Σπίτι · Συσκευές · Πώς να λύσετε λογάριθμους είναι απλά παραδείγματα. Ορισμός του λογάριθμου και των ιδιοτήτων του: θεωρία και επίλυση προβλημάτων

Πώς να λύσετε λογάριθμους είναι απλά παραδείγματα. Ορισμός του λογάριθμου και των ιδιοτήτων του: θεωρία και επίλυση προβλημάτων

Άρα, έχουμε δυνάμεις δύο. Εάν πάρετε τον αριθμό από την κάτω γραμμή, μπορείτε εύκολα να βρείτε τη δύναμη στην οποία θα πρέπει να αυξήσετε δύο για να λάβετε αυτόν τον αριθμό. Για παράδειγμα, για να πάρετε 16, πρέπει να αυξήσετε δύο στην τέταρτη δύναμη. Και για να πάρετε 64, πρέπει να αυξήσετε δύο στην έκτη δύναμη. Αυτό φαίνεται από τον πίνακα.

Και τώρα - στην πραγματικότητα, ο ορισμός του λογάριθμου:

Η βάση ενός λογάριθμου του x είναι η ισχύς στην οποία πρέπει να αυξηθεί το a για να ληφθεί x.

Ονομασία: log a x = b, όπου a είναι η βάση, x είναι το όρισμα, b είναι αυτό με το οποίο ισούται πραγματικά ο λογάριθμος.

Για παράδειγμα, 2 3 = 8 ⇒ log 2 8 = 3 (ο λογάριθμος βάσης 2 του 8 είναι τρεις επειδή 2 3 = 8). Με το ίδιο αρχείο καταγραφής επιτυχίας 2 64 = 6, αφού 2 6 = 64.

Η πράξη εύρεσης του λογάριθμου ενός αριθμού σε μια δεδομένη βάση ονομάζεται λογάριθμος. Λοιπόν, ας προσθέσουμε μια νέα γραμμή στον πίνακα μας:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
ημερολόγιο 2 2 = 1ημερολόγιο 2 4 = 2 ημερολόγιο 2 8 = 3ημερολόγιο 2 16 = 4 ημερολόγιο 2 32 = 5ημερολόγιο 2 64 = 6

Δυστυχώς, δεν υπολογίζονται όλοι οι λογάριθμοι τόσο εύκολα. Για παράδειγμα, δοκιμάστε να βρείτε το αρχείο καταγραφής 2 5 . Ο αριθμός 5 δεν είναι στον πίνακα, αλλά η λογική υπαγορεύει ότι ο λογάριθμος θα βρίσκεται κάπου στο τμήμα. Επειδή 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Αυτοί οι αριθμοί ονομάζονται παράλογοι: οι αριθμοί μετά την υποδιαστολή μπορούν να γραφτούν επ' άπειρον και δεν επαναλαμβάνονται ποτέ. Εάν ο λογάριθμος αποδειχθεί παράλογος, είναι καλύτερα να τον αφήσετε έτσι: log 2 5, log 3 8, log 5 100.

Είναι σημαντικό να κατανοήσουμε ότι ένας λογάριθμος είναι μια έκφραση με δύο μεταβλητές (τη βάση και το όρισμα). Στην αρχή, πολλοί άνθρωποι μπερδεύουν πού είναι η βάση και πού είναι το επιχείρημα. Για να αποφύγετε ενοχλητικές παρεξηγήσεις, απλά δείτε την εικόνα:

Μπροστά μας δεν υπάρχει τίποτα άλλο από τον ορισμό του λογάριθμου. Θυμάμαι: ο λογάριθμος είναι δύναμη, στην οποία πρέπει να ενσωματωθεί η βάση για να ληφθεί ένα όρισμα. Είναι η βάση που ανυψώνεται σε δύναμη - επισημαίνεται με κόκκινο χρώμα στην εικόνα. Αποδεικνύεται ότι η βάση είναι πάντα στο κάτω μέρος! Λέω στους μαθητές μου αυτόν τον υπέροχο κανόνα στο πρώτο μάθημα - και δεν δημιουργείται σύγχυση.

Καταλάβαμε τον ορισμό - το μόνο που μένει είναι να μάθουμε πώς να μετράμε λογάριθμους, δηλ. απαλλαγείτε από το σημάδι "κούτσουρο". Αρχικά, σημειώνουμε ότι δύο σημαντικά στοιχεία προκύπτουν από τον ορισμό:

  1. Το όρισμα και η βάση πρέπει πάντα να είναι μεγαλύτερα από το μηδέν. Αυτό προκύπτει από τον ορισμό ενός βαθμού από έναν ορθολογικό εκθέτη, στον οποίο ανάγεται ο ορισμός ενός λογάριθμου.
  2. Η βάση πρέπει να είναι διαφορετική από τη μία, αφού η μία σε οποιοδήποτε βαθμό παραμένει μία. Εξαιτίας αυτού, το ερώτημα «σε ποια δύναμη πρέπει να υψωθεί κανείς για να πάρει δύο» είναι άνευ σημασίας. Δεν υπάρχει τέτοιο πτυχίο!

Τέτοιοι περιορισμοί ονομάζονται εύρος αποδεκτών τιμών(ODZ). Αποδεικνύεται ότι το ODZ του λογαρίθμου μοιάζει με αυτό: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Σημειώστε ότι δεν υπάρχουν περιορισμοί στον αριθμό b (την τιμή του λογάριθμου). Για παράδειγμα, ο λογάριθμος μπορεί κάλλιστα να είναι αρνητικός: log 2 0,5 = −1, επειδή 0,5 = 2 −1.

Ωστόσο, τώρα εξετάζουμε μόνο αριθμητικές εκφράσεις, όπου δεν απαιτείται να γνωρίζουμε το VA του λογαρίθμου. Όλοι οι περιορισμοί έχουν ήδη ληφθεί υπόψη από τους συντάκτες των προβλημάτων. Αλλά όταν οι λογαριθμικές εξισώσεις και οι ανισότητες μπουν στο παιχνίδι, οι απαιτήσεις DL θα γίνουν υποχρεωτικές. Άλλωστε, η βάση και το επιχείρημα μπορεί να περιέχουν πολύ ισχυρές κατασκευές που δεν ανταποκρίνονται απαραίτητα στους παραπάνω περιορισμούς.

Τώρα ας δούμε το γενικό σχήμα για τον υπολογισμό των λογαρίθμων. Αποτελείται από τρία βήματα:

  1. Να εκφράσετε τη βάση α και το όρισμα x ως δύναμη με την ελάχιστη δυνατή βάση μεγαλύτερη από το ένα. Στην πορεία, είναι καλύτερα να απαλλαγείτε από τα δεκαδικά.
  2. Λύστε την εξίσωση για τη μεταβλητή b: x = a b ;
  3. Ο αριθμός β που προκύπτει θα είναι η απάντηση.

Αυτό είναι όλο! Εάν ο λογάριθμος αποδειχθεί παράλογος, αυτό θα είναι ορατό ήδη στο πρώτο βήμα. Η απαίτηση να είναι η βάση μεγαλύτερη από μία είναι πολύ σημαντική: αυτό μειώνει την πιθανότητα λάθους και απλοποιεί σημαντικά τους υπολογισμούς. Είναι το ίδιο με τα δεκαδικά κλάσματα: αν τα μετατρέψετε αμέσως σε συνηθισμένα, θα υπάρξουν πολύ λιγότερα σφάλματα.

Ας δούμε πώς λειτουργεί αυτό το σχήμα χρησιμοποιώντας συγκεκριμένα παραδείγματα:

Εργο. Υπολογίστε τον λογάριθμο: log 5 25

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του πέντε: 5 = 5 1 ; 25 = 5 2 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Λάβαμε την απάντηση: 2.

Εργο. Υπολογίστε τον λογάριθμο:

Εργο. Υπολογίστε τον λογάριθμο: log 4 64

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 4 = 2 2 ; 64 = 2 6 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Λάβαμε την απάντηση: 3.

Εργο. Υπολογίστε τον λογάριθμο: log 16 1

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 16 = 2 4 ; 1 = 2 0 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Λάβαμε την απάντηση: 0.

