Главная · Сети · Прибор для забора воздуха на микробиологический анализ. Приборы и устройства для санитарной микробиологии. Все методы отбора проб воздуха можно разделить на седиментационные и аспирационные

Прибор для забора воздуха на микробиологический анализ. Приборы и устройства для санитарной микробиологии. Все методы отбора проб воздуха можно разделить на седиментационные и аспирационные

Необходимо для начала произвести отбор проб атмосферного воздуха. Данный процесс является чрезвычайно важным и кропотливым. Это связано с тем, что даже при самом точном анализе результаты неправильно произведенного отбора воздуха искажаются. Потому существует целый ряд требований к данному процессу:

  • необходимо получить пробу, которая соответствует реальному составу воздуха;
  • накопить в пробе нужное количество искомого вещества, для того чтобы его можно было обнаружить в лабораторных условиях.

Взятие проб воздуха зависит от нескольких факторов:

Во время проведения исследований в лаборатории используют различные воздуха. Самые распространенные - аспирационный и метод отбора в сосуд.

Аспирационный метод

Это самый распространенный способ в гигиенической практике. Особенность данной методики заключается в аспирации. Иными словами, это фильтрация исследуемого воздуха при помощи специальных веществ, которые способны поглощать определенный ингредиент из всех, проходящих через него. Данное вещество называется поглотительной средой. Недостатки аспирационного метода отбора проб воздуха:

  • Это очень трудоемкий процесс.
  • Занимает много времени (около 30 минут). За этот период может произойти усреднение концентрации токсичного вещества. А концентрация искомых веществ в воздушной среде изменяется слишком быстро. Методика отбора проб воздуха осуществляется профессионалами.

Отбор в сосуды

Этот метод отличается своей быстротой. Его используют тогда, когда ограничиваются небольшим объемом исследуемого воздуха и не возникает необходимости в накапливании искомого вещества в пробе. При этом отборе используются разнообразные емкости и сосуды: баллоны, бутыли, шприцы и газовые пипетки, а также резиновые камеры. Данная методика отбора проб воздуха является очень чувствительной и точной.

В практике используется несколько разновидностей аспираторов. Самый простой среди них - водный. Данный прибор для отбора проб воздуха состоит из пары одинаковых стеклянных бутылей, которые предварительно откалиброваны. Эти сосуды вмещают около 3-6 литров, закрываются пробками, из которых выходят две стеклянные трубки. Одна из них длинная и достигает дна бутылки, другая - короткая, заканчивается сразу под пробкой. Длинные трубки пары бутылей соединены резиновой трубочкой с зажимом. К короткой присоединяется поглотитель. Когда открывается зажим, вода поступает в пустой сосуд, расположенный выше того, в котором изначально находилась жидкость. В это время над поверхностью воды происходит разрежение, благодаря которому исследуемый воздух просасывается через поглотитель. Скорость при таком просасывании составляет от 0,5 до 2 литров за минуту, а объем воздуха, прошедшего через поглотитель, такой же, как количество воды, которое прошло путь из верхней бутылки в нижнюю.

Этот метод отнимает много времени и является одним из самых сложных. Удобным для использования считается электроаспиратор Мигунова. Этот прибор объединил в себе электрическую воздуходувку с реометрами, которые представляют собой стеклянные трубки-ротаметры, две из которых нужны для замеров скорости отбора воздуха, а две другие предназначены для большой скорости. Малая скорость составляет от 0,1 до 1 л/мин, большая - от единицы до 20 литров в минуту. Нижняя часть ротаметров соединена со штуцерами, выведенными в переднюю часть прибора. К этим штуцерам присоединены резиновые трубки вместе с поглотительными приборами. Благодаря такой схеме одновременно можно отбирать сразу четыре пробы. Верхняя часть ротаметра имеет ручки вентилей, которые точно так же выведены в переднюю часть. Это помогает регулировать скорость отбора проб воздуха.

Принцип работы данного прибора заключается в том, что во время включения в сеть с помощью электродвигателя вращается ротор воздуходувки. В то же время в ее корпусе понижается давление. А воздух, помещенный вне прибора, проходит через штуцеры. Затем поступает наружу. Узнав затраченное время на его прохождение сквозь аспиратор и его скорость, можно определить объем воздуха, проходящего через поглотительный прибор, который присоединяется к штуцеру.

Существующие поглотители созданы для того, чтобы забирать химические примеси из воздуха при помощи твердых и жидких сред. И поглотитель, и среду для него выбирают не случайно. Здесь учитываются агрегатные состояния веществ, которые проходят исследования. А также необходимость в обеспечении продолжительного контакта самого вещества и поглотительной среды.

В случае если исследуемое газо- или парообразное вещество находится в воздухе в большом количестве, если метод его определения очень чувствительный, то, соответственно, необходимы небольшие объемы анализируемого воздуха. Для этого нужны одномоментные методы отбора проб. Для них используют резиновые камеры, калиброванные бутыли и сосуды, вмещающие от 1 до 5 литров, а также газовые пипетки по 100-500 мл. Однако резиновые камеры могут применяться только в том случае, если исследуемое вещество точно не реагирует с резиной. В них воздух не сохраняется больше трех часов. Его накачивают туда с помощью Для исследований воздух переводится в калибровочную бутыль или другой поглотитель с соответствующей средой.

Отбор методом обмена

Когда исследуемым воздухом наполняют газовые пипетки и бутыли, то такой способ называется методом обмена.

Воздух, который поддается лабораторным исследованиям, продувается через пипетку или бутыль много раз. Пипетка заполняется при помощи резиновой груши, насоса. Это возможно при открытых зажимах или кранах, если они есть. По окончании отбора проб они закрываются. В случае применения калибровочной бутыли, она оборудуется пробками и двумя стеклянными трубками. К их внешним концам присоединяются резиновые трубочки с зажимами. Перед началом отбора зажимы снимаются. А к одной из трубочек присоединяется насос или резиновая груша. Затем бутыль продувают исследуемым воздухом много раз. По окончании отбора проб трубочки перекрывают зажимами.

Вакуумный метод

Пробы воздуха в помещении производятся при помощи толстостенной калибровочной бутыли. Она нужна для создания в ней разрежения при помощи специального насоса Комовского. Исследуемый воздух отсасывается из бутылки к остаточному давлению, которое колеблется от 10 до 15 мм ртутного столба. Затем нужно перекрыть зажим на резиновой трубочке. Отсоединить сосуд от насоса. А в конец резиновой трубки вставить стеклянную палку. На месте отбора проб емкость открывается. Она быстро заполнится воздухом благодаря равности давления. По окончании отбора проб зажим завинчивают, а на место отверстия резиновой трубочки ставят стеклянную палку.

Метод выливания

Взятие проб воздуха производится газовой пипеткой или калибровочной бутылью. Они наполняются специальной жидкостью, которая не должна вступать в реакцию с исследуемым веществом и тем более растворять его. Для этих целей зачастую используется простая вода. В случаях, когда этот вариант исключен, прибегают к применению насыщенных натрия или кальция хлорида.

На место отбора пробы жидкость выливается, а сосуд наполняется исследуемым воздухом. Затем резиновые трубочки перекрывают специальными зажимами, а на концах ставят стеклянные палки или же просто закрывают оба крана на газовой пипетке.

Санитарные пробы

Эти пробы собирают для химического анализа и определяют общую запыленность в зоне дыхания человека и на полтора метра выше.

Изучая загрязнения воздушной среды из-за выбросов промышленных предприятий, определяют среднесуточную и максимальную разовую концентрацию вредных веществ в атмосфере. Санитарные пробы воздуха обычно отбирают в момент наибольшего загрязнения с ветреной стороны от источника. Берут минимум десять образцов во всех точках и через равные отрезки времени. Отбор проб атмосферного воздуха продолжается около двадцати минут. При увеличении расстояния от источника, из которого исходит загрязнение (не более пяти километров, дальше точный анализ просто невозможен), продолжительность также увеличивается до 40 минут.

Для того чтобы определить радиоактивные и необходимо просасывать сквозь фильтры большой объем воздуха. Потому что в населенных местах исследуемые элементы содержатся в ничтожно малом количестве. В процессе взятия пробы воздуха на больших промышленных предприятиях для исследований содержания токсических веществ (таких как газы, пары) или большого количества пыли важное место занимает точка отбора. В производственных помещениях или зданиях неравномерно распределены загрязняющие вещества. Воздушная среда постоянно и хаотично подвижна. По этим причинам приборы для пробы атмосферы располагают в месте, где происходит рабочий процесс, на уровне полутора метров от пола. Это считается уровнем дыхания рабочих. За одну смену берут три пробы: в начале, середине и конце трудового дня. Во время их взятия обязательно учитывается влажность, а также температура воздуха в помещении. Поглотительные приборы, которые нужны, чтобы произвести отбор проб воздуха на промышленных предприятиях, напоминают стеклянные пробирки, которые запаиваются вверху и скрепляются еще с парой стеклянных трубочек. Через длинную трубку поступает исследуемый воздух. А сквозь короткую он проходит далее к воздуходувке через реометр. Нижняя часть поглотителя предназначена для поглощающейся жидкости, через которую должен просасываться исследуемый газ. Отбор проб воздуха рабочей зоны необходим для нормального функционирования предприятия и обеспечения условий труда для коллектива. В соответствии с действующим законодательством и требованиями охраны труда это обязательный процесс.

Гравитационный метод отбора

Этот метод взятия пробы воздуха в помещении или на улице основывается на том, что плотные частицы, которые взвешиваются в нем, оседают под влиянием силы тяжести. Пробозаборник Дарема - основной прибор, который используют для гравитационного отбора проб воздушной среды. Суть его работы заключается в следующем. В держатель прибора вставляется специальное предметное стекло, которое покрывается глицериновым гелем. Затем он оставляется в воздушной среде на сутки. Частицы, которые переносятся воздушным потоком, оседают на предметном стекле. Далее в лабораторных условиях под микроскопом определяется состав и количество частиц. Результаты представляются числом частиц, которые осели на квадратном сантиметре за сутки. Гравитационный метод отбора проб воздуха недорогой и достаточно простой, однако и у него есть свои недостатки:

  • результаты анализа могут быть неточными из-за таких факторов, как направление, скорость ветра, осадки и влажность воздуха;
  • за сутки успевает осесть небольшое количество частиц;
  • на предметное стекло в основном попадают крупные частицы;
  • образцы собирают профессионалы, для этого им необходимы специальные приборы, а также аспираторы для отбора проб воздуха.

