей генерацию и передачу потенциала действия, является модель Ходжкина-Хаксли.

Фазы

Можно четко выделить пять фаз развития ПД:

Нарастание (деполяризация)

Возникновение потенциала действия (ПД) связано с увеличением проницаемости мембраны для ионов натрия (в 20 раз по сравнению с проницаемостью для К +, и в 500 раз по сравнению с исходной проницаемостью Na +) и последующим усилением диффузии этих ионов по концентрационном градиенту внутрь клетки, приводит к изменению (уменьшение) мембранного потенциала. Уменьшение мембранного потенциала приводит к увеличению проницаемости мембраны для натрия путем открытия потенциал-зависимых натриевых каналов, а увеличение проницаемости сопровождается усилением диффузии натрия в цитоплазму, что вызывает еще более значительную деполяризацию мембраны. Благодаря наличию положительной обратной связи деполяризация мембраны при возбуждении происходит с ускорением и поток ионов натрия в клетку все время растет. Интенсивность же потока ионов калия, направленного из клетки наружу, в первые моменты возбуждения остается в начале. Усиленный поток положительно заряженных ионов натрия внутрь клетки вызывает сначала исчезновение избыточного отрицательного заряда на внутренней поверхности мембраны, а затем приводит к перезарядки мембраны. Поступления ионов натрия происходит до тех пор, пока внутренняя поверхность мембраны не приобретет положительный заряд, достаточный для уравновешивания градиента концентрации натрия и прекращение его дальнейшего перехода внутрь клетки. Натриевый возникновения ПД подтверждают опыты с изменением внешней и внутренней концентрации этого иона. Было показано, что десятикратном изменении концентрации ионов натрия во внешнем или внутреннем среде клетки, соответствует изменение ПД на 58 мВ. При полном удалении ионов натрия из окружающей клетку жидкости ПД ни возникал. Таким образом, установлено, что ПД возникает в результате избыточной, по сравнению с покоем, диффузии ионов натрия из окружающей жидкости внутрь клетки. Период, в течение которого проницаемость мембраны для ионов натрия при открытии натриевых каналов растет, является небольшим (0,5-1 мс) вслед за этим наблюдается повышение проницаемости мембраны для ионов калия благодаря открытию потенциал-зависимых калиевых каналов, и, следовательно, усиление диффузии этих ионов из клетки наружу.

Принцип «все или ничего» Согласно закону «все-или-ничего» мембрана клетки возбудимой ткани или не отвечает стимул совсем, или отвечает с максимально возможной для нее на данный момент силой. Действие раздражителя обычно приводит к локальной деполяризации мембраны. Это вызывает открытие натриевых каналов, которые чувствительны к изменениям потенциала, а через это — увеличивает натриевую проводимость, что приводит к еще большей деполяризации. Существование такой обратной связи обеспечивает регенеративную (возобновляемую) деполяризацию клеточной мембраны. Величина потенциала действия зависит от силы раздражителя, а сам он возникает только в том случае, когда деполяризация превышает некоторый определенный для каждой клетки предельный уровень. Это явление получило название «все или ничего». Однако, если деполяризация составляет 50-75% от предельной величины, то в клетке может возникнуть локальный ответ, амплитуда которой значительно ниже амплитуду потенциала действия. Отсутствие потенциала действия при пидграничному уровне деполяризации объясняется тем, что при этом недостаточно увеличивается натриевая проницаемость, чтобы вызвать регенеративную деполяризацию. Уровень деполяризации, который возникает при этом, не вызывает открытие новых натриевых каналов, поэтому натриевая проводимость быстро уменьшается, и в клетке снова устанавливается потенциал покоя.

Овершут

Деполяризация мембраны приводит к реверсии мембранного потенциала (МП становится положительным). В фазу овершута Na + -ток начинает стремительно снижаться, что связано с инактивацией потенциал-зависимых Na + -каналов (время открытого состояния — судьбы миллисекунды) и исчезновением электрохимического градиента Na +.