Εργο. Υπολογίστε τον λογάριθμο: log 7 14

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του επτά: 7 = 7 1 ; Το 14 δεν μπορεί να αναπαρασταθεί ως δύναμη του επτά, αφού το 7 1< 14 < 7 2 ;
  2. Από την προηγούμενη παράγραφο προκύπτει ότι ο λογάριθμος δεν μετράει.
  3. Η απάντηση είναι καμία αλλαγή: ημερολόγιο 7 14.

Μια μικρή σημείωση για το τελευταίο παράδειγμα. Πώς μπορείτε να είστε σίγουροι ότι ένας αριθμός δεν είναι ακριβής δύναμη ενός άλλου αριθμού; Είναι πολύ απλό - απλώς συνυπολογίστε το σε πρωταρχικούς παράγοντες. Εάν η επέκταση έχει τουλάχιστον δύο διαφορετικούς παράγοντες, ο αριθμός δεν είναι ακριβής ισχύς.

Εργο. Μάθετε αν οι αριθμοί είναι ακριβείς δυνάμεις: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - ακριβής βαθμός, επειδή υπάρχει μόνο ένας πολλαπλασιαστής.
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - δεν είναι ακριβής δύναμη, αφού υπάρχουν δύο παράγοντες: 3 και 2.
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - ακριβής βαθμός.
35 = 7 · 5 - και πάλι δεν είναι ακριβής ισχύς.
14 = 7 · 2 - και πάλι όχι ακριβής βαθμός.

Σημειώστε επίσης ότι οι ίδιοι οι πρώτοι αριθμοί είναι πάντα ακριβείς δυνάμεις του εαυτού τους.

Δεκαδικός λογάριθμος

Μερικοί λογάριθμοι είναι τόσο συνηθισμένοι που έχουν ειδικό όνομα και σύμβολο.

Ο δεκαδικός λογάριθμος του x είναι ο λογάριθμος στη βάση του 10, δηλ. Η ισχύς στην οποία πρέπει να αυξηθεί ο αριθμός 10 για να ληφθεί ο αριθμός x. Ονομασία: lg x.

Για παράδειγμα, log 10 = 1; lg 100 = 2; lg 1000 = 3 - κ.λπ.

Από εδώ και στο εξής, όταν εμφανίζεται μια φράση όπως «Βρείτε το lg 0.01» σε ένα σχολικό βιβλίο, να ξέρετε ότι δεν πρόκειται για τυπογραφικό λάθος. Αυτός είναι ένας δεκαδικός λογάριθμος. Ωστόσο, εάν δεν είστε εξοικειωμένοι με αυτόν τον συμβολισμό, μπορείτε πάντα να τον ξαναγράψετε:
log x = log 10 x

Ό,τι ισχύει για τους συνηθισμένους λογάριθμους ισχύει και για τους δεκαδικούς λογάριθμους.

Φυσικός λογάριθμος

Υπάρχει ένας άλλος λογάριθμος που έχει τη δική του ονομασία. Κατά κάποιο τρόπο, είναι ακόμη πιο σημαντικό από το δεκαδικό. Μιλάμε για τον φυσικό λογάριθμο.

Ο φυσικός λογάριθμος του x είναι ο λογάριθμος στη βάση του e, δηλ. η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός e για να ληφθεί ο αριθμός x. Ονομασία: ln x .

Πολλοί θα ρωτήσουν: ποιος είναι ο αριθμός e; Αυτός είναι ένας παράλογος αριθμός· η ακριβής τιμή του δεν μπορεί να βρεθεί και να γραφτεί. Θα δώσω μόνο τα πρώτα στοιχεία:
e = 2,718281828459...

Δεν θα υπεισέλθουμε σε λεπτομέρειες σχετικά με το τι είναι αυτός ο αριθμός και γιατί χρειάζεται. Απλώς θυμηθείτε ότι το e είναι η βάση του φυσικού λογάριθμου:
ln x = log e x

Έτσι ln e = 1 ; ln e 2 = 2; ln e 16 = 16 - κ.λπ. Από την άλλη πλευρά, το ln 2 είναι ένας παράλογος αριθμός. Γενικά, ο φυσικός λογάριθμος οποιουδήποτε ρητού αριθμού είναι παράλογος. Εκτός, φυσικά, από ένα: ln 1 = 0.

Για τους φυσικούς λογάριθμους, ισχύουν όλοι οι κανόνες που ισχύουν για τους συνηθισμένους λογάριθμους.

Δίνονται οι βασικές ιδιότητες του φυσικού λογάριθμου, γράφημα, πεδίο ορισμού, σύνολο τιμών, βασικοί τύποι, παράγωγος, ολοκλήρωμα, επέκταση σειρών ισχύος και αναπαράσταση της συνάρτησης ln x με χρήση μιγαδικών αριθμών.

Ορισμός

Φυσικός λογάριθμοςείναι η συνάρτηση y = Στο x, το αντίστροφο της εκθετικής, x = e y, και είναι ο λογάριθμος στη βάση του αριθμού e: ln x = log e x.

Ο φυσικός λογάριθμος χρησιμοποιείται ευρέως στα μαθηματικά επειδή η παράγωγός του έχει την απλούστερη μορφή: (ln x)′ = 1/ x.

Με βάση ορισμοί, η βάση του φυσικού λογάριθμου είναι ο αριθμός μι:
e ≅ 2,718281828459045...;
.

Γράφημα της συνάρτησης y = Στο x.

Γράφημα φυσικού λογάριθμου (συναρτήσεις y = Στο x) προκύπτει από την εκθετική γραφική παράσταση με ανάκλαση καθρέφτη σε σχέση με την ευθεία y = x.

Ο φυσικός λογάριθμος ορίζεται για θετικές τιμές της μεταβλητής x. Αυξάνεται μονότονα στο πεδίο ορισμού του.

Στο x → 0 το όριο του φυσικού λογάριθμου είναι μείον το άπειρο (-∞).

Ως x → + ∞, το όριο του φυσικού λογάριθμου είναι συν άπειρο (+ ∞). Για μεγάλο x, ο λογάριθμος αυξάνεται αρκετά αργά. Οποιαδήποτε συνάρτηση ισχύος x a με θετικό εκθέτη a αυξάνεται ταχύτερα από τον λογάριθμο.

Ιδιότητες του φυσικού λογάριθμου

Τομέας ορισμού, σύνολο τιμών, άκρα, αύξηση, μείωση

Ο φυσικός λογάριθμος είναι μια μονότονα αυξανόμενη συνάρτηση, επομένως δεν έχει ακρότατα. Οι κύριες ιδιότητες του φυσικού λογάριθμου παρουσιάζονται στον πίνακα.

ln x τιμές

ln 1 = 0

Βασικοί τύποι για φυσικούς λογάριθμους

Τύποι που προκύπτουν από τον ορισμό της αντίστροφης συνάρτησης:

Η κύρια ιδιότητα των λογαρίθμων και οι συνέπειές της

Φόρμουλα αντικατάστασης βάσης

Οποιοσδήποτε λογάριθμος μπορεί να εκφραστεί με όρους φυσικών λογαρίθμων χρησιμοποιώντας τον τύπο αντικατάστασης βάσης:

Οι αποδείξεις αυτών των τύπων παρουσιάζονται στην ενότητα "Λογάριθμος".

Αντίστροφη συνάρτηση

Το αντίστροφο του φυσικού λογάριθμου είναι ο εκθέτης.

Αν τότε

Αν τότε.

Παράγωγο ln x

Παράγωγο του φυσικού λογάριθμου:
.
Παράγωγος του φυσικού λογάριθμου του συντελεστή x:
.
Παράγωγο νης τάξης:
.
Εξαγωγή τύπων > > >

Αναπόσπαστο

Το ολοκλήρωμα υπολογίζεται με ολοκλήρωση ανά μέρη:
.
Ετσι,

Εκφράσεις με χρήση μιγαδικών αριθμών

Εξετάστε τη συνάρτηση της μιγαδικής μεταβλητής z:
.
Ας εκφράσουμε τη σύνθετη μεταβλητή zμέσω ενότητας rκαι επιχείρημα φ :
.
Χρησιμοποιώντας τις ιδιότητες του λογάριθμου, έχουμε:
.
Ή
.
Το όρισμα φ δεν ορίζεται μοναδικά. Αν βάλεις
, όπου n είναι ακέραιος,
θα είναι ο ίδιος αριθμός για διαφορετικά n.