Объемометрический метод

Суть данного способа заключается в том, что частицы, которые взвешиваются в воздухе, задерживаются на препятствиях, устанавливаемых его потоками. Пробы воздуха на предприятиях тяжелой промышленности необходимо собирать не реже, чем раз в год. В условиях этого метода применяются такие пробозаборники:

Оценивание результатов гравитационного метода отбора позволяет обнаруживать крупные частицы (например, пыльцу амброзии). В научных целях используются более мощные и точные объемометрческие способы.

Исследования загрязнений

В соответствии с действующим законодательством происходит отбор проб воздуха. ГОСТ 17.2.3.01-86 необходим для правильного анализа и подсчета погрешностей.

Для того чтобы изучать степень в Российской Федерации, разработали специальный термин - "предельно допустимая концентрация". На сегодняшний день определили предельно допустимые нормы. Концентрация в воздушной среде вредных веществ должна составлять не более чем пятьсот веществ. Пробы воздуха позволяют контролировать ситуацию.

Предельно допустимой считается максимально концентрированная примесь атмосферного воздуха, которая относится к определенному промежутку времени и периодически или на протяжении всей жизни человека не окажет вредного влияния на него (учитываются и отдаленные последствия) или на окружающую среду.

В случае большой концентрации газов осуществляется пробой воздуха, напряжение в таком случае составляет около 33 кВ/см. При росте давления увеличивается и напряжение.

Существуют лаборатории, исследовательские институты и отдельные квалифицированные специалисты, которые при помощи современных приборов и высокотехнологичных устройств определяют и устраняют вредные вещества, находящиеся в домах, квартирах, офисах, на земельных участках и пр. Отбор проб воздуха производится работниками санэпидемстанций, а далее проходят исследования в лабораторных условиях.

Как обезопасить свой дом

Если вы стали замечать, что кто-то из членов вашей семьи (или вы сами) страдает от аллергических реакций по непонятным и невидимым причинам, то вам необходимо произвести анализ проб воздуха в помещении. Для этого существует несколько способов. Обычная пыль, плесень, радон или различные патогенные микроорганизмы в воздухе негативно влияют на здоровье людей, особенно маленьких детей. Отбор проб атмосферного воздуха необходим в случае аллергических и других реакций у одного из членов семьи. Методы, которые помогут провести анализ воздушной среды в помещениях:


После получения результатов необходимо решать соответствующие проблемы. Для их устранения существуют специальные группы людей, которые работают по вызову.

Смолина Света

ВВЕДЕНИЕ

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они могут переноситься на значительные расстояния. В отличие от воды и почвы, где микробы могут жить и размножаться, в воздухе они только сохраняются некоторое время, а затем гибнут под влиянием ряда неблагоприятных факторов: высыхания, действия солнечной радиации, смены температуры, отсутствия питательных веществ и др. Наиболее устойчивые микроорганизмы могут долго сохраняться в воздухе и обнаруживаться там с большим постоянством. К такой постоянной микрофлоре воздуха относятся споры грибов и бактерий.

Количество микроорганизмов в воздухе колеблется в значительных пределах и зависит от условий, расстояния от поверхности земли, от близости населенных пунктов и т. д. Наибольшее количество микробов содержит воздух промышленных городов, наименьшее – воздух лесов, гор . Много бактерий находится в воздухе помещений, где неизбежно массовое хождение людей (кинотеатры, театры, школы, вокзалы и т. д.), сопровождающееся поднятием в воздух пыли .

Всем известно, что здоровье человека зависит от качества окружающей среды: воды, воздуха и других факторов. Школа – это такое место, где постоянно находится много людей. На своей одежде, обуви, внутри своего организма они приносят в школу много разных микробов, бактерий и других микроорганизмов.

Цель: на основе исследований определить степень загрязнения воздуха закрытых школьных помещений.

  1. определить количество микроорганизмов, содержащихся в воздухе различных помещений;
  2. изучить динамику содержания микроорганизмов в воздухе в течение учебного дня.

МЕТОДЫ ИССЛЕДОВАНИЯ

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 37 0 С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Данный метод пригоден для сравнительных оценок чистоты воздуха .

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м 3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле рr 2 ; 2) вычисляют количество колоний на площади 1 дм 2 ; 3 воздуха .

Примерный расчет. В чашке Петри диаметром в10 см выросло 25 колоний.

  1. определяют площадь питательной среды в чашке Петри по формуле 3,14*5 2 или 3,14*25 = 78,5 см 2

2) вычисляют количество колоний на площади 1 дм , равного 100 см 2

25колоний – 78,5 см 2

х колоний – 100 мм 2

х=25*100/78,5=32 колоний

т. е. на площади 1 дм 2 имеется 32 колонии.

3) пересчитывают количество бактерий на 1м 3 воздуха, который равен 1000л. Содержащиеся 32 колоний бактерий на площади 1 дм 2 соответствуют объему 10л воздуха. Чтобы узнать количество в1м 3 воздуха, составляют пропорцию:

х=32*1000/10=3200

Следовательно, в1м 3 воздуха содержится 3200 бактериальных телец.

Таблица 1. Критерии для оценки загрязненности помещений по числу микроорганизмов в 1м 3 воздуха

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня.

На первом этапе исследования было проведено сравнение данных, полученных в разных помещениях в один период времени. Наименьшее количество микроорганизмов (1571) было выявлено в классном помещении, а наибольшее (16220) – в спортзале. По-видимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней.

Таблица 3. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьных помещений

На втором этапе исследований был проведен сравнительный анализ загрязнения воздуха в одном и том же помещении, но в разные периоды учебного дня. Объектом для данного исследования был выбран коридор.

Таблица 4. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьного коридора в разные периоды времени

1-ая чашка

2-ая чашка

До 1 урока

1 перемена

5 перемена

На третьем этапе был также проведен анализ изменения содержания микроорганизмов в воздухе в одном помещении (класс химии), но при наличии двух дополнительных факторов: 1) проветриваемость помещения, 2) количество людей и интенсивность их передвижения.

В классе в течение всего дня были открыты форточки, что способствовало проветриванию помещения. Однако наблюдается резкое увеличение количества микроорганизмов во время 1 перемены, когда происходила смена различных классов. Таким образом, резкий скачок количества микроорганизмов, по-видимому, объясняется увеличением количества людей в помещении. При этом, проветриваемость помещения не оказывает существенного влияния на содержание микроорганизмов в воздухе в это время.

Однако на 5 перемене люди в классной комнате отсутствовали и это привело к снижению численности микроорганизмов в воздухе. Все это говорит о первостепенном влиянии именно такого фактора, как количество людей и интенсивность передвижения на степень загрязненеия воздуха микроорганизмами. Проветриваемость же помещений возможно оказывает свое влияние на общее количество микроорганизмов, но не на динамику их содержания.

Таблица 5. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения в разные периоды времени

На четвертом этапе был проведен сравнительный анализ классного кабинета и коридора в течение всего учебного дня.

Таблица 6. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения

1-ая чашка

2-ая чашка

1 перемена

2 перемена

3 перемена

4 перемена

5 перемена

После уроков

Таблица 7. Количество микроорганизмов, содержащееся в 1м 3 воздуха коридора

ЗАКЛЮЧЕНИЕ

  1. Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее – классной комнаты.
  2. Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.
  3. В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.
  4. Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.

СПИСОК ЛИТЕРАТУРЫ

1 Федоров М.В. Микробиология. – М.: Гос. Изд-во сельхозлитературы,1960.– 350 с.

2 Бакулина Н.А., Краева Э.Л. Микробиология.– М.: Медицина, 1980.– 338 с.

3 Павлович С.А., Пяткин К.Д. Медицинская микробиология. – Минск: Высшая школа, 1993. – 200 с.

4 Лабинская А.С. Микробиология с техникой микробиологических методов исследования.– М.: Медицина, 1968.– 392 с.

5 Черемисинов Н.А., Боева Л.И., Семихатова О.А. Практикум по микробиологии.– М.: Высшая школа, 1967.– 168 с.

6 Шлегель Г.Х. Общая микробиология.– М.: Мир, 1987.– 566 с.


Санитарно-микробиологическое исследование воздуха можно разделить на 4 этапа:

1) отбор проб;
2) обработка, транспортировка, хранение проб, получение концентрата микроорганизмов (если необходимо);
3) бактериологический посев, культивирование микроорганизмов;
4) идентификация выделенной культуры.

Отбор проб, как и при исследовании любого объекта, является наиболее ответственным. Правильное взятие проб гарантирует точность исследования. В закрытых помещениях точки отбора проб устанавливаются из расчета на каждые 20 м 2 площади - одна проба воздуха, по типу конверта: 4 точки по углам комнаты (на расстоянии 0,5 м от стен) и 5-я точка - в центре. Пробы воздуха забираются на высоте 1,6-1,8 м от пола - на уровне дыхания в жилых помещениях. Пробы необходимо отбирать днем (в период активной деятельности человека), после влажной уборки и проветривания помещения. Атмосферный воздух исследуют в жилой зоне на уровне 0,5-2 м от земли вблизи источников загрязнения, а также в зеленых зонах (парки, сады и т.д.) для оценки их влияния на микрофлору воздуха.

Следует обратить внимание на то, что при отборе проб воздуха во многих случаях происходит посев его на питательную среду.

Все методы отбора проб воздуха можно разделить на седиментационные и аспирационные.