Рефрактерность Одним из последствий исчезновения градиента Na + является рефрактерность мембраны — временная неспособность отвечать на раздражитель. Если раздражитель возникает сразу после прохождения потенциала действия, то возбудимость не возникнет ни при силе раздражителя на уровне порога, ни при значительно более сильное раздражителю. Такое положение полной невозбудимости называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда надпороговый раздражитель может вызвать потенциал действия со значительно меньшей амплитудой чем в норме. Потенциал действия привычной амплитуды при действии порогового раздражителя можно вызвать только после нескольких миллисекунд после предварительного потенциала действия. Абсолютный рефрактерный период ограничивает максимальную частоту генерации потенциалов действия.

Реполяризация

Увеличение ионного потока калия, направленного из клетки наружу, приводит к уменьшению мембранного потенциала, в свою очередь обусловливает уменьшение проницаемости мембраны для ионов натрия, что, как указывалось, является функцией мембранного потенциала. Таким образом, второй этап характеризуется тем, что поток ионов калия из клетки наружу растет, а встречный поток ионов натрия уменьшается. Такая реполяризация мембраны продолжается, пока не произойдет восстановление потенциала покоя — реполяризация мембраны. После этого проницаемость для ионов калия также падает до исходной величины. Внешняя поверхность мембраны за счет положительно заряженных ионов калия, вышедших в среду, вновь приобретает положительный потенциала относительно внутреннего.

Следовая деполяризация и гиперполяризация

В конечной фазе происходит замедление восстановления мембранного потенциала покоя, и при этом регистрируются следовые реакции в виде следовой деполяризации и гиперполяризации, обусловлены медленным восстановлением исходной проницаемости для ионов К +.

Распространение

Распространение в немиелинизированные волокне

В немиелинизированные (без`мякотному) нервном волокне ПД распространяется от точки к точке, поскольку возбуждение можно зарегистрировать как такое, что постепенно «бежит» по всему волокну от места своего возникновения. Ионы натрия, входящих внутрь возбуждении участка, служат источником электрического тока для возникновения ПД в прилегающих участках. В этом случае импульс возникает между деполяризована участком мембраны и ее невозбужденном участком. Разность потенциалов здесь во много раз выше, чем необходимо для того, чтобы деполяризация мембраны достигла предельного уровня. Скорость распространения импульса в таких волокнах 0,5-2 м / с

Распространение в миелинизированные волокне

Нервные отростки большинства соматических нервов миелинизированные. Только очень незначительные их участки, так называемые перехвата узла (перехват Ранвье), покрытые обычной клеточной мембраной. Такие нервные волокна характеризуются тем, что на мембране только в перехватах размещении потенциал-зависимые ионные каналы. Кроме того, эта оболочка повышает электрическое сопротивление мембраны. Поэтому при сдвиге мембранного потенциала ток проходит через мембрану перехватывающих участка, то есть прыжками (сальтаторно) от одного перехвата к другому, что позволяет увеличить скорость проведения нервного импульса, которая составляет от 5 до 120 м / с. Причем потенциал действия, который возник в одном из перехватов Ранвье, вызывает потенциалы действия в соседних перехвата за счет возникновения электрического поля, которое вызывает начальную деполяризацию в этих перехватов. Параметры ЭДС поля и дистанция его эффективного действия зависят от кабельных свойств аксона.

Типы нервных волокон, скорость проведения импульса, в зависимости от миелинизации
Тип Диаметр (мкм) Миелинизация Скорость проведения (м / с) Функциональное назначение
А alpha 12-20 сильная 70-120 Подвижные волокна соматической НС; чувствительные волокна проприорецепторов
А beta 5-12 сильная 30-70 Чувствительные волокна рецепторов кожи
А gamma 3-16 сильная 15-30 Чувствительные волокна проприорецепторов
А delta 2-5 сильная 12-30 Чувствительные волокна терморецепторов, ноцицепторов
В 1-3 слабая 3-15 Преганглионарные волокна симпатической НС
С 0,3-1,3 отсутствует 0,5-2,3 Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов некоторых механорецепторов

Распространение потенциала действия между клетками

В химическом синапсе после того, как волна потенциала действия доходит нервного окончания, она вызывает высвобождение нейротрансмиттеров из пресинаптических пузырьков в синаптическую щель. Молекулы медиатора, высвобождаемых с пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы. Ионы, начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд ее мембраны, что приводит к частичной деполяризации мембраны и, как следствие, провоцирование генерации постсинаптической клетки потенциала действия.

