Главная · Монтаж · Как обозначается потеря несущей способности строительной конструкции. Классификация строительных конструкций по огнестойкости. Установка протвопожарных дверей

Как обозначается потеря несущей способности строительной конструкции. Классификация строительных конструкций по огнестойкости. Установка протвопожарных дверей

Строительные конструкции зданий и сооружений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости :

1) ненормируемый; 2) не менее 15 минут; 3) не менее 30 минут; 4) не менее 45 минут;

5) не менее 60 мин.; 6) не менее 90 минут; 7) не менее 120 минут; 8) не менее 150 минут;

9) не менее 180 минут; 10) не менее 240 минут; 11) не менее 360 минут.

Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний .

Пределы огнестойкости строительных конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическим методом, установленным нормативными документами по пожарной безопасности .

Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности .

Фактический предел огнестойкости строительных конструкций во многих странах определяют экспериментальным путем посредством проведения натурных огневых испытаний строительных конструкций. Метод натурных огневых испытаний регламентирован международным стандартом ISO/DIS 834 "Испытание на огнестойкость элементов строительных конструкций". В России с 01.01.96 г. пределы огнестойкости строительных конструкций и их условные обозначения устанавливают по ГОСТ 30247, ГОСТ 51136, ГОСТ Р 53307 и ГОСТ Р 53308 по времени наступления одного или последовательно нескольких, нормируемых для данной конструкции, признаков предельных состояний.

В ГОСТ 30247.0-94 приведены общие положения, в том числе определения терминов, используемых при установлении огнестойкости конструкций, формулировка сущности методов испытания на огнестойкость, общие требования к испытательному оборудованию, температурному режиму, образцам и процедуре проведения испытаний.

В этом же стандарте перечислены основные виды предельных состояний конструкций по огнестойкости, основные положения по оценке результатов испытаний, требования к протоколу испытаний. Стандарт устанавливает для одной и той же конструкции различные пределы огнестойкости по парным признакам наступления предельного состояния. Так, испытания стены на огнестойкость могут быть продолжены до полного ее разрушения, а в процессе испытаний будут установлены пределы ее огнестойкости по признаку потери теплоизолирующей способности и по признаку потери целостности в зависимости от того, где установлена несущая стена. Требования по ее теплоизолирующей способности могут быть следующими:

для межквартирной стены – 30 мин., межсекционной – 45 мин., внутриквартирной – 15 минут. Но по несущей способности она должна выдерживать, например:

Все 120 минут в зданиях I-ой степени огнестойкости;

90 минут в зданиях II -ой степени огнестойкости;

45 минут в зданиях III-ой степени огнестойкости;

15 минут в зданиях IV-ой степени огнестойкости.

В ходе проектирования данные особенности должны учитываться и это, в конечном итоге, должно выразиться в выборе наиболее приемлемых строительных материалов, входящих в состав строительной конструкции, и главным образом, в экономии финансовых средств.

В соответствии со статьей 35, ч.2 и ч.5 Технического регламента о требованиях пожарной безопасности строительные конструкции по предельному состоянию на огнестойкость подразделяются на следующие виды и имеют буквенные обозначения:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

1. Потеря несущей способности(R) в виде обрушения конструкции либо возникновения предельной деформации (в зависимости от типа конструкции).

Числовые значения величин предельных деформаций для различных типов конструкций приведены в приложении "А" ГОСТ 30247.1-94. Для изгибаемых конструкций оно составляет величину L/20, либо если скорость нарастания деформаций составит L 2 /(9000 h) см/мин (где L – длина конструкции, см; h – расчетная высота поперечного сечения (толщина) конструкции, см.

Для вертикальных конструкций предельным состоянием по огнестойкости следует считать условие, когда вертикальная деформация достигает L/100 или скорость нарастания деформаций достигает 10 мм/мин - для образцов высотой 3 0,5 м.

По первому предельному состоянию конструкций по огнестойкости оценивают конструкции несущих стен, покрытий, перекрытий (балок, ферм, колонн, арок, рам) и узлов, их соединяющих.

Предел огнестойкости узлов крепления и сочленения строительных конструкций должен быть не ниже требуемого предела огнестойкости самих конструкций.

2. Потеря целостности (Е) или дефектность структуры ограждающей конструкции в результате образования сквозных трещин, отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя. Оценивается по их количеству и размерам (длиной, шириной и глубиной), измеряемым с помощью специальных калиброванных щупов и игл, оптических луп или микроскопов, ультразвукового диагностирования; путем простукивания конструкции, обратив внимание на
звук: неплотный бетон издает глухой звук, при наличии отслоений -
дребезжащий, при плотном бетоне звук звонкий.