Седиментационный - наиболее старый метод, широко распространен благодаря простоте и доступности, однако является неточным. Метод предложен Р. Кохом и заключается в способности микроорганизмов под действием силы тяжести и под влиянием движения воздуха (вместе с частицами пыли и капельками аэрозоля) оседать на поверхность питательной среды в открытые чашки Петри. Чашки устанавливаются в точках отбора на горизонтальной поверхности. При определении общей микробной обсемененности чашки с мясопептонным агаром оставляют открытыми на 5-10 мин или дольше в зависимости от степени предполагаемого бактериального загрязнения. Для выявления санитарно-показательных микробов применяют среду Гарро или Туржецкого (для обнаружения стрептококков), молочно-солевой или желточно-солевой агар (для определения стафилококков), суслоагар или среду Сабуро (для выявления дрожжей и грибов). При определении санитарно- показательных микроорганизмов чашки оставляют открытыми в течение 40-60 мин.

По окончании экспозиции все чашки закрывают, помещают в термостат на сутки для культивирования при температуре, оптимальной для развития выделяемого микроорганизма, затем (если этого требуют исследования) на 48 ч оставляют при комнатной температуре для образования пигмента пигментообразующими микроорганизмами.

Седиментационный метод имеет ряд недостатков: на поверхность среды оседают только грубодисперсные фракции аэрозоля; нередко колонии образуются не из единичной клетки, а из скопления микробов; на применяемых питательных средах вырастает только часть воздушной микрофлоры. К тому же этот метод совершенно непригоден при исследовании бактериальной загрязненности атмосферного воздуха.

Более совершенными методами являются аспирационные, основанные на принудительном осаждении микроорганизмов из воздуха на поверхность плотной питательной среды или в улавливающую жидкость (мясо-пептонный бульон, буферный раствор, изотонический раствор хлорида натрия и др.). В практике санитарной службы при аспирационном взятии проб используются аппарат Кротова, бактериоуловитель Речменского, прибор для отбора проб воздуха (ПОВ-1), пробоотборник аэрозольный бактериологический (ПАБ-1), бактериально-вирусный электропреципитатор (БВЭП-1), прибор Киктенко, приборы Андерсена, Дьяконова, МБ и др. Для исследования атмосферы могут быть использованы и мембранные фильтры № 4, через которые воздух просасывается с помощью аппарата Зейтца. Большое разнообразие приборов свидетельствует об отсутствии универсального аппарата и о большей или меньшей степени их несовершенства.

Прибор Кротова. В настоящее время этот прибор широко применяется при исследовании воздуха закрытых помещений и имеется в лабораториях СЭС.

Принцип работы аппарата Кротова основан на том, что воздух, просасываемый через клиновидную щель в крышке аппарата, ударяется о поверхность питательной среды, при этом частицы пыли и аэрозоля прилипают к среде, а вместе с ними и микроорганизмы, находящиеся в воздухе. Чашку Петри с тонким слоем среды укрепляют на вращающемся столике аппарата, что обеспечивает равномерное распределение бактерий на ее поверхности. Работает аппарат от электросети. После отбора пробы с определенной экспозицией чашку вынимают, закрывают крышкой и помещают на 48 ч в термостат. Обычно отбор проб проводят со скоростью 20-25 л/мин в течение 5 мин.

Таким образом, определяется флора в 100-125 л воздуха. При обнаружении санитарно-показательных микроорганизмов объем исследуемого воздуха увеличивают до 250 л.

Приемник перед забором пробы воздуха заполняется 3-5 мл улавливающей жидкости (водой, мясопептонным бульоном, изотоническим раствором хлорида натрия).

Прибор Речменского работает по принципу пульверизатора: при прохождении воздуха через узкое отверстие воронки жидкость из приемника через капилляр в виде капелек поднимается в цилиндр. Капли жидкости еще больше дробятся, ударяясь о стеклянную лопаточку и стенки сосуда, создавая облачко из мелких капелек, на которых и адсорбируются находящиеся в воздухе микроорганизмы. Насыщенные бактериями капли жидкости стекают в приемник, а затем опять диспергируются, что обеспечивает максимальное улавливание бактерий из воздуха. При работе прибор помещают под углом 15-25°, что обеспечивает стекание улавливающей жидкости в приемник. Скорость отбора проб воздуха через аппарат Речменского - 10-20 л/мин. По окончании работы жидкость из приемника забирают стерильной пипеткой и засевают (по 0,2 мл) на поверхность плотных питательных сред. Преимуществом бактериоуловителя Речменского является высокая эффективность улавливания бактериальных аэрозолей. Недостатки прибора заключаются в трудности его изготовления, нестандартности получаемых аппаратов, их большой хрупкости и сравнительно низкой производительности.

Большим преимуществом являются серийный выпуск этого прибора (что дало возможность оснастить им лаборатории СЭС), его портативность, более высокая производительность (20-25 л/мин). Колба прибора, в которую помещается улавливающая жидкость, изготовляется из термостойкого плексигласа, капилляр из нержавеющей стали. В колбу вмонтирован пульверизатор, вызывающий диспергирование улавливающей жидкости при просасывании воздуха. Такое устройство дает возможность легко очищать и стерилизовать колбу с диспергирующим устройством простым кипячением в течение 30 мин (автоклавирование недопустимо, так как оно вызывает деформацию цилиндра).

Перед забором проб воздуха в колбу вносят 5-10 мл улавливающей жидкости (чаще всего мясопептонный бульон) и устанавливают ее под углом 10°, что обеспечивает естественное стекание жидкости после диспергирования. Воздух, проходя через колбу и пульверизатор, вызывает образование мелких капелек улавливающей жидкости, на которых оседают микроорганизмы. Прибор ПОВ-1 применяется для исследования воздуха закрытых помещений на общую микробную обсемененность, для обнаружения патогенных бактерий (например, микобактерий туберкулеза) и респираторных вирусов в воздухе больничных палат.

Пробоотборник аэрозольный бактериологический (ПАБ-1). Механизм действия ПАБ-1 основан на принципе электростатического осаждения частиц аэрозоля (а следовательно, и микроорганизмов) из воздуха при прохождении его через прибор, в котором эти частицы получают электрический заряд и осаждаются на электродах с противоположным знаком. На электродах для улавливания аэрозолей помещают в горизонтальном положении металлические поддоны с твердыми средами в чашках Петри или жидкой питательной средой (15-20 мл). Прибор переносной с большой производительностью 150-250 л/мин, т.е. за 1 ч можно отобрать 5-6 м 3 воздуха. Его рекомендуют применять для исследования больших объемов воздуха при обнаружении условно-патогенных и патогенных микроорганизмов, например, при выявлении в воздухе палат больниц возбудителей внутрибольничных инфекций (Pseudomonas aeruginosa. Staph, aureus и др.), определении сальмонелл и эшерихий в атмосферном воздухе в местах дождевания при орошении земледельческих полей сточными водами.

Бактериально-вирусный электропреципитатор (БВЭП-1)

Прибор основан на аспирационно-ионизационном принципе действия. БВЭП-1 состоит из осадительной камеры, в которую вмонтированы электроды: отрицательный в виде приводящей трубки, через которую поступает воздух (и частички аэрозоля соответственно заряжаются отрицательно), и положительный, на котором оседают бактерии.

Прибор МБ. Этот прибор служит не только для определения общей микробной обсемененности, но и для отбора проб воздуха с аэрозольными частицами различных размеров. Прибор МБ построен по принципу «сита» и представляет собой цилиндр, разделенный на 6 горизонтальных полос, на каждую из которых помещают чашки Петри с МПА. Воздух просасывается, начиная с верхней ступени, в пластине которой отверстия самые крупные, и чем ниже ступень, тем меньше размером отверстия (через последние проходят только тонкодисперсные фракции воздушного аэрозоля). Прибор рассчитан на улавливание частиц аэрозоля размером более 1 мкм при скорости отбора воздуха 30 л/мин. Уменьшение числа отверстий обеспечивает более равномерное распределение по питательной среде аэрозоля из воздуха. Для улавливания еще более мелких частиц аэрозоля можно добавлять дополнительно фильтр из фильтрующего материала АФА.

При использовании любого из перечисленных приборов получаемые результаты являются приблизительными, однако они дают более правильную оценку обсемененности воздуха в сравнении с седиментационным методом. Поскольку и отбор и санитарно-микробиологические исследования воздуха не регламентированы ГОСТ, то можно использовать любой прибор для оценки бактериальной загрязненности воздуха. Во многих случаях отбор проб совмещен с этапом посева.

Для снижения численности микроорганизмов в воздухе закрытых помещений применяют следующие средства:
а) химические - обработка озоном, двуокисью азота, распыление молочной кислоты,
б) механические - пропускание воздуха через специальные фильтры,
в) физические - ультрафиолетовое облучение.

Определение общей численности сапрофитных бактерий

Общая бактериальная обсемененность воздуха или микробное число - это суммарное количество микроорганизмов, содержащихся в 1 м 3 воздуха. Для определения общего количества бактерий в воздухе закрытых помещений забирают две пробы (объемом по 100 л каждая) на чашки Петри с МПА при помощи любого прибора (чаще всего аппарата Кротова), либо седиментационным методом, расставляя чашки с питательной средой по принципу конверта. Чашки с посевом помещают в термостат на сутки, а затем на 48 ч оставляют при комнатной температуре. Экспозиция чашек с посевами на свету дает возможность подсчитать раздельно количество пигментных колоний (желтых, белых, розовых, черных, оранжевых и др.), количество спорообразующих бацилл, грибов и актиномицетов.

Подсчитывают количество колоний на обеих чашках, вычисляют среднее арифметическое и делают перерасчет на количество микроорганизмов в 1 м 3 воздуха. Бациллы образуют колонии, как правило, крупные, круглые, с неровными краями, сухие, морщинистые. Колонии грибов с пушистым налетом (Мисог и Aspergillus) и плотные - зеленоватые или сероватые (Penicillium). Актиномицеты образуют беловатые колонии, вросшие в агар. Количество каждой группы колоний (пигментных, беспигментных, плесеней, бацилл, актиномицетов) выражают в процентах по отношению к общему числу.