В электрическом синапсе отсутствует «посредник» передачи в виде нейромедиатора. Зато клетки соединены между собой с помощью специфических протеиновых тоннелей — конексонив, поэтому ионные токи, с пресинаптической клетки могут стимулировать постсинаптическую клетку, вызывая зарождения в ней потенциала действия. Благодаря такому строению, потенциал действия может распространяться в обе стороны и значительно быстрее, чем через химический синапс.

    Схема процесса передачи нервного сигнала в химическом синапсе

    Схема строения электрического синапса

Потенциал действия в различных типах клеток

Потенциал действия в мышечных тканях

Потенциал действия в скелетных мышечных клетках аналогичный потенциала действия в нейронах. Потенциал покоя в них как правило -90мВ, что меньше, чем потенциал покоя типовых нейронов. Потенциал действия мышечных клеток длится примерно 2-4 мс, абсолютный рефрактерный период составляет примерно 1-3 мс, а скорость проводимости вдоль мышц примерно 5 м / с.

Потенциал действия в сердечных тканях

Потенциал действия клеток рабочего миокарда состоит из фазы быстрого деполяризации, начальной быстрой реполяризации, которая переходит в фазу медленной реполяризации (фаза плато), и фазы быстрой конечной реполяризации. Фаза быстрой деполяризации обусловлена ​​резким повышением проницаемости мембраны для ионов натрия, вызывает быстрый входящий натриевый ток, при достижении мембранного потенциала 30-40 мВ инактивируется и в дальнейшем главную роль играют кальциевый ионный ток. Деполяризация мембраны вызывает активацию кальциевых каналов, в результате чего возникает дополнительный Деполяризующий входящий кальциевый ток.

Потенциал действия в сердечной ткани играет важную роль в координации сокращений сердца.

Молекулярные механизмы возникновения потенциала действия

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основанные главным образом на поведении потенциал-зависимых натриевых (Na +) и калиевых (K +) каналов. Начальная фаза ПД формируется входным натриевым током, позже открываются калиевые каналы и выходной K + -ток возвращает потенциал мембраны к исходному уровню. Начальное концентрацию ионов затем восстанавливает натрий-калиевый насос.

По ходу ПД каналы переходят из состояния в состояние: в Na + -каналов основных состояния трех — закрытый, открытый и инактивированный (в реальности все сложнее, но этих трех состояний достаточно для описания), в K + каналов два — закрытый и открытый.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и рассчитывается через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Алан Ллойд Ходжкин и Эндрю Хаксли.

Проводимость для калия G K на единицу площади Проводимость для натрия G Na на единицу площади

рассчитать сложнее, поскольку, как уже было упомянуто, в потенциал-зависимых Na + каналов, кроме закрытого / открытого состояний, переход между которыми параметром, еще инактивированный / никак инактивированный состояния, переход между которыми описывается через параметр

, ,
где: где:
a m — Коэффициент трансфера из закрытого в открытое состояние для Na + каналов ; a h — Коэффициент трансфера из инактивированного в не-инактивированный состояние для Na + каналов ;
b m — Коэффициент трансфера из открытого в закрытое состояние для Na + каналов ; b h — Коэффициент трансфера из не-инактивированного в инактивированный состояние для Na + каналов ;
m — Фракция Na + каналов в открытом состоянии; h — Фракция Na + каналов в не-инактивированном состоянии;
(1 — m) — Фракция Na + каналов в закрытом состоянии (1 — h) — Фракция Na + каналов в инактивированном состоянии.

Методы исследования

История

Основные положения мембранной теории возбуждения сформулированы немецким нейрофизиологом Ю.Бернштейном

В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионы К +, и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазме мышцы и окружающей средой, который составил около — 70 мВ. Согласно теории Ю.Бернштейна, при возбуждении клетки ее мембрана повреждается, и ионы К + выходят из клетки по концентрационном градиента до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя.

Эту модель развили в своей работе 1952 Алан Ллойд Ходжкин и Эндрю Хаксли в которой описали электрические механизмы, обусловливающие генерацию и передачу нервного сигнала в гигантском аксоне кальмара. За это авторы модели получили Нобелевскую премию в области физиологии и медицины за 1963 год. Модель получила название модель Ходжкина-Хаксли

В 2005 году Томасом Геймбургом и Анрю Д. Джексоном предложена солитонном модель, основанная на предположении, что сигнал по нейронам распространяется в виде солитонов — устойчивых волн, распространяющихся по клеточной мембране.