Επομένως, ο φυσικός λογάριθμος, ως συνάρτηση μιας μιγαδικής μεταβλητής, δεν είναι συνάρτηση μίας τιμής.

Επέκταση σειράς ισχύος

Όταν πραγματοποιείται η επέκταση:

Βιβλιογραφικές αναφορές:
ΣΕ. Bronstein, Κ.Α. Semendyaev, Εγχειρίδιο μαθηματικών για μηχανικούς και φοιτητές, "Lan", 2009.

Λογάριθμος του αριθμού b (b > 0) στη βάση του a (a > 0, a ≠ 1)– εκθέτης στον οποίο πρέπει να αυξηθεί ο αριθμός a για να ληφθεί b.

Ο λογάριθμος βάσης 10 του b μπορεί να γραφτεί ως ημερολόγιο (β), και ο λογάριθμος στη βάση e (φυσικός λογάριθμος) είναι ln(b).

Συχνά χρησιμοποιείται κατά την επίλυση προβλημάτων με λογάριθμους:

Ιδιότητες λογαρίθμων

Υπάρχουν τέσσερις κύριες ιδιότητες των λογαρίθμων.

Έστω a > 0, a ≠ 1, x > 0 και y > 0.

Ιδιότητα 1. Λογάριθμος του προϊόντος

Λογάριθμος του προϊόντοςίσο με το άθροισμα των λογαρίθμων:

log a (x ⋅ y) = log a x + log a y

Ιδιότητα 2. Λογάριθμος του πηλίκου

Λογάριθμος του πηλίκουίση με τη διαφορά των λογαρίθμων:

log a (x / y) = log a x – log a y

Ιδιότητα 3. Λογάριθμος ισχύος

Λογάριθμος βαθμούίσο με το γινόμενο της ισχύος και του λογάριθμου:

Εάν η βάση του λογάριθμου είναι στη μοίρα, τότε ισχύει ένας άλλος τύπος:

Ιδιότητα 4. Λογάριθμος ρίζας

Αυτή η ιδιότητα μπορεί να ληφθεί από την ιδιότητα του λογάριθμου μιας δύναμης, καθώς η nη ρίζα της ισχύος είναι ίση με την ισχύ του 1/n:

Τύπος μετατροπής από λογάριθμο σε μια βάση σε λογάριθμο σε άλλη βάση

Αυτός ο τύπος χρησιμοποιείται επίσης συχνά κατά την επίλυση διαφόρων εργασιών σε λογάριθμους:

Ειδική περίπτωση:

Σύγκριση λογαρίθμων (ανισότητες)

Ας έχουμε 2 συναρτήσεις f(x) και g(x) σε λογάριθμους με τις ίδιες βάσεις και μεταξύ τους υπάρχει πρόσημο ανισότητας:

Για να τα συγκρίνετε, πρέπει πρώτα να δείτε τη βάση των λογαρίθμων:

  • Αν a > 0, τότε f(x) > g(x) > 0
  • Αν 0< a < 1, то 0 < f(x) < g(x)

Πώς να λύσετε προβλήματα με λογάριθμους: παραδείγματα

Προβλήματα με λογαρίθμουςπου περιλαμβάνονται στην Ενιαία Κρατική Εξέταση στα μαθηματικά για την τάξη 11 στην εργασία 5 και την εργασία 7, μπορείτε να βρείτε εργασίες με λύσεις στον ιστότοπό μας στις κατάλληλες ενότητες. Επίσης, εργασίες με λογάριθμους βρίσκονται στην τράπεζα μαθηματικών εργασιών. Μπορείτε να βρείτε όλα τα παραδείγματα κάνοντας αναζήτηση στον ιστότοπο.

Τι είναι ο λογάριθμος

Οι λογάριθμοι θεωρούνταν πάντα ένα δύσκολο θέμα στα σχολικά μαθήματα μαθηματικών. Υπάρχουν πολλοί διαφορετικοί ορισμοί του λογάριθμου, αλλά για κάποιο λόγο τα περισσότερα σχολικά βιβλία χρησιμοποιούν τον πιο περίπλοκο και ανεπιτυχή από αυτούς.

Θα ορίσουμε τον λογάριθμο απλά και ξεκάθαρα. Για να γίνει αυτό, ας δημιουργήσουμε έναν πίνακα:

Άρα, έχουμε δυνάμεις δύο.

Λογάριθμοι - ιδιότητες, τύποι, τρόπος επίλυσης

Εάν πάρετε τον αριθμό από την κάτω γραμμή, μπορείτε εύκολα να βρείτε τη δύναμη στην οποία θα πρέπει να αυξήσετε δύο για να λάβετε αυτόν τον αριθμό. Για παράδειγμα, για να πάρετε 16, πρέπει να αυξήσετε δύο στην τέταρτη δύναμη. Και για να πάρετε 64, πρέπει να αυξήσετε δύο στην έκτη δύναμη. Αυτό φαίνεται από τον πίνακα.

Και τώρα - στην πραγματικότητα, ο ορισμός του λογάριθμου:

η βάση a του ορίσματος x είναι η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός a για να ληφθεί ο αριθμός x.

Ονομασία: log a x = b, όπου a είναι η βάση, x είναι το όρισμα, b είναι αυτό με το οποίο ισούται πραγματικά ο λογάριθμος.

Για παράδειγμα, 2 3 = 8 ⇒log 2 8 = 3 (ο λογάριθμος βάσης 2 του 8 είναι τρεις επειδή 2 3 = 8). Με την ίδια επιτυχία, log 2 64 = 6, αφού 2 6 = 64.

Η πράξη εύρεσης του λογάριθμου ενός αριθμού σε μια δεδομένη βάση ονομάζεται. Λοιπόν, ας προσθέσουμε μια νέα γραμμή στον πίνακα μας:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
ημερολόγιο 2 2 = 1 ημερολόγιο 2 4 = 2 ημερολόγιο 2 8 = 3 ημερολόγιο 2 16 = 4 ημερολόγιο 2 32 = 5 ημερολόγιο 2 64 = 6

Δυστυχώς, δεν υπολογίζονται όλοι οι λογάριθμοι τόσο εύκολα. Για παράδειγμα, προσπαθήστε να βρείτε το αρχείο καταγραφής 2 5. Ο αριθμός 5 δεν βρίσκεται στον πίνακα, αλλά η λογική υπαγορεύει ότι ο λογάριθμος θα βρίσκεται κάπου στο διάστημα. Επειδή 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Αυτοί οι αριθμοί ονομάζονται παράλογοι: οι αριθμοί μετά την υποδιαστολή μπορούν να γραφτούν επ' άπειρον και δεν επαναλαμβάνονται ποτέ. Εάν ο λογάριθμος αποδειχθεί παράλογος, είναι καλύτερα να τον αφήσετε έτσι: log 2 5, log 3 8, log 5 100.

Είναι σημαντικό να κατανοήσουμε ότι ένας λογάριθμος είναι μια έκφραση με δύο μεταβλητές (τη βάση και το όρισμα). Στην αρχή, πολλοί άνθρωποι μπερδεύουν πού είναι η βάση και πού είναι το επιχείρημα. Για να αποφύγετε ενοχλητικές παρεξηγήσεις, απλά δείτε την εικόνα:

Μπροστά μας δεν υπάρχει τίποτα άλλο από τον ορισμό του λογάριθμου. Θυμάμαι: ο λογάριθμος είναι δύναμη, στην οποία πρέπει να ενσωματωθεί η βάση για να ληφθεί ένα όρισμα. Είναι η βάση που ανυψώνεται σε δύναμη - επισημαίνεται με κόκκινο χρώμα στην εικόνα. Αποδεικνύεται ότι η βάση είναι πάντα στο κάτω μέρος! Λέω στους μαθητές μου αυτόν τον υπέροχο κανόνα στο πρώτο μάθημα - και δεν δημιουργείται σύγχυση.