При определении микробного числа методом седиментации по Коху подсчитываются колонии, выросшие на МПА в чашках Петри, и расчет ведется по B.Л. Омелянскому. Если придерживаться этой методики, на чашку площадью 100 см 2 за 5 мин оседает такое количество микробов, которое содержится в 10 л воздуха.

Определение стафилококков

Стафилококки являются одним из наиболее распространенных микроорганизмов в воздухе закрытых помещений, что обусловливается значительной устойчивостью их к различным факторам окружающей среды. Обнаружение патогенных стафилококков в воздухе закрытых помещений имеет санитарно-показательное значение и свидетельствует об эпидемическом неблагополучии. Отбор проб воздуха проводится с помощью аппарата Кротова в количестве 250 л на 2-3 чашки с молочно-желточно-солевым агаром (или молочно- солевым, желточно-солевым) и на чашку с кровяным агаром. Чашки инкубируют при температуре 37°С в течение 48 ч. Изучают культуральные признаки всех видов колоний, из подозрительных готовят мазки и окрашивают по Граму.

Помимо качественной характеристики отдельных колоний, подсчитывают количество выросших колоний стафилококков в 1 м 3 воздуха.

Определение стрептококков

Стрептококки также являются санитарно-показательными микроорганизмами воздуха, в который они попадают от больных скарлатиной, тонзиллитами, ангиной и носителей стрептококков. Отбор проб воздуха при исследовании на наличие а- и р-гемолитических стрептококков производят с помощью аппарата Кротова на чашки с кровяным агаром, средами Гарро и Туржецкого. Забирают 200-250 л воздуха, чашки с посевами выдерживают в термостате 18-24 ч и затем еще 48 ч при комнатной температуре (после предварительного просмотра и учета). Идентификацию проводят по общепринятой методике.

Определение патогенных микроорганизмов в воздухе

Ввиду малой концентрации патогенных микроорганизмов в воздухе закрытых помещений, их выделение является достаточно трудной задачей.

При расшифровке внутрибольничных инфекций определяют в воздухе присутствие стафилококков, стрептококков, синегнойной палочки, сальмонелл, протеев и др. Отбор проб воздуха производят с помощью ПАБ-1 в объеме не менее 1000 л. Посев производят на соответствующие элективные среды. Если используется жидкая среда как улавливающая жидкость, то пробирку с жидкостью помещают в термостат на сутки для подращивания (получение накопительной культуры), а затем высевают на элективную среду.

При исследовании воздуха на наличие микобактерий туберкулеза отбор проб производят с помощью прибора ПОВ-1 в объеме 250-500 л воздуха. В качестве улавливающей жидкости берут среду Школьниковой, которую затем обрабатывают 3% раствором серной кислоты (для подавления сопутствующей микрофлоры) и центрифугируют. Осадок засевают в пробирки на одну из яичных сред, чаще среду Левенштейна - Иенсена. Инкубируют при 37°С до 3 мес. Отсутствие роста в течение 3 мес дает возможность выдать отрицательный ответ. Пробирки первый раз просматривают через 3 нед, затем каждые 10 дней. Выделенную культуру идентифицируют, определяют ее вирулентность (заражением морских свинок - биопроба) и при необходимости определяют устойчивость к лекарственным препаратам.

При определении в воздухе коринебактерий дифтерии для посева воздуха используют чашки со средой Клауберга.

В последние годы определяют в атмосферном воздухе в районах дождевания земледельческих полей, при орошении их сточными водами, сальмонеллы в случае появления заболевания среди персонала станций орошения или населения. Отбор проб производят с помощью аппарата Кротова на чашки с висмут-сульфитным агаром. Исследуют не менее 200 л воздуха. Выделенная культура идентифицируется по обычной схеме определения сальмонелл.

В связи с развитием микробиологической промышленности возникла необходимость исследования воздуха с целью обнаружения грибов-продуцентов при производстве антибиотиков, ферментных препаратов, при изготовлении кормовых дрожжей и др. Для исследования воздуха на плесневые грибы рода Candida отбор проб производят с помощью аппарата Кротова в объеме от 100 до 1000 л на чашки со средой Чапека, суслоагаром (для обнаружения плесневых грибов) и с метабисульфит-натрий- агаром (МБС-агар) с добавлением антибиотиков (для обнаружения дрожжеподобных грибов рода Candida). Чашки инкубируют в термостате при температуре 26-27°С в течение 3-4 сут (для плесневых грибов) и при 35-37°С в течение 2-3 сут (для грибов - продуцентов и дрожжеподобных рода Candida). Идентификация проводится с учетом особенностей плодоносящих гиф и характера мицелия. Считают, что концентрация дрожжеподобных грибов в количестве 500-600 клеток в 1 м 3 воздуха рабочего помещения является предельной, превышение ее ведет к развитию аллергических реакций у рабочих.


  • ТЕМА 7. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВОДЫ ОЧИЩЕННОЙ (ВОДЫ ДИСТИЛЛИРОВАННОЙ)
  • ТЕМА 9. ГИГИЕНИЧЕСКИЕ ОСНОВЫ ДИЕТИЧЕСКОГО И ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОГО ПИТАНИЯ
  • ТЕМА 11. ФИЗИОЛОГИЯ ФИЗИЧЕСКОГО И УМСТВЕННОГО ТРУДА. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЯЖЕСТИ И НАПРЯЖЕННОСТИ ТРУДОВОГО ПРОЦЕССА
  • ТЕМА 12. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ФИЗИЧЕСКИХ ФАКТОРОВ ПРОИЗВОДСТВЕННОЙ СРЕДЫ, ПРИНЦИПЫ ИХ ГИГИЕНИЧЕСКОГО НОРМИРОВАНИЯ. ПРОФИЛАКТИКА ПРОФЕССИОНАЛЬНЫХ ЗАБОЛЕВАНИЙ, ВЫЗВАННЫХ ФАКТОРАМИ ФИЗИЧЕСКОЙ ПРИРОДЫ
  • ТЕМА 13. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ФАКТОРОВ ПРОИЗВОДСТВЕННОЙ СРЕДЫ, ПРИНЦИПЫ ИХ ГИГИЕНИЧЕСКОГО НОРМИРОВАНИЯ. ПРОФИЛАКТИКА ПРОФЕССИОНАЛЬНЫХ ЗАБОЛЕВАНИЙ, ВЫЗВАННЫХ ФАКТОРАМИ ХИМИЧЕСКОЙ И БИОЛОГИЧЕСКОЙ ПРИРОДЫ
  • ТЕМА 14. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ АПТЕЧНЫХ ОРГАНИЗАЦИЙ (АПТЕК)
  • ТЕМА 15. ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К УСЛОВИЯМ ТРУДА АПТЕЧНЫХ РАБОТНИКОВ
  • ТЕМА 16. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ ОПТОВЫХ ФАРМАЦЕВТИЧЕСКИХ ОРГАНИЗАЦИЙ (АПТЕЧНЫХ СКЛАДОВ) И КОНТРОЛЬНО- АНАЛИТИЧЕСКИХ ЛАБОРАТОРИЙ
  • ТЕМА 3. ГИГИЕНИЧЕСКАЯ ОЦЕНКА МИКРОБНОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА ПОМЕЩЕНИЙ

    ТЕМА 3. ГИГИЕНИЧЕСКАЯ ОЦЕНКА МИКРОБНОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА ПОМЕЩЕНИЙ

    Цель занятия: изучение методов определения и оценки бактери- альной загрязненности воздушной среды помещений.

    При подготовке к занятию студенты должны проработать следующие вопросы теории.

    1. Эпидемиологическое значение воздушной среды. Источники микробного загрязнения воздуха помещения.

    2. Характеристика бактериального состава атмосферного воздуха и воздуха помещений. Факторы, способствующие снижению микробного загрязнения воздуха помещений.

    3. Значение бактериального загрязнения воздуха при изготовлении лекарственных препаратов.

    4. Методы исследования и оценки степени бактериального загрязнения воздуха закрытых помещений.

    После освоения темы студент должен знать:

    Методику проведения отбора проб воздуха, их анализа, определение степени бактериального загрязнения воздуха аптечных помещений;

    Расчет необходимой мощности и количества бактерицидных облучателей при обеззараживании воздуха и поверхностей помещений аптек;

    уметь:

    Оценить результаты исследований воздуха на соответствие гигиеническим нормативам;

    Оценить условия труда персонала аптек при воздействии биологических факторов по данным санитарно-гигиенического обследования и лабораторных исследований;

    Использовать основные нормативные документы и информационные источники справочного характера для организации контроля за уровнем микробного загрязнения в воздухе аптечных помещений и разработки профилактических мероприятий по предупреждению и снижению уровня загрязнения воздуха аптечных помещений.

    Учебный материал для выполнения задания

    Воздух может загрязняться аэропланктоном, т.е. бактериями, вирусами, спорами плесневых грибов, дрожжевыми грибами, цистами простейших, спорами мхов и др. Основным источником загрязнения воздуха служит почва. Попадающие в атмосферный воздух микроорганизмы сравнительно быстро погибают вследствие высыхания, действия ультрафиолетовых лучей Солнца и отсутствия питательного материала. Однако в приземном слое атмосферы и в воздухе плохо вентилируемых закрытых помещений всегда обнаруживаются сапрофитные и иногда и патогенные микроорганизмы.