Влияние некоторых веществ на потенциал действия

Некоторые вещества органического или синтетического происхождения могут блокировать образование или прохождения ПД:

  • Батрахотоксин найден у некоторых представителей рода листолазов. Устойчиво и необратимо повышает проницаемость мембран для ионов натрия.
  • Понератоксин был найден в муравьях рода Paraponera. Блокирует натриевые каналы.
  • Тетродотоксин найден в тканях рыб семейства Скелезубови, из которых готовят японский деликатес Фугу. Блокирует натриевые каналы.
  • Механизм действия большинства анестетиков (Прокаин, Лидокаин) базируется на блокировании натриевых каналов и соответственно на блокировании проведении импульсов по чувствительным нервным волокнам.
  • 4-Аминопиридин — обратно блокирует калиевые каналы, удлиняет срок потенциала действия. Может использоваться в терапии рассеянного склероза.
  • ADWX 1 — обратно блокирует калиевые каналы. В условиях опыта облегчал течение острого рассеянного энцефаломиелита у крыс.

Изображения по теме

Раздражители

По природе раздражители подразделяют на:
• физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
• химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
• информационные (голосовые команды, условные знаки, условные стимулы).

По биологическому значению раздражители подразделяют на:
• адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
• неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
• энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
• сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:
• состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
• состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

В организме существует 3 типа возбудимых клеток:
• нервные клетки (возбуждение проявляется генерацией электрического импульса);
• мышечные клетки (возбуждение проявляется сокращением);
• секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Возбудимая клетка в состоянии покоя

Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А) .

Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

Устройство клеточной мембраны возбудимой клетки

В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
• концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
• концентрация K+ внутри клетки выше, чем снаружи.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
• потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек ). Его можно рассчитать по равнению Нернста

где R – универсальная газовая постоянная,
Т – температура (по Кельвину),
F – число Фарадея,
[К+] нар – концентрация ионов К+ снаружи клетки,
[К+] вн – концентрация ионов К+ внутри клетки.

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

• поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

• прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз (рис. 4):

• фаза деполяризации;
• фаза быстрой реполяризации;
• фаза медленной реполяризации (отрицательный следовый потен­циал);
• фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

• Супернормальная возбудимость (экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

• Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя. Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковыхмолекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий черезсинапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.



В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике, так что потенциал действия не распространяется на дендриты).

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстрореагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности, когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности, когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов.

Работа органов и тканей нашего организма зависит от многих факторов. Некоторые клетки (кардиомиоциты и нервы) зависят от передачи нервных импульсов, генерируемых в специальных компонентах клеток или узлах. В основе лежит образование специфической волны возбуждения, носящей название потенциала действия.

Что это такое?

Потенциалом действия принято называть волну возбуждения, передвигающуюся от клетки к клетке. За счет ее образования и прохождения через происходит кратковременное изменение их заряда (в норме внутренняя сторона мембраны заряжена отрицательно, а наружная - положительно). Образованная волна способствует изменению свойств ионных каналов клетки, что приводит к перезарядке мембраны. В тот момент, когда потенциал действия проходит через мембрану, происходит кратковременное изменение ее заряда, что приводит к изменению свойств клетки.

Образование данной волны лежит в основе функционирования а также системы путей проведения сердца.

При нарушении его образования развиваются многие заболевания, что делает определение потенциала действия необходимым в комплексе лечебно-диагностических мероприятий.

Как же образуется потенциал действия и что для него характерно?

История исследования

Изучение возникновения возбуждения в клетках и волокнах было начато довольно давно. Первыми его возникновение заметили биологи, изучавшие воздействие различных раздражителей на оголенный берцовый нерв лягушки. Ими было замечено, что при воздействии на него концентрированным раствором пищевой соли наблюдалось сокращение мышц.

В дальнейшем исследования были продолжены неврологами, однако основная наука после физики, изучающая потенциал действия - физиология. Именно физиологами было доказано наличие потенциала действия в клетках сердца и нервах.

По мере углубления в изучение потенциалов было доказано наличие и потенциала покоя.

С начала 19 века начали создаваться методы, позволяющие зафиксировать наличие данных потенциалов и измерить их величину. В настоящее время фиксация и изучение потенциалов действия проводится в двух инструментальных исследованиях - снятии электрокардиограмм и электроэнцефалограмм.