Πώς να μετρήσετε τους λογάριθμους

Καταλάβαμε τον ορισμό - το μόνο που μένει είναι να μάθουμε πώς να μετράμε λογάριθμους, δηλ. απαλλαγείτε από το σημάδι "κούτσουρο". Αρχικά, σημειώνουμε ότι δύο σημαντικά στοιχεία προκύπτουν από τον ορισμό:

  1. Το όρισμα και η βάση πρέπει πάντα να είναι μεγαλύτερα από το μηδέν. Αυτό προκύπτει από τον ορισμό ενός βαθμού από έναν ορθολογικό εκθέτη, στον οποίο ανάγεται ο ορισμός ενός λογάριθμου.
  2. Η βάση πρέπει να είναι διαφορετική από τη μία, αφού η μία σε οποιοδήποτε βαθμό παραμένει μία. Εξαιτίας αυτού, το ερώτημα «σε ποια δύναμη πρέπει να υψωθεί κανείς για να πάρει δύο» είναι άνευ σημασίας. Δεν υπάρχει τέτοιο πτυχίο!

Τέτοιοι περιορισμοί ονομάζονται εύρος αποδεκτών τιμών(ODZ). Αποδεικνύεται ότι το ODZ του λογαρίθμου μοιάζει με αυτό: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Σημειώστε ότι δεν υπάρχουν περιορισμοί στον αριθμό b (την τιμή του λογάριθμου). Για παράδειγμα, ο λογάριθμος μπορεί κάλλιστα να είναι αρνητικός: log 2 0,5 = −1, επειδή 0,5 = 2 −1.

Ωστόσο, τώρα εξετάζουμε μόνο αριθμητικές εκφράσεις, όπου δεν απαιτείται να γνωρίζουμε το VA του λογαρίθμου. Όλοι οι περιορισμοί έχουν ήδη ληφθεί υπόψη από τους συντάκτες των προβλημάτων. Αλλά όταν οι λογαριθμικές εξισώσεις και οι ανισότητες μπουν στο παιχνίδι, οι απαιτήσεις DL θα γίνουν υποχρεωτικές. Άλλωστε, η βάση και το επιχείρημα μπορεί να περιέχουν πολύ ισχυρές κατασκευές που δεν ανταποκρίνονται απαραίτητα στους παραπάνω περιορισμούς.

Τώρα ας δούμε το γενικό σχήμα για τον υπολογισμό των λογαρίθμων. Αποτελείται από τρία βήματα:

  1. Να εκφράσετε τη βάση α και το όρισμα x ως δύναμη με την ελάχιστη δυνατή βάση μεγαλύτερη από το ένα. Στην πορεία, είναι καλύτερα να απαλλαγείτε από τα δεκαδικά.
  2. Λύστε την εξίσωση για τη μεταβλητή b: x = a b ;
  3. Ο αριθμός β που προκύπτει θα είναι η απάντηση.

Αυτό είναι όλο! Εάν ο λογάριθμος αποδειχθεί παράλογος, αυτό θα είναι ορατό ήδη στο πρώτο βήμα. Η απαίτηση να είναι η βάση μεγαλύτερη από μία είναι πολύ σημαντική: αυτό μειώνει την πιθανότητα λάθους και απλοποιεί σημαντικά τους υπολογισμούς. Είναι το ίδιο με τα δεκαδικά κλάσματα: αν τα μετατρέψετε αμέσως σε συνηθισμένα, θα υπάρξουν πολύ λιγότερα σφάλματα.

Ας δούμε πώς λειτουργεί αυτό το σχήμα χρησιμοποιώντας συγκεκριμένα παραδείγματα:

Εργο. Υπολογίστε τον λογάριθμο: log 5 25

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του πέντε: 5 = 5 1 ; 25 = 5 2 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Λάβαμε την απάντηση: 2.

Εργο. Υπολογίστε τον λογάριθμο:

Εργο. Υπολογίστε τον λογάριθμο: log 4 64

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 4 = 2 2 ; 64 = 2 6 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Λάβαμε την απάντηση: 3.

Εργο. Υπολογίστε τον λογάριθμο: log 16 1

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 16 = 2 4 ; 1 = 2 0 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Λάβαμε την απάντηση: 0.

Εργο. Υπολογίστε τον λογάριθμο: log 7 14

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του επτά: 7 = 7 1 ; Το 14 δεν μπορεί να αναπαρασταθεί ως δύναμη του επτά, αφού το 7 1< 14 < 7 2 ;
  2. Από την προηγούμενη παράγραφο προκύπτει ότι ο λογάριθμος δεν μετράει.
  3. Η απάντηση είναι καμία αλλαγή: ημερολόγιο 7 14.

Μια μικρή σημείωση για το τελευταίο παράδειγμα. Πώς μπορείτε να είστε σίγουροι ότι ένας αριθμός δεν είναι ακριβής δύναμη ενός άλλου αριθμού; Είναι πολύ απλό - απλώς συνυπολογίστε το σε πρωταρχικούς παράγοντες. Εάν η επέκταση έχει τουλάχιστον δύο διαφορετικούς παράγοντες, ο αριθμός δεν είναι ακριβής ισχύς.

Εργο. Μάθετε αν οι αριθμοί είναι ακριβείς δυνάμεις: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - ακριβής βαθμός, επειδή υπάρχει μόνο ένας πολλαπλασιαστής.
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - δεν είναι ακριβής δύναμη, αφού υπάρχουν δύο παράγοντες: 3 και 2.
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - ακριβής βαθμός.
35 = 7 · 5 - και πάλι δεν είναι ακριβής ισχύς.
14 = 7 · 2 - και πάλι όχι ακριβής βαθμός.

Σημειώστε επίσης ότι οι ίδιοι οι πρώτοι αριθμοί είναι πάντα ακριβείς δυνάμεις του εαυτού τους.

Δεκαδικός λογάριθμος

Μερικοί λογάριθμοι είναι τόσο συνηθισμένοι που έχουν ειδικό όνομα και σύμβολο.

του ορίσματος x είναι ο λογάριθμος στη βάση του 10, δηλ. Η ισχύς στην οποία πρέπει να αυξηθεί ο αριθμός 10 για να ληφθεί ο αριθμός x. Ονομασία: lg x.

Για παράδειγμα, log 10 = 1; lg 100 = 2; lg 1000 = 3 - κ.λπ.

Από εδώ και στο εξής, όταν εμφανίζεται μια φράση όπως «Βρείτε το lg 0.01» σε ένα σχολικό βιβλίο, να ξέρετε ότι δεν πρόκειται για τυπογραφικό λάθος. Αυτός είναι ένας δεκαδικός λογάριθμος. Ωστόσο, εάν δεν είστε εξοικειωμένοι με αυτόν τον συμβολισμό, μπορείτε πάντα να τον ξαναγράψετε:
log x = log 10 x

Ό,τι ισχύει για τους συνηθισμένους λογάριθμους ισχύει και για τους δεκαδικούς λογάριθμους.

Φυσικός λογάριθμος

Υπάρχει ένας άλλος λογάριθμος που έχει τη δική του ονομασία. Κατά κάποιο τρόπο, είναι ακόμη πιο σημαντικό από το δεκαδικό. Μιλάμε για τον φυσικό λογάριθμο.

του ορίσματος x είναι ο λογάριθμος στη βάση του e, δηλ. η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός e για να ληφθεί ο αριθμός x. Ονομασία: ln x.