    При производстве лекарственных препаратов на основе биологического синтеза работающие могут подвергаться воздействию аэрозоля живых клеток микробов-продуцентов, продуктов метаболизма микроорганизмов и пылевидных конечных продуктов, часто содержащих более 50% белка (например, на заводах, изготавливающих белково-витаминные концентраты). На этапах собственно получения и выделения антибиотиков, а также на заключительных этапах (сушка, фасовка, упаковка) работающие могут подвергать- ся воздействию пыли антибиотиков. Контроль за содержанием в воздухе вредных веществ биологической природы (антибиотики, ферменты, витамины и др.) проводят аналогичным способом: как это принято для химических веществ в соответствии с требованиями Методических указаний «Микробиологический мониторинг произ- водственной среды» (МУ 4.2.734-99) и Приложения 10 Руководства 2.2.755-99 «Методика контроля содержания микроорганизмов в воздухе рабочей зоны».

    В помещениях аптек бактериальное загрязнение воздуха, происходящее за счет выделений посетителей и работников аптек, имеет большое значение, так как является причиной возможного инфицирования персонала возбудителями различных инфекционных заболеваний, а также опасности попадания микроорганизмов в лекарственные средства. Попавшая в лекарственные препараты микрофлора приводит к изменению их физико-химических свойств, снижению терапевтической активности, уменьшению сроков хранения, может явиться причиной развития заболеваний и осложнений у больного. Наиболее интенсивное бактериальное загрязнение воздуха отмечается в торговом зале, моечной и вспомогательных помещениях.

    Биологическими компонентами пыли помещений являются микрофлора (бактерии, вирусы и грибы) верхних дыхательных путей, кожи, микроскопические клещи, споры плесневых грибов. Санитарнопоказательными микроорганизмами в воздухе закрытых помещений являются стафилококки, зеленящие стрептококки, а показателями прямой эпидемической опасности - гемолитические стрептококки. Несмотря на сравнительно короткий срок пребывания в воздухе, микробы создают эпидемическую опасность. Источниками микробного загрязнения воздуха в стационарах всех типов являются медицинский персонал и больные, страдающие стертыми (бессимптомными) формами инфекционных болезней, а также носители полирезистентных к антибиотикам штаммов патогенных и условно патогенных микроорганизмов.

    Нормативов содержания микроорганизмов в воздухе жилых помещений нет. Нормативы бактериальной чистоты производственных помещений (больниц, аптек) разработаны в зависимости от их функционального назначения с учетом интенсивности бактериальной обсемененности и риска возникновения внутрибольничных инфекций. В соответствии с нормативными документами (СанПиН 2.1.3.1375-03) бактериальную чистоту воздуха оценивают дифференцированно по общему количеству микроорганизмов в 1 м 3 воздуха, а в помещениях классов А, Б, и В необходимо контролировать наличие колоний Staphylococcus aureus, которые не должны определяться в 1 м 3 воздуха, и плесневых и дрожжевых грибов, которые не должны определяться в 1 дм 3 воздуха.

    Одним из эффективных методов обеззараживания воздуха является использование бактерицидного действия ультрафиолетовых лучей с длиной волны 254-257 нм. В целях санации аптечных и лечебных помещений в настоящее время применяются бактерицидные увиолевые лампы БУВ-15, БУВ-30, представляющие собой газоразрядные ртутные лампы низкого давления. Лампы сделаны в виде трубок разной длины из увиолевого стекла и наполнены газовой смесью, состоящей из паров ртути и аргона. В концы трубок впаяны вольфрамовые электроды. При пропускании тока через трубку возникает газовый разряд, в результате которого происходит свечение. Увиолевое стекло лампы пропускает УФ-лучи, убивающие микробы, обеспечивая при этом высокий обеззараживающий эффект.

    В аптеках применяются потолочные бактерицидные облучатели (ПБО) и настенные бактерицидные облучатели (НБО). ПБО имеют

    две экранированные лампы БУВ-15 и две открытые лампы БУВ-30. При использовании ПБО, особенно при включении неэкранированных бактерицидных ламп, обеззараживающий эффект наступает за счет действия прямого потока лучей. НБО имеет две бактерицидные лампы: одна, экранированная лампа, облучает верхнюю зону и другая - неэкранированная - нижнюю зону. Надежный бактерицидный эффект достигается при работе бактерицидных облучателей в течение двух часов при мощности ламп 3 Вт на 1 м 3 .

    При длительной работе бактерицидных ламп в воздухе помещений могут накапливаться озон и окись азота в количестве, превышающих ПДК этих веществ, поэтому использование ультрафиолетового облучения требует соблюдения правил техники безопасности. В присутствии работающих рекомендуется применять экранированные бактерицидные лампы мощностью 1 Вт на 1 м 3 , а в отсутствии людей используются бактерицидные лампы открытого типа (НЭ) мощностью 3 ВТ на 1 м 3 . ПБО и НБО являются стационарными бактерицидными установками. В настоящее время в лечебно-профилактических учреждениях и аптеках применяются передвижные бактерицидные облучатели, что дает возможность более эффективно производить обеззараживание воздуха.

    Определение количества бактерий осуществляется седиментационным или аспирационным методами.

    Седиментационный метод основан на естественном осаждении бактерий из воздуха на чашку Петри с питательной средой и последующим выдерживанием в термостате в течение двух суток при температуре 37 ?С и подсчетом колоний, выросших за это время на всей площади чашки.

    Принцип аспирационного метода - аспирация определенного объема воздуха с высеванием содержащихся в нем бактерий на поверхность питательной среды с применением щелевого прибора Кротова (рис. 10) или с помощью микробиологического импактора воздуха «Флора-100».

    Прибор Кротова представляет собой цилиндр со съемной крышкой, в котором находится электромотор с центробежным вентилято- ром. Принцип работы прибора основан на инерционном осаждении частиц аэрозоля на поверхность питательной среды. Исследуемый воздух всасывается со скоростью 20-25 л/мин через клиновидную

    щель в крышке прибора, ударяется о поверхность плотной питательной среды, и микробы задерживаются на ее влажной поверхности. Для равномерного посева микробов чашка Петри с питательной сре- дой помещается на подставку, вращающуюся со скоростью 1 оборот в 1 с. Скорость аспирации воздуха регулируется по микроманометру (реометру) прибора. Общий объем пробы при значительном загрязнении воздуха должен составлять 40- 50 л, при незначительном - более 100 л. Продолжительность аспирации 2-5 мин. После инкубирования отобранных проб при температуре 37 ?С в течение 1-2 суток в зависимости от выделяемых микроорганизмов производится подсчет выросших колоний. Учитывая объем взятой пробы воздуха, вычисляется количество микробов в 1 м 3 воздуха.

    Рис. 10. Прибор Кротова для бактериологического исследования воздуха

    Импактор «Флора-100», современная модель прибора для улавливания бактерий из воздуха, работает в автоматическом режиме и превосходит прибор Кротова по техническим характеристикам.

    Определение количества микроорганизмов в воздухе служит одним из гигиенических критериев его чистоты. О степени бактери- ального загрязнения воздуха судят по общему количеству бактерий, содержащихся в 1 м 3 воздуха. Кроме того, оценку воздуха можно дать по содержанию санитарно-показательных микроорганизмов (разных видов стрептококков и стафилококков) - обычных обитателей слизистых оболочек дыхательных путей человека. Содержание микроорганизмов в воздухе различно в разные сезоны года. В холод-

    ный период воздух имеет меньшее микробное загрязнение, а летом воздух больше загрязняется микробами, поступающими в него в большом количестве вместе с частичками почвенной пыли. В качестве ориентировочных показателей оценки бактериального загрязнения воздуха в жилых помещениях используются предложенные А.И. Шафиром следующие величины (табл. 9).

    Таблица 9. Оценка чистоты воздуха по бактериологическим показателям воздуха аптечных помещений в разные периоды года

    Оценка чистоты воздуха

    Летний период (апрель-сентябрь)

    Зимний период (октябрь-март)

    Всего микроорганизмов

    Гемолитического стрептококка

    Всего микроорганизмов

    Гемолитического стрептококка

    Чистый

    <3500

    <5000

    Умеренно загрязненный

    3500-5000

    24-52

    5000-7000

    52-124

    Загрязненный

    >5000

    >7000

    >124

    Лабораторная работа «Определение и оценка микробного загрязнения воздуха»

    Задания студенту

    1. Произвести бактериологический посев воздуха с помощью прибора Кротова.

    2. Произвести подсчет колоний в чашке Петри, посев воздуха на питательную среду которой был сделан с помощью аппарата Кротова сутки назад со скоростью 20 л/мин в течение 5 мин и которая находи- лась в термостате при температуре 37 ?С в течение суток.

    3. Определить уровень бактериального загрязнения в помещении аптеки.

    4. Дать гигиеническую оценку эффективности работы бактерицидных ламп по условиям ситуационной задачи.

    Методика работы

    Определение микробного загрязнения воздуха

    Получив одну из чашек Петри с выросшими микробными колониями, ознакомиться с содержащимися в задаче сведениями о времени,

    месте и условиях отбора пробы воздуха (скорость и время аспирации).

    Для подсчета числа колоний надо разделить поверхность чашки на 4 равных стора, нанеся линии раздела на стекло крышки. Подсчитать общее число колоний на поверхности j чашки и умножить на 4. Подсчет можно осуществлять простым глазом или через лупу. Число выросших колоний можно принять примерно равным количеству микробных тел в посеянном на чашку Петри объеме воздуха. Затем, учитывая условия отбора пробы, рассчитать общее количество микроорганизмов в 1 м 3 воздуха помещения.

    Оценку степени микробного загрязнения воздуха произвести в соответствии с градациями, приведенными в табл. 9.

    Расчет необходимой мощности и количества УФ-облучателей в помещении

    Необходимая мощность (N) бактерицидных ламп определяется по формуле:

    N = E V,

    где: E - нормируемая величина удельной мощности ламп:

    3 Вт/м 3 - для ламп открытого типа,

    1 Вт/м 3 - для ламп экранированного типа,

    V - объем помещения, м 3 .

    Необходимое количество бактерицидных ламп (К) определяется по формуле:

    К = N / (мощность бактерицидной лампы).