Механизм потенциала действия

Образование возбуждения происходит за счет изменения внутриклеточной концентрации ионов натрия и калия. В норме в клетке содержится больше калия, чем натрия. Внеклеточная концентрация ионов натрия значительно больше, чем в цитоплазме. Изменения, вызываемые потенциалом действия, способствуют изменению заряда на мембране, в результате чего обуславливается ток ионов натрия внутрь клетки. Из-за этого изменяются заряды снаружи и внутри заряжается положительно, а внешняя среда - отрицательно.

Это делается для облегчения прохождения волны по клетке.

После того как волна была передана через синапс, происходит обратное восстановление заряда за счет тока внутрь клетки отрицательно заряженных ионов хлора. Восстанавливаются исходные уровни заряда снаружи и внутри клетки, что приводит к образованию потенциала покоя.

Периоды покоя и возбуждения чередуются. В патологической клетке все может происходить иначе, и образование ПД там будет подчиняться несколько иным законам.

Фазы ПД

Течение потенциала действия можно разделить на несколько фаз.

Первая фаза протекает до образования (проходящим потенциалом действия стимулируется медленная разрядка мембраны, которая достигает максимального уровня, обычно он составляет около -90 мЭв). Данная фаза носит название предспайк. Осуществляется за счет входа в клетку ионов натрия.

Следующая фаза - пиковый потенциал (или спайк), образует параболу с острым углом, где восходящая часть потенциала означает деполяризацию мембраны (быстрая), а нисходящая часть - реполяризацию.

Третья фаза - отрицательный следовый потенциал - показывает следовую деполяризацию (переход от пика деполяризации до состояния покоя). Обусловлена входом ионов хлора внутрь клетки.

На четвертом этапе, фазе положительного следового потенциала, происходит возврат уровней заряда мембраны к исходному.

Данные фазы, обусловленные потенциалом действия, строго следуют одна за одной.

Функции потенциала действия

Несомненно, развитие потенциала действия имеет важное значение в функционировании тех или иных клеток. В работе сердца возбуждению принадлежит главная роль. Без него сердце было бы просто неактивным органом, но за счет распространения волны по всем клеткам сердца происходит его сокращение, что способствует проталкиванию крови по сосудистому руслу, обогащению ею всех тканей и органов.

Также не могла бы нормально выполнять свою функцию без потенциала действия. Органы не могли бы получать сигналы к выполнению той или иной функции, в результате чего были бы просто бесполезными. Кроме того, совершенствование передачи нервного импульса в нервных волокнах (появление миелина и перехватов Ранвье) позволило передавать сигнал за считаные доли секунды, что и обусловило развитие рефлексов и сознательных движений.

Кроме данных систем органов, потенциал действия образуется и во многих других клетках, однако в них он играет роль лишь в выполнении клеткой своих специфических функций.

Возникновение потенциала действия в сердце

Основным органом, работа которого основана на принципе образования потенциала действия, является сердце. За счет существования узлов образования импульсов осуществляется работа данного органа, функция которого заключается в доставке крови к тканям и органам.

Генерация потенциала действия в сердце происходит в синусовом узле. Он находится в месте впадения полых вен в правом предсердии. Оттуда импульс распространяется по волокнам проводящей системы сердца - от узла к атриовентрикулярному соединению. Проходя по точнее, по его ножкам, импульс проходит к правому и левому желудочку. В их толще расположены более мелкие пути проведения - волокна Пуркинье, по которым возбуждение доходит до каждой клетки сердца.

Потенциал действия кардиомиоцитов является составным, т.е. зависит от сокращения всех клеток сердечной ткани. При наличии блока (рубец после инфаркта) образование потенциала действия нарушается, что фиксируется на электрокардиограмме.

Нервная система

Как же образуется ПД в нейронах - клетках нервной системы. Тут все осуществляется несколько проще.

Внешний импульс воспринимается отростками нервных клеток - дендритами, связанными с рецепторами, расположенными как в коже, так и во всех других тканях (потенциал покоя и потенциал действия также сменяют друг друга). Раздражение провоцирует образование потенциала действия в них, после чего импульс через тело нервной клетки идет в ее длинный отросток - аксон, а от него через синапсы - к другим клеткам. Таким образом, образованная волна возбуждения доходит до головного мозга.