Πολλοί θα ρωτήσουν: ποιος είναι ο αριθμός e; Αυτός είναι ένας παράλογος αριθμός· η ακριβής τιμή του δεν μπορεί να βρεθεί και να γραφτεί. Θα δώσω μόνο τα πρώτα στοιχεία:
e = 2,718281828459…

Δεν θα υπεισέλθουμε σε λεπτομέρειες σχετικά με το τι είναι αυτός ο αριθμός και γιατί χρειάζεται. Απλώς θυμηθείτε ότι το e είναι η βάση του φυσικού λογάριθμου:
ln x = log e x

Έτσι ln e = 1; ln e 2 = 2; ln e 16 = 16 - κ.λπ. Από την άλλη πλευρά, το ln 2 είναι ένας παράλογος αριθμός. Γενικά, ο φυσικός λογάριθμος οποιουδήποτε ρητού αριθμού είναι παράλογος. Εκτός, φυσικά, από ένα: ln 1 = 0.

Για τους φυσικούς λογάριθμους, ισχύουν όλοι οι κανόνες που ισχύουν για τους συνηθισμένους λογάριθμους.

Δείτε επίσης:

Λογάριθμος. Ιδιότητες του λογαρίθμου (ισχύς του λογαρίθμου).

Πώς να αναπαραστήσετε έναν αριθμό ως λογάριθμο;

Χρησιμοποιούμε τον ορισμό του λογάριθμου.

Ένας λογάριθμος είναι ένας εκθέτης στον οποίο πρέπει να αυξηθεί η βάση για να ληφθεί ο αριθμός κάτω από το πρόσημο του λογάριθμου.

Έτσι, για να αναπαραστήσετε έναν ορισμένο αριθμό c ως λογάριθμο στη βάση a, πρέπει να βάλετε μια δύναμη με την ίδια βάση με τη βάση του λογαρίθμου κάτω από το πρόσημο του λογαρίθμου και να γράψετε αυτόν τον αριθμό c ως εκθέτη:

Απολύτως οποιοσδήποτε αριθμός μπορεί να αναπαρασταθεί ως λογάριθμος - θετικός, αρνητικός, ακέραιος, κλασματικός, ορθολογικός, παράλογος:

Για να μην μπερδεύετε το α και το γ κάτω από αγχωτικές συνθήκες ενός τεστ ή μιας εξέτασης, μπορείτε να χρησιμοποιήσετε τον ακόλουθο κανόνα απομνημόνευσης:

ότι είναι κάτω κατεβαίνει, ό,τι είναι πάνω ανεβαίνει.

Για παράδειγμα, πρέπει να αναπαραστήσετε τον αριθμό 2 ως λογάριθμο στη βάση 3.

Έχουμε δύο αριθμούς - 2 και 3. Αυτοί οι αριθμοί είναι η βάση και ο εκθέτης, που θα γράψουμε κάτω από το πρόσημο του λογαρίθμου. Απομένει να καθοριστεί ποιος από αυτούς τους αριθμούς θα πρέπει να γραφτεί, στη βάση του βαθμού και ποιος - επάνω, στον εκθέτη.

Η βάση 3 στη σημειογραφία ενός λογάριθμου βρίσκεται στο κάτω μέρος, πράγμα που σημαίνει ότι όταν αντιπροσωπεύουμε δύο ως λογάριθμο στη βάση 3, θα γράψουμε επίσης το 3 στη βάση.

Το 2 είναι υψηλότερο από το τρία. Και σε σημειογραφία του βαθμού δύο γράφουμε πάνω από τα τρία, δηλαδή ως εκθέτη:

Λογάριθμοι. Πρώτο επίπεδο.

Λογάριθμοι

Λογάριθμοςθετικός αριθμός σιβασισμένο στο ένα, Οπου a > 0, a ≠ 1, ονομάζεται ο εκθέτης στον οποίο πρέπει να αυξηθεί ο αριθμός ένα, Αποκτώ σι.

Ορισμός λογάριθμουμπορεί να γραφτεί εν συντομία ως εξής:

Αυτή η ισότητα ισχύει για b > 0, a > 0, a ≠ 1.Συνήθως λέγεται λογαριθμική ταυτότητα.
Η ενέργεια εύρεσης του λογάριθμου ενός αριθμού ονομάζεται κατά λογάριθμο.

Ιδιότητες λογαρίθμων:

Λογάριθμος του προϊόντος:

Λογάριθμος του πηλίκου:

Αντικατάσταση της λογαριθμικής βάσης:

Λογάριθμος βαθμού:

Λογάριθμος της ρίζας:

Λογάριθμος με βάση ισχύος:





Δεκαδικοί και φυσικοί λογάριθμοι.

Δεκαδικός λογάριθμοςΟι αριθμοί καλούν τον λογάριθμο αυτού του αριθμού στη βάση 10 και γράφουν   lg σι
Φυσικός λογάριθμοςαριθμοί ονομάζονται λογάριθμος αυτού του αριθμού προς τη βάση μι, Οπου μι- ένας παράλογος αριθμός περίπου ίσος με 2,7. Ταυτόχρονα γράφουν ln σι.

Άλλες σημειώσεις για την άλγεβρα και τη γεωμετρία

Βασικές ιδιότητες των λογαρίθμων

Βασικές ιδιότητες των λογαρίθμων

Οι λογάριθμοι, όπως κάθε αριθμός, μπορούν να προστεθούν, να αφαιρεθούν και να μετασχηματιστούν με κάθε τρόπο. Αλλά επειδή οι λογάριθμοι δεν είναι ακριβώς συνηθισμένοι αριθμοί, υπάρχουν κανόνες εδώ, οι οποίοι καλούνται κύριες ιδιότητες.

Πρέπει οπωσδήποτε να γνωρίζετε αυτούς τους κανόνες - χωρίς αυτούς, δεν μπορεί να λυθεί ούτε ένα σοβαρό λογαριθμικό πρόβλημα. Επιπλέον, υπάρχουν πολύ λίγα από αυτά - μπορείτε να μάθετε τα πάντα σε μια μέρα. Ας ξεκινήσουμε λοιπόν.

Πρόσθεση και αφαίρεση λογαρίθμων

Θεωρήστε δύο λογάριθμους με τις ίδιες βάσεις: log a x και log a y. Στη συνέχεια μπορούν να προστεθούν και να αφαιρεθούν και:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Άρα, το άθροισμα των λογαρίθμων είναι ίσο με τον λογάριθμο του γινομένου και η διαφορά είναι ίση με τον λογάριθμο του πηλίκου. Παρακαλώ σημειώστε: το βασικό σημείο εδώ είναι πανομοιότυπους λόγους. Εάν οι λόγοι είναι διαφορετικοί, αυτοί οι κανόνες δεν λειτουργούν!

Αυτοί οι τύποι θα σας βοηθήσουν να υπολογίσετε μια λογαριθμική παράσταση ακόμα και όταν δεν λαμβάνονται υπόψη τα επιμέρους μέρη της (δείτε το μάθημα «Τι είναι ο λογάριθμος»). Ρίξτε μια ματιά στα παραδείγματα και δείτε:

Μητρώο 6 4 + ημερολόγιο 6 9.

Επειδή οι λογάριθμοι έχουν τις ίδιες βάσεις, χρησιμοποιούμε τον τύπο αθροίσματος:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Εργο. Βρείτε την τιμή της παράστασης: log 2 48 − log 2 3.

Οι βάσεις είναι ίδιες, χρησιμοποιούμε τον τύπο διαφοράς:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Εργο. Βρείτε την τιμή της παράστασης: log 3 135 − log 3 5.

Και πάλι οι βάσεις είναι ίδιες, οπότε έχουμε:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Όπως μπορείτε να δείτε, οι αρχικές εκφράσεις αποτελούνται από «κακούς» λογάριθμους, οι οποίοι δεν υπολογίζονται χωριστά. Όμως μετά τους μετασχηματισμούς προκύπτουν εντελώς κανονικοί αριθμοί. Πολλά τεστ βασίζονται σε αυτό το γεγονός. Ναι, οι εκφράσεις που μοιάζουν με τεστ προσφέρονται με κάθε σοβαρότητα (μερικές φορές χωρίς σχεδόν καμία αλλαγή) στην Εξέταση Ενιαίου Κράτους.