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    • Введение
    • 1. Микрофлора воздуха
    • 2. Методы очистки воздуха
      • 2.1 Схема получения стерильного воздуха
      • 2.2 Механические фильтры (фильтры предварительной очистки)
      • 2.3 Компрессор
      • 2.4 Влагоотделитель
      • 2.5 Охладитель
      • 2.6 Вихревой сепаратор
      • 2.7 Фильтры
    • 3. Микробиология воздуха
    • 4. Микробиологические исследования воздуха
      • 4.1 Методы забора проб материала
    • Заключение
    • Список использованных источников

    Введение

    В настоящее время данное направление исследования очень актуально.

    Микрофлора воздуха делится на резидентную и временную. Первая обнаруживается часто и повсеместно, вторая - значительно реже, так как не обладает стойкостью в отношении действия различных факторов. В составе резидентной микрофлоры, формирующейся за счет почвенных микроорганизмов, - микрококки, сарцины, бациллы, актиномицеты, плесневые грибы. Временная микрофлора воздуха также может сформироваться из почвенных микроорганизмов и из микроорганизмов, поступающих в воздух с поверхности водоемов. Контаминация воздуха патогенными микроорганизмами происходит в основном капельным путем за счет кашля, чихания, разговора, благодаря чему образуются взвешенные в воздухе аэрозольные частицы. Размер образовавшихся аэрозольных частиц различен (от 10-100 до 2000 нм). В зависимости от размера капель, их электрического заряда, скорости движения аэрозольные частицы делятся на капельную и пылевую фазы и капельные ядрышки.

    Капельная фаза. Представляет собой мелкие капли, длительно сохраняющиеся в воздухе и испаряющиеся до оседания.

    Пылевая фаза. Состоит из крупных, быстро оседающих и испаряющихся капель, благодаря чему образуется пыль, поднимающаяся в воздух.

    Капельные ядрышки. Это мелкие капли (до 100 нм), которые, высыхая, остаются в воздухе во взвешенном состоянии и образуют устойчивую аэродисперсионную систему, в которой частично сохраняется влага, поддерживающая жизнеспособность микроорганизмов воздуха.

    Наибольшую опасность представляют микроорганизмы, заключенные в мелких аэрозольных частицах (капельных ядрышках), так как они способны глубоко проникать в дистальные отделы легких - альвеолы. В то же время более крупные частицы аэрозоля оседают в носовой полости и вместе со слизью выделяются во внешнюю среду.

    Мониторинг атмосферного воздуха включает контроль физико-химических и биологических свойств воздуха, отражающих степень его соответствия гигиеническим и экологическим нормативам. Мониторинг атмосферного воздуха направлен на получение данных, характеризующих его экологическое и гигиеническое состояние.

    Экологический норматив качества атмосферного воздуха - критерий, отражающий предельно допустимое максимальное содержание загрязняющих веществ, при котором отсутствует вредное воздействие на окружающую среду.

    Гигиенический норматив качества атмосферного воздуха - критерий, отражающий максимальное содержание неблагоприятных факторов, при котором отсутствует вредное воздействие на здоровье человека.

    Воздух производственных помещений может быть атмосферным (без предварительной очистки) и вентиляционным (через систему воздухоподготовки).

    Воздух производственных помещений - один из основных наиболее значительных потенциальных источников загрязнения лекарственных средств, поэтому его очистка является одним из ключевых вопросов технологической гигиены. Уровень чистоты воздуха, находящегося в помещениях, определяется классом чистоты помещения.

    Стерилизацию воздуха используют:

    Для создания воздушной среды в помещении высокого уровня чистоты,

    Для подачи стерилизованных жидкостей (стерилизованный, сжатый, транспортный),

    Для аэрирования при культивировании микроорганизмов и культур клеток в биотехнологических производствах.

    1. Микрофлора воздуха

    Микрофлора воздуха зависит от микрофлоры почвы или воды, над которыми расположены слои воздуха. В почве и воде микробы могут размножаться, в воздухе же они не размножаются, а только некоторое время сохраняются. Поднятые в воздух пылью они или оседают с каплями обратно на поверхность земли, или погибают в воздухе от недостатка питания и от действия ультрафиолетовых лучей. Поэтому микрофлора воздуха менее обильна, чем микрофлора воды и почвы. Наибольшее количество микробов содержит воздух промышленных городов. Воздух сельских мест гораздо чище. Микрофлора воздуха отличается тем, что содержит много пигментированных, а также спороносных бактерий, как более устойчивых к ультрафиолетовым лучам (сарцины, стафилококки, розовые дрожжи, чудесная палочка, сенная палочка и другие). Весьма богат микробами воздух в закрытых помещениях, особенно в кинотеатрах, вокзалах, школах, в животноводческих помещениях и других.

    Вместе с безвредными сапрофитами в воздухе, особенно закрытых помещений, могут находиться и болезнетворные микробы: туберкулезная палочка, стрептококки, стафилококки, возбудители гриппа, коклюша и так далее. Гриппом, корью, коклюшем заражаются исключительно капельно-воздушным путем. При кашле, чихании выбрасываются в воздух мельчайшие капельки-аэрозоли, содержащие возбудителей заболеваний, которые вдыхают другие люди и, заразившись, заболевают. Микробиологический анализ воздуха на патогенную флору производят только по эпидемическим показаниям.

    В плановом порядке пробы воздуха для бактериологического исследования берутся в операционных блоках, послеоперационных палатах, отделениях реанимации, интенсивной терапии и других помещениях, требующих асептических условий. По эпидемическим показаниям бактериологическому исследованию подвергают воздух ясель, детских садов, школ, заводов, кинотеатров и так далее.

    Обнаружение в воздухе закрытых помещений гемолитического стрептококка группы А и стафилококка, обладающего признаками патогенности, являются показателем эпидемического неблагополучия данного объекта.

    2. Методы очистки воздуха

    Для очистки воздуха применяют различные методы: физические, химические и биологические. Среди физических методов - абсорбция примесей на активированном угле и других поглотителях, абсорбция жидкостями. Наиболее распространенными химическими методами очистки воздуха являются озонирование, прокаливание, каталитическое дожигание, хлорирование. Биологические методы очистки газовоздушных выбросов начали применять сравнительно недавно и пока в ограниченных масштабах.

    2.1 Схема получения стерильного воздуха

    Для получения стерильного воздух в промышленности применяют многоступенчатую систему очистки воздуха. Число ступеней и выбор материала зависит от заданной конечной чистоты. Используют волокнистые и пористые фильтрующие материалы.

    Применяют:

    1) фильтры грубой очистки (эффективность 40-60%)

    2) фильтры средней очистки (эффективность 60-90%)

    3) высокоэффективные стерилизующие фильтры (99, 997%)

    2.2 Механические фильтры (фильтры предварительной очистки)

    Это самые простые фильтры, применяемые в воздухоочистителях. Они состоят из обычной мелкой сетки и используются в качестве фильтров предварительной очистки. Предназначены для удаления крупных пылевых частиц, шерсти животных. Такие фильтры устанавливаются практически на всем климатическом оборудовании и защищают от пыли не только людей, но и внутренности самих приборов.

    Являясь предварительным фильтром, защищает последующие фильтрующие элементы (угольные, HEPA - фильтры) от преждевременного износа.

    Большинство фильтров предварительной очистки устраняют частички размером 5-10 микрон. Несмотря на то, что процентное соотношение частичек размером от 5 микрон по отношению в общей массе пыли находящихся в воздухе мало, он играет очень важную роль, поскольку если в системе не используется фильтр предварительной очистки, или он не достаточно эффективно удаляет частицы, это может привести к преждевременному износу активированного угольного или HEPA-фильтра.

    Представляют собой волокнистую структуру. В таких фильтрах пористые фильтрующие слои различной плотности образуются из волокон, обычно связанных склеивающими веществами. В волокнистом рулонном воздушном фильтре рулоны фильтрующего материала устанавливают на катушки в верхней части фильтра и по мере запыления перематывают на нижние катушки. Использованные материалы выбрасываются; в отдельных случаях возможна их промывка или очистка пневматически, что делает предварительные сетчатые фильтры многоразовыми.

    2.3 Компрессор

    В рабочем цилиндре компрессора (масляного) воздух уменьшает свой объем приблизительно в 10 раз и одновременно нагревается. При высокой температуре происходит частичное испарение масла со стенок компрессора, поэтому сжатый воздух насыщается парами масла.

    Горячий сжатый воздух попадает в ресивер, где несколько охлаждается при контакте со стенками. К сожалению, за время нахождения воздуха в ресивере (обычно это время не превышает 30 секунд) в виде конденсата выпадает лишь незначительная часть влаги, а остальная в виде взвеси мельчайших капель воды или водяного и масляного тумана проходит дальше в трубопровод.

    2.4 Влагоотделитель

    Проходя через керамический фильтрующий элемент влагоотделителя, воздух теряет капли жидкости, превышающие поры фильтра. Часто применяемые недорогие керамические фильтры с большим диаметром пор 30-60 мкм, не способны задерживать мелкие капли конденсата. Температура же воздуха пока ещё слишком высока, поэтому большое количество влаги содержится в виде пара. Если скорость воздуха выше - 1 м/с, конденсат не успевает полностью стечь в нижнюю часть фильтра, крупные капли конденсата дробятся и уносятся потоком воздуха в пневмосистему. Происходит «захлебывание» фильтра.

    2.5 Охладитель

    После влагоотделителя, установленного непосредственно за компрессором, стоит охладитель воздуха, который чаще всего представляет собой радиатор, который рассчитанный на максимальное давление, создаваемое компрессором. Сжатый воздух здесь принудительно охлаждается до комнатной (или ниже) температуры, в связи с чем значительная часть влаги конденсируется в виде тумана и сравнительно крупных капель. Как правило, производителем ограничивается температура воздуха на входе в охладитель на уровне (40 - 60)°С.

    2.6 Вихревой сепаратор

    После охладителя поставим вихревой сепаратор масляно-водяного конденсата. Под действием центробежной силы капли конденсата отбрасываются к стенке сепаратора, где происходит их слияние и укрупнение. Крупные капли под действием силы тяжести стекают в нижнюю часть сепаратора, откуда удаляются с помощью конденсатоотводчика.