3. Потеря теплоизолирующей способности (I) , т. е. прогрев конструкций до температур, превышение которых может вызвать самовоспламенение горючих материалов, находящихся в смежных помещениях.

Установлено, что сквозной прогрев конструкции до температуры порядка 220 0 С уже может представлять опасность самовоспламенения различных твердых и жидких веществ. Поэтому потеря теплоизолирующей способности строительной конструкции при пожаре наступает при превышении температуры на не обогреваемой поверхности по сравнению с начальной:

– приращение температуры более чем на 140 0 C (по измерениям пятью термопарами);

– в любой точке этой поверхности приращение температуры более чем на 180 0 C;

– или абсолютная температура равна 220 0 C в любой точке поверхности, независимо от первоначальной температуры конструкции до испытания.

Таким образом, первое предельное состояние конструкции по огнестойкости (R) характеризует потерю конструкцией несущей способности, второе(Е) и третье (I) – ограждающей.

Образцы несущих и самонесущих конструкций должны испытываться под нагрузкой. Распределение нагрузки и условия опирания образцов должны соответствовать принятым в технической документации. Величину испытательной нагрузки устанавливают из условия создания в поперечных сечениях образцов конструкции таких напряжений, которые предусмотрены в конструкции по проекту или технической документации. При определении величины проектных напряжений учитывают только постоянные и временные длительные нагрузки в их расчетных значениях с коэфициентом надежности равным 1.

Образцы наружных стен испытывают при воздействии тепла со стороны, обращенной при эксплуатации к помещению; балки – с трех сторон, а колонны, столбы и фермы – с четырех или с трех сторон - с учетом реальных условий использования.

Образцы конструкций однослойных и симметричных многослойных внутренних стен испытывают с одной стороны, моногослойных несимметричных – с каждой стороны, кроме тех случаев, когда неблагоприятная сторона может быть заранее установлена или известно направление огневого воздействия.

В процессе испытания регистрируют следующие параметры:

а) время наступления предельных состояний конструкции по огнестойкости и их вид;

б) температуру в печи, на не обогреваемой поверхности ограждающей конструкции, а также в других предварительно определенных местах.

Термопары для измерения температуры среды в огневой камере печи должны быть установлены не менее чем в пяти местах. Конец термопар следует устанавливать на расстоянии 100 мм от образца – конструкции.

Среднюю температуру не обогреваемой поверхности образцов ограждающих конструкций (стеновых панелей, плит перекрытий, перегородок и др.) определяют как среднее арифметическое показаний не менее чем пяти термопар.

Для определения температуры в любой точке поверхности образца следует устанавливать термопары (или использовать переносную термопару) в таких местах не обогреваемой поверхности ограждающих конструкций, в которых ожидается появление максимальной температуры (например, в зоне ребер, стыков, металлических закладных деталей). При определении средней температуры не обогреваемой поверхности образца эти точки в расчет не принимают.

в) величину избыточного давления в печи (при испытании ограждающей конструкции на газодымонепроницаемость). Оно должно составлять 10 ( 2) Па;

г) величину деформации (при испытании несущей конструкции);

д) время появления пламени на не обогреваемой поверхности образца (ограждающей конструкции) определяют с помощью ватных тампонов;

е) время появления и характер трещин, отверстий, отслоений, а также другиет явления (например, нарушение условий опирания, появление дыма).

Приведенный перечень измеряемых параметров и регестрируемых явлений может дополняться и изменяться в соответствии с требованиями методов испытаний конкретных видов конструкций.

Испытания должны продолжаться до наступления одного или, по возможности, последовательно всех предельных состояний конструкций по огнестойкости, нормируемых для испытываемой конструкции. Результаты, полученные при испытании, могут быть использованы для оценки пределов огнестойкости расчетными методами других аналогичных (по форме, материалам, конструктивному исполнению) конструкций. В свою очередь, стандарт допускает определять пределы огнестойкости строительных конструкций расчетным методом, при этом испытания можно не проводить. Расчетный метод не распространяется на конструкции, огнестойкость которых может характеризоваться потерей плотности.

Если для конструкции нормируют (или устанавливают) различные пределы огнестойкости по различным предельным состояниям, обозначение предела огнестойкости состоит из двух или трех частей, разделенных между собой наклонной чертой, например:

R120/ЕI 60 – предел огнестойкости 120 мин – по потере несущей способности; предел огнестойкости 60 мин – по потере целостности или теплоизолирующей способности, независимо от того, какое из этих двух предельных состояний наступит ранее.

При различных значениях пределов огнестойкости, регламентируемых разными предельными состояниями, обозначение числовых значений времени перечисляется по убыванию.