Εξαγωγή του εκθέτη από τον λογάριθμο

Τώρα ας περιπλέκουμε λίγο το έργο. Τι γίνεται αν η βάση ή το όρισμα ενός λογαρίθμου είναι δύναμη; Τότε ο εκθέτης αυτού του βαθμού μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου σύμφωνα με τους ακόλουθους κανόνες:

Είναι εύκολο να δει κανείς ότι ο τελευταίος κανόνας ακολουθεί τους δύο πρώτους. Αλλά είναι καλύτερα να το θυμάστε ούτως ή άλλως - σε ορισμένες περιπτώσεις θα μειώσει σημαντικά τον αριθμό των υπολογισμών.

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα αν παρατηρηθεί το ODZ του λογαρίθμου: a > 0, a ≠ 1, x > 0. Και κάτι ακόμα: μάθετε να εφαρμόζετε όλους τους τύπους όχι μόνο από αριστερά προς τα δεξιά, αλλά και αντίστροφα , δηλ. Μπορείτε να εισάγετε τους αριθμούς πριν από το σύμβολο του λογάριθμου στον ίδιο τον λογάριθμο.

Πώς να λύσετε λογάριθμους

Αυτό είναι που απαιτείται συχνότερα.

Εργο. Βρείτε την τιμή της παράστασης: log 7 49 6 .

Ας απαλλαγούμε από το βαθμό στο όρισμα χρησιμοποιώντας τον πρώτο τύπο:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι ο παρονομαστής περιέχει έναν λογάριθμο, η βάση και το όρισμα του οποίου είναι ακριβείς δυνάμεις: 16 = 2 4 ; 49 = 7 2. Εχουμε:

Νομίζω ότι το τελευταίο παράδειγμα απαιτεί κάποια διευκρίνιση. Πού πήγαν οι λογάριθμοι; Μέχρι την τελευταία στιγμή δουλεύουμε μόνο με τον παρονομαστή. Παρουσιάσαμε τη βάση και το όρισμα του λογάριθμου που στέκεται εκεί με τη μορφή δυνάμεων και βγάλαμε τους εκθέτες - πήραμε ένα κλάσμα "τριώροφο".

Τώρα ας δούμε το κύριο κλάσμα. Ο αριθμητής και ο παρονομαστής περιέχουν τον ίδιο αριθμό: log 2 7. Εφόσον το log 2 7 ≠ 0, μπορούμε να μειώσουμε το κλάσμα - τα 2/4 θα παραμείνουν στον παρονομαστή. Σύμφωνα με τους κανόνες της αριθμητικής, τα τέσσερα μπορούν να μεταφερθούν στον αριθμητή, πράγμα που έγινε. Το αποτέλεσμα ήταν η απάντηση: 2.

Μετάβαση σε νέα βάση

Μιλώντας για τους κανόνες πρόσθεσης και αφαίρεσης λογαρίθμων, τόνισα συγκεκριμένα ότι λειτουργούν μόνο με τις ίδιες βάσεις. Κι αν οι λόγοι είναι διαφορετικοί; Τι γίνεται αν δεν είναι ακριβείς δυνάμεις του ίδιου αριθμού;

Οι φόρμουλες για τη μετάβαση σε ένα νέο θεμέλιο έρχονται στη διάσωση. Ας τα διατυπώσουμε με τη μορφή ενός θεωρήματος:

Ας δοθεί το λογάριθμο log a x. Τότε για οποιονδήποτε αριθμό c τέτοιο ώστε c > 0 και c ≠ 1, η ισότητα είναι αληθής:

Συγκεκριμένα, αν θέσουμε c = x, παίρνουμε:

Από τον δεύτερο τύπο προκύπτει ότι η βάση και το όρισμα του λογάριθμου μπορούν να αντικατασταθούν, αλλά σε αυτήν την περίπτωση ολόκληρη η έκφραση "αναποδογυρίζεται", δηλ. ο λογάριθμος εμφανίζεται στον παρονομαστή.

Αυτοί οι τύποι βρίσκονται σπάνια σε συνηθισμένες αριθμητικές εκφράσεις. Είναι δυνατό να αξιολογηθεί πόσο βολικές είναι μόνο όταν επιλύονται λογαριθμικές εξισώσεις και ανισώσεις.

Ωστόσο, υπάρχουν προβλήματα που δεν μπορούν να λυθούν καθόλου παρά μόνο με τη μετάβαση σε ένα νέο θεμέλιο. Ας δούμε μερικά από αυτά:

Εργο. Βρείτε την τιμή της παράστασης: log 5 16 log 2 25.

Σημειώστε ότι τα ορίσματα και των δύο λογαρίθμων περιέχουν ακριβείς δυνάμεις. Ας βγάλουμε τους δείκτες: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Τώρα ας «αντιστρέψουμε» τον δεύτερο λογάριθμο:

Δεδομένου ότι το γινόμενο δεν αλλάζει κατά την αναδιάταξη των παραγόντων, πολλαπλασιάσαμε ήρεμα τέσσερα και δύο και στη συνέχεια ασχοληθήκαμε με τους λογάριθμους.

Εργο. Βρείτε την τιμή της παράστασης: log 9 100 lg 3.

Η βάση και το όρισμα του πρώτου λογάριθμου είναι ακριβείς δυνάμεις. Ας το γράψουμε αυτό και ας απαλλαγούμε από τους δείκτες:

Τώρα ας απαλλαγούμε από τον δεκαδικό λογάριθμο μεταβαίνοντας σε μια νέα βάση:

Βασική λογαριθμική ταυτότητα

Συχνά στη διαδικασία επίλυσης είναι απαραίτητο να αναπαραστήσουμε έναν αριθμό ως λογάριθμο σε μια δεδομένη βάση.

Σε αυτήν την περίπτωση, οι παρακάτω τύποι θα μας βοηθήσουν:

Στην πρώτη περίπτωση, ο αριθμός n γίνεται ο εκθέτης στο όρισμα. Ο αριθμός n μπορεί να είναι απολύτως οτιδήποτε, γιατί είναι απλώς μια λογαριθμική τιμή.

Ο δεύτερος τύπος είναι στην πραγματικότητα ένας παραφρασμένος ορισμός. Έτσι λέγεται: .

Στην πραγματικότητα, τι συμβαίνει αν ο αριθμός b αυξηθεί σε τέτοια δύναμη που ο αριθμός b σε αυτή τη δύναμη να δώσει τον αριθμό a; Αυτό είναι σωστό: το αποτέλεσμα είναι ο ίδιος αριθμός α. Διαβάστε ξανά προσεκτικά αυτήν την παράγραφο - πολλοί άνθρωποι κολλάνε σε αυτήν.

Όπως οι τύποι για τη μετάβαση σε μια νέα βάση, η βασική λογαριθμική ταυτότητα είναι μερικές φορές η μόνη δυνατή λύση.

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι το log 25 64 = log 5 8 - απλά πήρε το τετράγωνο από τη βάση και το όρισμα του λογαρίθμου. Λαμβάνοντας υπόψη τους κανόνες για τον πολλαπλασιασμό των δυνάμεων με την ίδια βάση, παίρνουμε:

Αν κάποιος δεν ξέρει, αυτή ήταν μια πραγματική εργασία από την Ενιαία Κρατική Εξέταση :)

Λογαριθμική μονάδα και λογαριθμικό μηδέν

Εν κατακλείδι, θα δώσω δύο ταυτότητες που δύσκολα μπορούν να ονομαστούν ιδιότητες - μάλλον είναι συνέπειες του ορισμού του λογαρίθμου. Εμφανίζονται συνεχώς σε προβλήματα και, παραδόξως, δημιουργούν προβλήματα ακόμη και σε «προχωρημένους» μαθητές.

  1. log a a = 1 είναι. Θυμηθείτε μια για πάντα: ο λογάριθμος σε οποιαδήποτε βάση α αυτής της ίδιας της βάσης είναι ίσος με ένα.
  2. log a 1 = 0 είναι. Η βάση a μπορεί να είναι οτιδήποτε, αλλά αν το όρισμα περιέχει ένα, ο λογάριθμος είναι ίσος με μηδέν! Επειδή το 0 = 1 είναι άμεση συνέπεια του ορισμού.