    Эффективность вихревого сепаратора очень сильно зависит от скорости потока, поэтому выбор производительности сепаратора необходимо производить таким образом, чтобы снизить вероятность ошибки до минимума.

    Из вихревого сепаратора сжатый воздух попадает в трубопровод. Поскольку температура на улице ниже, чем в компрессорной, при активном контакте со стенками трубопровода воздух охлаждается до комнатной температуры продолжается и процесс образования конденсата из мельчайших частиц водяного и масляного тумана.

    Все предыдущие мероприятия были направлены на то, чтобы количество этого конденсата было, по возможности, минимальным.

    Из трубопровода сжатый воздух, «обогащенный» захваченными по пути продуктами коррозии трубопровода и уже достаточно крупными каплями конденсата, снова поступает в вихревой сепаратор.

    2.7 Фильтры

    В зависимости от размера улавливаемых частиц фильтры делят на:

    · предварительные, или фильтры грубой очистки - останавливают частицы размером свыше 5-40 мкм, в зависимости от выбранного фильтропатрона;

    · фильтры тонкой очистки - останавливают частицы размером более 1 мкм, включая капельную фракцию масла (0,1 мг/м);

    · микрофильтры - останавливают частицы размером более 0,01 мкм, остаточное содержание масла не превышает 0,01 мг/м;

    · фильтры на основе активированного угля - останавливают частицы размером более 0,003 мкм, содержание масла не более 0,005 мг/м.

    Фильтры обязательно должны быть оснащены манометрами или датчиком, регистрирующим разность давления на входе и выходе. По ее величине можно судить о степени загрязненности фильтра.

    3. Микробиология воздуха

    Состав микрофлоры воздуха очень различен. В нем обнаружено до 100 различных видов сапрофитных микроорганизмов: споры гнилостных бактерий; споры плесневых грибов, дрожжей, актиномицет; из вегетативных форм микробов пигментные и беспигментные кокки и бактерии. Наиболее часто в воздухе встречаются следующие виды: Вас. subtilis, Вас. mesentericus, Вас. mycoides, P. glaucum, Mucor mucedo, Т. alba, Т. rosea, Act. griseus, Micr. roseus, Micr. candicans, Staph. citreus, Staph. albus и др.

    Количественный и качественный состав микрофлоры атмосферного воздуха зависит от характера почвенного и водного покрова, общесанитарного состояния местности, сезонных, климатических и метеорологических факторов (интенсивность солнечной радиации, температура, атмосферные осадки и пр.).

    Наиболее чистый воздух в районе полюса, над лесными массивами, морями, горами. Воздух над тайгой, морем содержит лишь единицы микробных клеток в 1 м3.

    Воздух более загрязнен вблизи земной поверхности. Особенно загрязнен воздух в городах в период интенсивного уличного движения: содержание микроорганизмов достигает 4000--9800 особей в 1 м3; в парке, расположенном в окрестностях города, всего 175--345 особей в 1 м3. Зеленые древесные насаждения задерживают пыль и содержащихся в ней микробов.

    Атмосферные осадки при прохождении через воздушную среду растворяют и осаждают находящиеся в ней взвешенные частицы. Поэтому после дождя или снегопада атмосфера в значительной степени очищается от бактерий.

    Зимой благодаря наличию снежного покрова воздух содержит меньше микроорганизмов, чем летом.

    Количество микроорганизмов в воздухе помещений для животных зависит отсанитарно-гигиенического состояния помещения, плотности размещения животных, активности движения и т. д. В воздухе помещений для крупного рогатого скота содержание микроорганизмов достигает 12000--86000 в 1 м3, в свинарниках --25000-- 67000, в птичниках --30000--120000 и более особей в 1 м3 (А. П. Снегов, 1977).

    В закрытых помещениях накапливается микрофлора, выделяемая человеком и животными: стрептококки, пневмококки, дифтероиды, стафилококки, т. е. обитатели верхних дыхательных путей. Кроме представителей носоглоточной микрофлоры в воздухе помещений иногда можно обнаружить микобактерии туберкулеза, вирусы.

    4. Микробиологические исследования воздуха

    Микробиологическое исследование воздуха проводят в целях определения общего количества микроорганизмов (микробного числа) и количества санитарно-показательных стрептококков (иногда и патогенных стафилококков). На предприятиях мясной и молочной промышленности в отдельных производственных помещениях исследуют воздух на содержание в нем спор плесневых грибов и дрожжей. Для этого используют различные питательные среды. Так, общее количество микроорганизмов в воздухе определяют при посеве на МПА; санитарно-показательных микробов -- на кровяной агар, среды Гарро и Туржецкого; патогенных стафилококков -- на желточно-солевой или кровяно-солевой агар; спор плесеней и дрожжей -- на сусло-агар или среду Сабуро; протеолитических бактерий -- на МПЖ или молочный агар.

    Воздух является средой, в которой микроорганизмы не способны размножаться, что обусловлено отсутствием в воздухе питательных веществ, недостатком влаги, губительным действием солнечных лучей. Жизнеспособность микроорганизмов в воздухе обеспечивается нахождением их в частицах воды, слизи, пыли, кусочках почвы.

    Микрофлору воздуха условно разделяют на постоянную, или резидентную (автохтонную), и транзиторную, или временную (аллохтонную).

    К представителям резидентной (автохтонной) микрофлоры, которая в основном формируется за счет микроорганизмов почвы, относятся пигментообразующие кокки (М. roseus, М. flavus‚ S. flava, S. alba), спорообразующие бациллы (В. subtilis, В. micoides, B. mesentericus), актиномиценты (Actinomyces spp.), грибы (Penicillium spp.,Aspergillus). дрожжеподобные грибы рода Candida.

    Транзиторная (аллохтонная) микрофлора воздуха формируется преимущественно за счет микроорганизмов почвы, а также за счет видов, поступающих с поверхности водоемов и из организма людей и животных. При этом каждый человек или животное при обычном дыхании, разговоре, кашле, выделяют так называемый аэрозоль, который представляет собой коллоидную систему, состоящую из воздуха, капелек жидкости или частиц твердого вещества, включающих большое количество микроорганизмов.

    Воздух не является благоприятной средой для развития аллохтонных микроорганизмов, они могут сохранять в воздухе жизнеспособность лишь временно (одни виды более, другие менее продолжительно). Многие виды отмирают сравнительно быстро под влиянием высушивания и солнечной радиации.

    Возможно также попадание микробов в воздух со слущивающимся эпидермисом кожных покровов, с пылью загрязненного постельного белья и зараженной почвы.

    Контаминация воздуха закрытых помещений патогенными микроорганизмами происходит в основном воздушно-капельным путем -- при разговоре, кашле, чихании от больных людей или носителей возбудителей инфекционных болезней, поражающих верхние дыхательные пути.

    Микрофлора воздуха меняется в зависимости от климата, времени года, экологического состояния местности (наличие промышленных предприятий, уровня развития промышленного и сельскохозяйственного производства, транспортной инфраструктуры и т. д.). Большое значение для очистки воздуха имеют зеленые насаждения.

    В составе микрофлоры воздуха преобладают различные виды кокков, споры бацилл, грибов, дрожжи. Могут встречаться патогенные и токсигенные микроорганизмы (стафилококки, стрептококки, туберкулезные палочки и т. д.).

    Их количество в воздухе рабочих и жилых помещений зависит от экологического состояния. Скопление людей, плохая вентиляция, недостаточная уборка способствуют увеличению количества микроорганизмов в воздухе.

    Экологическая оценка воздуха помещений осуществляется по двум показателям: общему количеству микроорганизмов и количеству санитарно-показательных микроорганизмов в 1 м3 воздуха.

    Санитарно-показательными микроорганизмами служат гемолитические стрептококки и стафилококки. Они являются постоянными обитателями верхних дыхательных путей, слизистой носа и ротовой полости человека. Ориентировочно воздух производственных помещений должен содержать от 100 до 500 бактерий в 1 м3. В жилых помещениях -- до 1500 шт., и гемолитических стрептококков -- до 16 шт. в 1 м3. Загрязненным воздух жилых помещений считается при наличии (в 1 м3) 2500 всех бактерий и 38 стрептококков. Воздух холодильных камер исследуется также на загрязненность плесенями.

    При оценке экологического состояния воздуха закрытых помещений в зависимости от задач исследования определяется:

    Общее микробное число (ОМЧ) (КОЕ/м3);

    Количество золотистого стафилококка (Staphylococcus aureus) (КОЕ/м3);

    Количество плесневых и дрожжевых грибов (КОЕ/дм3).

    Воздушная среда, как объект санитарно-микробиологического исследования имеет целый ряд специфических особенностей. Как правило, среди них в первую очередь выделяют: отсутствие питательных веществ и, как следствие, невозможность размножения микроорганизмов;

    Кратковременное нахождение микроорганизмов в воздушной фазе и их самопроизвольная седиментация;

    Невысокие концентрации микроорганизмов в воздухе

    Относительно небольшое число видов микроорганизмов, обнаруживаемых в воздухе.

    Микроорганизмы находятся в воздухе в форме аэрозоля. Микробный аэрозоль - это взвесь в воздухе живых или убитых микробных клеток, адсорбированных на пылевых частицах или заключенных в «капельные ядра». Он включает частицы размером от 0,001 до 100 мкм (мкм - микрометр). Размер частиц определяет 2 важных параметра аэрозоля:

    · скорость оседания (седиментации) - для частиц размером от 10 до 100 мкм составляет 0,03 - 0,3 м/сек. Частицы указанного размера оседают на поверхности за 5-20 минут. Частицы с размером 5 мкм и менее формируют практически не седиментирующий аэрозоль постоянно взвешенных в воздухе частиц;

    · проникающая способность частиц - наиболее опасны частицы с размером от 0,05 до 5 мкм, так как они задерживаются в бронхиолах и альвеолах. Именно эта фракция пылевых частиц принимается во внимание в современной классификации чистых помещений согласно ГОСТ Р 50766 - 95. Частицы с размером от 10 мкм и более задерживаются в верхних отделах дыхательных путей и выводятся из них.