Особенностью нервной системы является наличие двух типов волокон - покрытых миелином и без него. Возникновение потенциала действия и его передача в тех волокнах, где есть миелин, осуществляется значительно быстрее, чем в демиелинезированных.

Данный феномен наблюдается из-за того, что распространение ПД по миелинизированным волокнам происходит за счет “прыжков” - импульс перескакивает участки миелина, что в результате уменьшает его путь и, соответственно, ускоряет распространение.

Потенциал покоя

Без развития потенциала покоя не было бы и потенциала действия. Под потенциалом покоя понимают нормальное, невозбужденное состояние клетки, при котором заряды внутри и вне ее мембраны значительно отличаются (то есть снаружи мембрана заряжена положительно, а внутри - отрицательно). Потенциал покоя показывает разницу между зарядами внутри и извне клетки. Обычно в норме он составляет от -50 до -110 мЭв. В нервных волокнах данная величина обычно равна -70 мЭв.

Обусловлен он миграцией ионов хлора внутрь клетки и созданием негативного заряда на внутренней стороне мембраны.

При смене концентрации внутриклеточных ионов (как было указано выше) ПП сменяет ПД.

В норме все клетки организма находятся в невозбужденном состоянии, поэтому смену потенциалов можно считать физиологически необходимым процессом, так как без них не могли бы осуществлять свою деятельность сердечно-сосудистая и нервная системы.

Значимость исследования потенциалов покоя и действия

Потенциал покоя и потенциал действия позволяют определить состояние организма, а также отдельных органов.

Фиксация потенциала действия с сердца (электрокардиография) позволяет определить его состояние, а также функциональную способность всех его отделов. Если изучать нормальную ЭКГ, то можно заметить, что все зубцы на ней есть проявление потенциала действия и последующего потенциала покоя (соответственно, возникновение данных потенциалов в предсердиях отображает зубец Р, а распространение возбуждения в желудочках - зубец R).

Что касаемо электроэнцефалограммы, то на ней возникновение различных волн и ритмов (в частности, альфа и бета-волн у здорового человека) также обусловлено возникновением потенциалов действия в нейронах головного мозга.

Данные исследования позволяют своевременно выявить развитие того или иного патологического процесса и обуславливают практически до 50 процентов успешного лечения исходного заболевания.

а) Селективные , т.е. специфические. Эти каналы проницаемы для строго определенных ионов.

б)Малоселективные , неспецифические, не имеющие определенной ионной избирательности: Их в мембране. небольшое количество.

2. По характеру пропускаемых ионов:

а) каливые

б)натривые

в)кальцивые

г)хлорные

3. По скорости инактивации , т.е. закрывания:

а) быстроинактивируюшиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания :

а) потенциалзависямые, т.е. те, которые открываются при определенном уровне потенциала мембраны.

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов. гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1 .Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго

определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависямых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывания канала и прекращение проведения ионов по каналу на определенном уровне МП. Неспецифические ионные каналы не имеют ворот.

Активный транспорт осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калнезый насос, кальциевый насос, хлорный насос.

Пассивный транспорт . Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

Сопряженный транспорт . Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

8) Потенциал действия, его фазы, их происхождение.

Потенциал действия - это быстрое колебание мембранного потенциала возникающее при возбуждении мембраны. Фазы: 1) медленная деполяризация (так же локальный ответ) - возникает вследствие увеличение проницаемости мембраны для ионов натрия. Под пороговый стимул недостаточен, чтобы вызвать быструю деполяризацию сразу. Длительность фазы зависит от силы раздражителя. 2) быстрая деполяризация - характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны (овершут): внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя отрицательно. Это происходит вследствие лавинообразно по ступающего натрия внутрь клетки. В отличие от локального ответа скорость и величина деполяризации не зависит от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0.2 - 0.5 мс. 3) реполяризация (продолжительность 0.5-0.8 мс) - мембранный потенциал постепенно восстанавливается и достигает 75 - 85% потенциала покоя. 2 и 3 фазы называются пиком потенциала действия. 4) следовая деполяризация - является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя 5) следовая гиперполяризация - представляет собой временное увеличение мембранного потенциала выше исходного уровня. 4 и 5 фазу называют следовыми явлениями