Αυτά είναι όλα τα ακίνητα. Φροντίστε να εξασκηθείτε στην εφαρμογή τους! Κατεβάστε το cheat sheet στην αρχή του μαθήματος, εκτυπώστε το και λύστε τα προβλήματα.

\(a^(b)=c\) \(\αριστερό βέλος\) \(\log_(a)(c)=b\)

Ας το εξηγήσουμε πιο απλά. Για παράδειγμα, το \(\log_(2)(8)\) ισούται με την ισχύ στην οποία πρέπει να αυξηθεί το \(2\) για να ληφθεί \(8\). Από αυτό είναι σαφές ότι \(\log_(2)(8)=3\).

Παραδείγματα:

\(\log_(5)(25)=2\)

επειδή \(5^(2)=25\)

\(\log_(3)(81)=4\)

επειδή \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

επειδή \(2^(-5)=\)\(\frac(1)(32)\)

Επιχείρημα και βάση λογάριθμου

Οποιοσδήποτε λογάριθμος έχει την ακόλουθη «ανατομία»:

Το όρισμα ενός λογάριθμου γράφεται συνήθως στο επίπεδό του και η βάση γράφεται σε δείκτη πιο κοντά στο πρόσημο του λογάριθμου. Και αυτό το λήμμα έχει ως εξής: «λογάριθμος του είκοσι πέντε στη βάση του πέντε».

Πώς να υπολογίσετε τον λογάριθμο;

Για να υπολογίσετε τον λογάριθμο, πρέπει να απαντήσετε στην ερώτηση: σε ποια δύναμη πρέπει να ανυψωθεί η βάση για να ληφθεί το όρισμα;

Για παράδειγμα, υπολογίστε τον λογάριθμο: α) \(\log_(4)(16)\) β) \(\log_(3)\)\(\frac(1)(3)\) γ) \(\log_(\ sqrt (5))(1)\) δ) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

α) Σε ποια δύναμη πρέπει να ανυψωθεί το \(4\) για να πάρει το \(16\); Προφανώς το δεύτερο. Να γιατί:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

γ) Σε ποια δύναμη πρέπει να αυξηθεί το \(\sqrt(5)\) για να ληφθεί το \(1\); Ποια δύναμη κάνει οποιοδήποτε νούμερο ένα; Μηδέν, φυσικά!

\(\log_(\sqrt(5))(1)=0\)

δ) Σε ποια δύναμη πρέπει να αυξηθεί το \(\sqrt(7)\) για να ληφθεί το \(\sqrt(7)\); Πρώτον, οποιοσδήποτε αριθμός στην πρώτη δύναμη είναι ίσος με τον εαυτό του.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

ε) Σε ποια δύναμη πρέπει να αυξηθεί το \(3\) για να ληφθεί \(\sqrt(3)\); Από γνωρίζουμε ότι είναι μια κλασματική δύναμη, που σημαίνει ότι η τετραγωνική ρίζα είναι η δύναμη του \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Παράδειγμα : Υπολογισμός λογάριθμου \(\log_(4\sqrt(2))(8)\)

Λύση :

\(\log_(4\sqrt(2))(8)=x\)

Πρέπει να βρούμε την τιμή του λογάριθμου, ας τη συμβολίσουμε ως x. Τώρα ας χρησιμοποιήσουμε τον ορισμό του λογάριθμου:
\(\log_(a)(c)=b\) \(\αριστερό βέλος\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Τι συνδέει τα \(4\sqrt(2)\) και \(8\); Δύο, επειδή και οι δύο αριθμοί μπορούν να αναπαρασταθούν με δύο:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Στα αριστερά χρησιμοποιούμε τις ιδιότητες του βαθμού: \(a^(m)\cdot a^(n)=a^(m+n)\) και \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Οι βάσεις είναι ίσες, προχωράμε στην ισότητα των δεικτών

\ (\ frac (5x) (2) \) \ (= 3 \)


Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με \(\frac(2)(5)\)


Η ρίζα που προκύπτει είναι η τιμή του λογάριθμου

Απάντηση : \(\log_(4\sqrt(2))(8)=1,2\)

Γιατί εφευρέθηκε ο λογάριθμος;

Για να το καταλάβουμε αυτό, ας λύσουμε την εξίσωση: \(3^(x)=9\). Απλώς αντιστοιχίστε το \(x\) για να λειτουργήσει η ισότητα. Φυσικά, \ (x = 2 \).

Λύστε τώρα την εξίσωση: \(3^(x)=8\). Με τι ισούται το x; Αυτό είναι το νόημα.

Οι πιο έξυπνοι θα πουν: «Το X είναι λίγο λιγότερο από δύο». Πώς ακριβώς γράφεται αυτός ο αριθμός; Για να απαντηθεί αυτή η ερώτηση, εφευρέθηκε ο λογάριθμος. Χάρη σε αυτόν, η απάντηση εδώ μπορεί να γραφτεί ως \(x=\log_(3)(8)\).

Θέλω να τονίσω ότι \(\log_(3)(8)\), όπως οποιοσδήποτε λογάριθμος είναι απλώς ένας αριθμός. Ναι, φαίνεται ασυνήθιστο, αλλά είναι σύντομο. Γιατί αν θέλαμε να το γράψουμε ως δεκαδικό, θα έμοιαζε κάπως έτσι: \(1.892789260714.....\)

Παράδειγμα : Λύστε την εξίσωση \(4^(5x-4)=10\)

Λύση :

\(4^(5x-4)=10\)

Τα \(4^(5x-4)\) και \(10\) δεν μπορούν να μεταφερθούν στην ίδια βάση. Αυτό σημαίνει ότι δεν μπορείτε να κάνετε χωρίς λογάριθμο.

Ας χρησιμοποιήσουμε τον ορισμό του λογάριθμου:
\(a^(b)=c\) \(\αριστερό βέλος\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Ας αναστρέψουμε την εξίσωση έτσι ώστε το Χ να βρίσκεται στα αριστερά

\(5x-4=\log_(4)(10)\)

Πριν από εμάς. Ας μετακινηθούμε \(4\) προς τα δεξιά.

Και μην φοβάστε τον λογάριθμο, αντιμετώπισέ τον σαν έναν συνηθισμένο αριθμό.

\(5x=\log_(4)(10)+4\)

Διαιρέστε την εξίσωση με το 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Αυτή είναι η ρίζα μας. Ναι, φαίνεται ασυνήθιστο, αλλά δεν επιλέγουν την απάντηση.

Απάντηση : \(\frac(\log_(4)(10)+4)(5)\)

Δεκαδικοί και φυσικοί λογάριθμοι

Όπως αναφέρεται στον ορισμό ενός λογάριθμου, η βάση του μπορεί να είναι οποιοσδήποτε θετικός αριθμός εκτός από ένα \((a>0, a\neq1)\). Και μεταξύ όλων των πιθανών βάσεων, υπάρχουν δύο που εμφανίζονται τόσο συχνά που εφευρέθηκε μια ειδική σύντομη σημειογραφία για τους λογάριθμους με αυτές:

Φυσικός λογάριθμος: ένας λογάριθμος του οποίου η βάση είναι ο αριθμός του Euler \(e\) (ίσος με περίπου \(2.7182818…\)), και ο λογάριθμος γράφεται ως \(\ln(a)\).

Αυτό είναι, Το \(\ln(a)\) είναι το ίδιο με το \(\log_(e)(a)\)

Δεκαδικός λογάριθμος: Ένας λογάριθμος του οποίου η βάση είναι 10 γράφεται \(\lg(a)\).

Αυτό είναι, Το \(\lg(a)\) είναι το ίδιο με το \(\log_(10)(a)\), όπου \(a\) είναι κάποιος αριθμός.

Βασική λογαριθμική ταυτότητα

Οι λογάριθμοι έχουν πολλές ιδιότητες. Ένα από αυτά ονομάζεται «Βασική Λογαριθμική Ταυτότητα» και μοιάζει με αυτό:

\(a^(\log_(a)(c))=c\)

Αυτή η ιδιότητα προκύπτει άμεσα από τον ορισμό. Ας δούμε πώς ακριβώς προέκυψε αυτή η φόρμουλα.