    Опасность микробного аэрозоля для здоровья людей обусловлено не только существованием аэрозольного механизма передачи при ряде инфекционных заболеваний. Микробный аэрозоль может также явиться причиной развития аллергии, а также интоксикаций (отравлений), связанных с ингаляцией эндотоксинов грамотрицательных бактерий, грамположительных бактерий и микотоксинов плесневых грибов. Кроме того, присутствие в воздухе микробных аэрозолей нежелательно при осуществлении ряда технологических процессов.

    4.1 Методы забора проб материала

    микробиологическое исследование воздух

    Санитарно-микробиологическое исследование воздуха включает 4 этапа:

    Отбор проб воздуха;

    Обработку, транспортировку и хранение проб;

    Выделение микроорганизмов из изучаемой пробы;

    Идентификацию выделенных культур микроорганизмов;

    Один из наиболее ответственных моментов, поскольку лежит в основе всего проводимого в дальнейшем исследовании.

    Атмосферный воздух исследуют в жилой зоне на уровне 0,5-2,0 м от земли вблизи источников загрязнения, а также в зеленых зонах (парки, сады) -- для оценки их влияния на микрофлору воздуха.

    В закрытых помещениях отбор проб проводят в 5-ти различных местах обследуемого помещения (по типу «конверта»): 4 точки отбора по углам помещения (на расстоянии 0,5 м от стен), а 5-я точка отбора -- в центре помещения. Пробы воздуха забирают на высоте 1,6-1,8 м от пола -- на уровне дыхания в жилых помещениях и на уровне коек -- в условиях больничных палат. Пробы воздуха необходимо отбирать днем в период активной деятельности человека, после влажной уборки и проветривания помещения.

    При отборе проб воздуха для выделения микроорганизмов используются седиментационный и аспирационный методы.

    Аспирационный метод связан с осаждением микробных частиц из воздуха на какую-либо поверхность.

    Микробную обсемененность воздуха (ОМЧ) определяют по правилу (формуле) В. Л. Омелянского: на 100,0 см2 поверхности питательной среды за 5 минут оседает столько микроорганизмов, сколько их содержится в 10,0 л воздуха (10,0 дм3).

    После соответствующего пересчета ОМЧ выражают в КОЕ бактерий на определенный объем исследуемого воздуха, поскольку считают, что каждая колония -- потомство жизнеспособного микроорганизма.

    Седиментационный метод основан на происходящем под действием силы тяжести осаждении микроорганизмов на поверхность соответствующей плотной питательной среды.

    Чашку с питательной средой (открытую) ставят на горизонтальную поверхность на высоте рабочего стола и оставляют на определенное время.

    Затем чашку закрывают и инкубируют 18-24 часа, после чего подсчитывают количество выросших колоний.

    Аспирационный метод основан на принудительном осаждении микроорганизмов на поверхность соответствующей плотной питательной среды.

    При осуществлении этого метода возможно использование:

    1. Пробоотборника бактериологического аэрозоля, принцип действия которого основан на электризации частиц исследуемого воздуха и последующем осаждении их на электроде противоположного знака.

    2. Аппарата Кротова, принцип действия которого основан на чисто механической аспирации воздуха через щель в крышке прибора. расположенной над вращающейся поверхностью питательной среды в чашке Петри, вследствие чего происходит инерционное осаждение бактерий из воздуха на поверхность питательной среды.

    Экологическое исследование микробной обсемененности объектов окружающей среды

    Эколого-бактериологическое исследование микробной обсемененности предметов внешней среды предусматривает выявление стафилококка, синегнойной палочки, бактерий группы кишечных палочек и аэромонад (строго по показаниям). Забор проб с поверхностей различных объектов осуществляют методом смывов.

    Взятие смывов производят стерильным ватным тампоном на палочках, вмонтированных в пробирки, или марлевыми салфетками, размером 5Ч5 см, простерилизованными в бумажных пакетах или в чашках Петри. Для увлажнения тампонов в пробирки с тампонами наливают по 2,0 мл стерильного физиологического раствора. Салфетку захватывают стерильным пинцетом, увлажняют физиологическим раствором из пробирки, после протирки исследуемый объект помещают в ту же пробирку.

    При контроле мелких предметов смывы забирают с поверхности всего предмета. При контроле предметов с большой поверхностью смывы проводят в нескольких местах исследуемого предмета площадью примерно в 100,0-200,0 см 2 .

    Заключение

    Микробиологические исследования воздуха показали, что присутствие комнатных растений значительно снижает численность бактерий (среди которых могут быть условно-патогенные) и спор плесневых грибов, тогда как отдельно взятое проветривание не изменяет качественного состава микрофлоры и не так сильно снижает общую численность микроорганизмов. Следовательно, очищение воздуха в помещениях более эффективно с помощью комнатных растений, чем проветриванием помещений в течение 10 минут.

    Санитарно-бактериологическое исследование воздуха имеет большое значение в хирургических отделениях больниц, родильных домах, где имеется опасность возникновения внутрибольничной инфекции. Обнаружение Staph, aureus в этих отделениях является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как грозный предвестник возможного появления госпитальной инфекции.

    Выявление вирусов и патогенных бактерий из воздуха закрытых помещений проводят по эпидемиологическим показаниям при оценке эффективности обеззараживания воздуха, при контроле санитарно-микробиологического содержания больничных учреждений и т. д.

    Для выявления микобактерий туберкулеза отбор проб производят при помощи прибора ПОВ-І, в котором в качестве улавливающей используют среду Школьниковой.

    Эталоном чистоты атмосферного воздуха считают показатель бактериальной обсемененности в зеленой зоне (зеленая зона ВДНХ--350 микробов в 1 м 3). Пример значительного обсеменения воздуха -- места скопления людей и транспорта. Воздух операционных до начала операции должен содержать не более 500, а после нее -- не более 1000 микробов в 1 м3. Staph, aureus не должны обнаруживаться при исследовании 250 л воздуха. В предоперационных и перевязочных до начала работы количество микробов в 1 м3 не должно превышать 750. В больничных палатах летом число микробов должно быть менее 3500, а зимой -- менее 5000 в 1 м3. Здесь допускают наличие стафилококков в воздухе: летом -- 24, зимой -- 52 при исследовании 250 л воздуха.

    Список использованных источников

    1. Гусев М. В. Микробиология. Третье издание/ М. В. Гусев, Л. А.Минеева. -М.: Рыбари,2004. - 464 с.

    2. Елинов Н.П. Основы промышленной биотехнологии./ Н.П. Елинов - М. - «Колос-Химия», 2004.-296 с.

    3. Калунянц К.А. Оборудование микробиологических производств/ К.А. Калунянц [и др.].- М. - «Агропромиздат», 1987.-397 с.

    4. Лабинская А. С. Микробиология с техникой микробиологических исследований./ Лабинская А. С.,- М, Медицина, 1978.-394 с.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Особенности микрофлоры воздуха и почвы, кожи и респираторного тракта. Санитарная оценка воздуха. Эпифитные микроорганизмы растений. Определение микробного числа. Аспирационный метод (с помощью аппарата Кротова). Седиментационный (чашечный) метод Коха.

      презентация , добавлен 03.06.2014

      Гигиеническая характеристика физических факторов воздушной среды. Физические свойства атмосферного воздуха. Метеорологические факторы. Ионизация воздуха и атмосферное электричество. Изучение принципов гигиенического нормирования микроклимата помещений.

      презентация , добавлен 05.12.2013

      Седиментационный метод изучения микрофлоры воздуха. Определение микробного числа патогенных микроорганизмов. Результаты визуального обследования тестируемых помещений. Культуральные особенности микроорганизмов. Непатогенные бактерии, определение.

      курсовая работа , добавлен 28.09.2017

      Характеристика основных показателей микрофлоры почвы, воды, воздуха, тела человека и растительного сырья. Роль микроорганизмов в круговороте веществ в природе. Влияние факторов окружающей среды на микроорганизмы. Цели и задачи санитарной микробиологии.

      реферат , добавлен 12.06.2011

      Наиболее вероятные микроклиматические условия проведения спелеологических исследований по Ф. Тромбу. Условия пребывания под землей. Температура воздуха, атмосферное давление и относительная влажность воздуха в пещерах, анализ их целебного воздействия.

      реферат , добавлен 07.12.2012

      Санитарно-показательные микроорганизмы для почвы. Требования, предъявляемые к водопроводной воде. Микрофлора полости рта взрослого. Санитарно-гигиеническое состояние воздуха. Микроорганизмы промежности. Химические факторы, действующие на бактерии.

      тест , добавлен 17.03.2017

      Санитарно-бактериологическое исследование воздуха школьных помещений. Основные методы и техника посева материалов и культур микробов. Методы исследования воздуха в закрытых помещениях. Количество микроорганизмов, содержащееся в воздухе коридора и класса.

      научная работа , добавлен 22.11.2009

      Выбросы загрязняющих веществ и состояние атмосферного воздуха. Результаты государственного контроля за состоянием атмосферного воздуха. Состояние выполнения мероприятий по охране атмосферного воздуха на предприятиях. Кислотные дожди. Охрана.

      реферат , добавлен 13.11.2002

      Географические особенности Арктики. Свойства и условия обитания облигатных психрофилов, изучение сообществ палеоорганизмов вечной мерзлоты. Численность жизнеспособной микрофлоры в мерзлых породах, ее исследование методом накопительного культивирования.

      реферат , добавлен 29.03.2012

      Определение и анализ главных особенностей и сущности эпифитной микрофлоры – микроорганизмов, обитающих на поверхности надземных частей растений и в зоне их ризосферы. Ознакомление с характерными чертами, присущими представителям эпифитной микрофлоры.