Ας θυμηθούμε μια σύντομη σημειογραφία του ορισμού του λογάριθμου:

αν \(a^(b)=c\), τότε \(\log_(a)(c)=b\)

Δηλαδή, το \(b\) είναι το ίδιο με το \(\log_(a)(c)\). Τότε μπορούμε να γράψουμε \(\log_(a)(c)\) αντί για \(b\) στον τύπο \(a^(b)=c\). Αποδείχθηκε \(a^(\log_(a)(c))=c\) - η κύρια λογαριθμική ταυτότητα.

Μπορείτε να βρείτε άλλες ιδιότητες των λογαρίθμων. Με τη βοήθειά τους, μπορείτε να απλοποιήσετε και να υπολογίσετε τις τιμές των παραστάσεων με λογάριθμους, οι οποίοι είναι δύσκολο να υπολογιστούν άμεσα.

Παράδειγμα : Βρείτε την τιμή της παράστασης \(36^(\log_(6)(5))\)

Λύση :

Απάντηση : \(25\)

Πώς να γράψετε έναν αριθμό ως λογάριθμο;

Όπως αναφέρθηκε παραπάνω, οποιοσδήποτε λογάριθμος είναι απλώς ένας αριθμός. Το αντίστροφο ισχύει επίσης: οποιοσδήποτε αριθμός μπορεί να γραφτεί ως λογάριθμος. Για παράδειγμα, γνωρίζουμε ότι το \(\log_(2)(4)\) είναι ίσο με δύο. Στη συνέχεια, αντί για δύο, μπορείτε να γράψετε \(\log_(2)(4)\).

Αλλά το \(\log_(3)(9)\) είναι επίσης ίσο με \(2\), που σημαίνει ότι μπορούμε επίσης να γράψουμε \(2=\log_(3)(9)\) . Ομοίως με το \(\log_(5)(25)\), και με το \(\log_(9)(81)\), κ.λπ. Δηλαδή αποδεικνύεται

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Έτσι, αν χρειαζόμαστε, μπορούμε να γράψουμε δύο ως λογάριθμο με οποιαδήποτε βάση οπουδήποτε (είτε σε μια εξίσωση, σε μια έκφραση ή σε μια ανισότητα) - γράφουμε απλώς τη βάση στο τετράγωνο ως όρισμα.

Είναι το ίδιο με το τριπλό – μπορεί να γραφτεί ως \(\log_(2)(8)\), ή ως \(\log_(3)(27)\), ή ως \(\log_(4)( 64) \)... Εδώ γράφουμε τη βάση στον κύβο ως όρισμα:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Και με τέσσερα:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Και με μείον ένα:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

Και με το ένα τρίτο:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Οποιοσδήποτε αριθμός \(a\) μπορεί να αναπαρασταθεί ως λογάριθμος με βάση \(b\): \(a=\log_(b)(b^(a))\)

Παράδειγμα : Βρείτε το νόημα της έκφρασης \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Λύση :

Απάντηση : \(1\)

Ο λογάριθμος ενός θετικού αριθμού b στη βάση a (a>0, a δεν είναι ίσος με 1) είναι ένας αριθμός c τέτοιος ώστε a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Σημειώστε ότι ο λογάριθμος ενός μη θετικού αριθμού είναι απροσδιόριστος. Επιπλέον, η βάση του λογάριθμου πρέπει να είναι ένας θετικός αριθμός που δεν είναι ίσος με 1. Για παράδειγμα, αν τετραγωνίσουμε -2, παίρνουμε τον αριθμό 4, αλλά αυτό δεν σημαίνει ότι ο λογάριθμος στη βάση -2 του 4 είναι ίσο με 2.

Βασική λογαριθμική ταυτότητα

a log a b = b (a > 0, a ≠ 1) (2)

Είναι σημαντικό το εύρος του ορισμού της δεξιάς και της αριστερής πλευράς αυτού του τύπου να είναι διαφορετικό. Η αριστερή πλευρά ορίζεται μόνο για b>0, a>0 και a ≠ 1. Η δεξιά πλευρά ορίζεται για οποιοδήποτε b και δεν εξαρτάται καθόλου από το a. Έτσι, η εφαρμογή της βασικής λογαριθμικής «ταυτότητας» κατά την επίλυση εξισώσεων και ανισώσεων μπορεί να οδηγήσει σε αλλαγή στην ΟΔ.

Δύο προφανείς συνέπειες του ορισμού του λογάριθμου

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Πράγματι, όταν ανεβάζουμε τον αριθμό a στην πρώτη δύναμη, παίρνουμε τον ίδιο αριθμό, και όταν τον ανεβάζουμε στη μηδενική ισχύ, παίρνουμε ένα.

Λογάριθμος του γινομένου και λογάριθμος του πηλίκου

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Θα ήθελα να προειδοποιήσω τους μαθητές να μην χρησιμοποιούν αλόγιστα αυτούς τους τύπους κατά την επίλυση λογαριθμικών εξισώσεων και ανισοτήτων. Όταν τα χρησιμοποιείτε "από αριστερά προς τα δεξιά", το ODZ στενεύει και όταν μετακινείται από το άθροισμα ή τη διαφορά λογαρίθμων στον λογάριθμο του γινομένου ή του πηλίκου, το ODZ επεκτείνεται.

Πράγματι, η έκφραση log a (f (x) g (x)) ορίζεται σε δύο περιπτώσεις: όταν και οι δύο συναρτήσεις είναι αυστηρά θετικές ή όταν η f(x) και η g(x) είναι και οι δύο μικρότερες από το μηδέν.

Μετατρέποντας αυτήν την παράσταση στο άθροισμα log a f (x) + log a g (x), αναγκαζόμαστε να περιοριστούμε μόνο στην περίπτωση που f(x)>0 και g(x)>0. Υπάρχει μια στένωση του εύρους των αποδεκτών τιμών, και αυτό είναι κατηγορηματικά απαράδεκτο, καθώς μπορεί να οδηγήσει σε απώλεια λύσεων. Παρόμοιο πρόβλημα υπάρχει για τον τύπο (6).

Ο βαθμός μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Και πάλι θα ήθελα να ζητήσω ακρίβεια. Εξετάστε το ακόλουθο παράδειγμα:

Log a (f (x) 2 = 2 log a f (x)

Η αριστερή πλευρά της ισότητας ορίζεται προφανώς για όλες τις τιμές του f(x) εκτός από το μηδέν. Η δεξιά πλευρά είναι μόνο για f(x)>0! Βγάζοντας τον βαθμό από τον λογάριθμο, περιορίζουμε ξανά το ODZ. Η αντίστροφη διαδικασία οδηγεί σε επέκταση του εύρους των αποδεκτών τιμών. Όλες αυτές οι παρατηρήσεις ισχύουν όχι μόνο για την ισχύ 2, αλλά και για οποιαδήποτε άρτια δύναμη.

Φόρμουλα για μετάβαση σε νέα βάση

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Αυτή η σπάνια περίπτωση όταν το ODZ δεν αλλάζει κατά τη διάρκεια του μετασχηματισμού. Εάν έχετε επιλέξει σοφά τη βάση c (θετική και όχι ίση με 1), η φόρμουλα για τη μετάβαση σε μια νέα βάση είναι απολύτως ασφαλής.

Εάν επιλέξουμε τον αριθμό b ως τη νέα βάση c, λαμβάνουμε μια σημαντική ειδική περίπτωση του τύπου (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Μερικά απλά παραδείγματα με λογάριθμους

Παράδειγμα 1. Υπολογίστε: log2 + log50.
Λύση. log2 + log50 = log100 = 2. Χρησιμοποιήσαμε το άθροισμα των λογαρίθμων τύπου (5) και τον ορισμό του δεκαδικού λογάριθμου.


Παράδειγμα 2. Υπολογίστε: lg125/lg5.
Λύση. log125/log5 = log 5 125 = 3. Χρησιμοποιήσαμε τον τύπο για τη μετάβαση σε νέα βάση (8).

Πίνακας τύπων που σχετίζονται με λογάριθμους

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)