Цифровой показатель в обозначении предела огнестойкости должен соответствовать одному из чисел следующего ряда: 15, 30, 45, 60, 90, 120, 150, 180, 240, 360, т.е. должны быть кратными 15, а при получении экспериментальных или расчетных промежуточных показателей необходимо принимать меньшее числовое значение из этого ряда.

Пределы огнестойкости запроектированных или реально существующих конструкций принято называть фактическими, а определяемые условиями безопасности или нормами,- требуемыми и обозначать, соответственно, П ф и П тр. Фактические и требуемые пределы огнестойкости конструкций нормируются и учитываются пи проектировании зданий и сооружений. Требования безопасности считаются выполненными при выполнении условия: П ф ≥ П тр



Что такое предел огнестойкости EI?

Современные строительные нормы предъявляют повышенные требования к огнезащите и пожаробезопасности зданий. Для того чтобы обеспечить эти требования, использование классических строительных материалов за счет утолщения ширины металлического листа и применение других огнестойких материалов, не всегда возможно и экономически целесообразно. В таких случаях на помощь приходят специально разработанные огнезащитные материалы (покрытия, краски, составы, лаки и другие). отличается от друг друга естественно по назначению, типу материалы и еще одному параметру, пределу огнестойкости. Именно на нем и остановимся подробнее.

Критерии определения предела огнестойкости

Под пределом огнестойкости понимают предельное время воздействия на конструкцию высокими температурами, по истечении которого у элемента наблюдается хотя бы один из признаков предельного состояния. Данная информация указывается в названии огнезащитных материалов и измеряется в минутах.

К признакам предельного состояния элемента относятся:

  • утрата теплоизолирующей способности;
  • потеря целостности;
  • нарушение несущей конструкции.

Для огнезащиты класса EI необходимо в течение определенного времени выдержать температуру до 180 градусов с обратной, холодной стороны, не обращенной к огню. Время указывается в минутах рядом с EI.

Обозначения предела огнестойкости

Требования к пределу огнестойкости элементов и строительных конструкций указаны в ГОСТ 30247.0-94. Согласно данному ГОСТу огнестойкость обозначается одной или несколькими прописными буквами латинского алфавита и цифрами, обозначающими время упорности в минутах.

Латинские буквы указывают предельные состояния строительных конструкций по огнестойкости:

  • E - потеря целостности в результате образования в конструкциях сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя;
  • I - потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных для данной конструкции значений;
  • R - потеря несущей способности вследствие обрушения конструкции или возникновения предельных деформаций;

То есть огнезащита с маркировкой EI60 - материал с пределом огнестойкости по потере целостности и теплоизолирующей способности через 60 минут. Причем независимо от того, какое из двух последних предельных состояний наступит ранее.

Наша компания предлагает широкий диапазон огнезащиты с различным пределом огнестойкости. Более подробную информацию об огнезащите и ее стоимости вы можете либо у наших менеджеров(), либо в соответствующем разделе каталога продукции («Огнезащита конструкций» и ).

Проблемы при применении средств огнезащиты воздуховодов.

Требования, предъявляемые к подвесам воздуховодов

Федеральный закон от 22 июля 2008 года
№ 123-ФЗ (ред. от 10.07.2012 г. с изменениями, вступившими в силу с 12.07.2012 г.) «Технический регламент о требованиях пожарной безопасности»:

Статья 137. Требования пожарной безопасности к строительным конструкциям:

«1. Предел огнестойкости узлов крепления и сочленения строительных конструкций между собой должен быть не менее минимального требуемого предела огнестойкости стыкуемых строительных элементов.

Свод правил 7.13130.2013 «Отопление, вентиляция и кондиционирование. Противопожарные требования».

Пункт 6.13: «Элементы креплений (подвески) воздуховодов должны быть с пределами огнестойкости не менее нормируемых для воздуховодов (по установленным числовым значениям, но только по признаку потери несущей способности)».

Как видно из таблицы:

– толщина МБОР для обеспечения EI 90 занижена в 2,5 раза по сравнению с толщиной МБОР для обеспечения R 90 даже при значении приведённой толщины металла 2,4 мм;

– толщина МБОР для обеспечения EI 120 занижена по сравнению с толщиной МБОР для
обеспечения R 120 даже при значении приведенной толщины металла 7,91 мм;

– огнезащитная эффективности МБОР независимо от его толщины для обеспечения R 150
и R 180 проведением стандартного испытания не подтверждена.

Следовательно, с учётом того, что приведённая толщина металла реально применяемых для крепления воздуховодов конструктивных элементов значительно меньше 2,4 мм, то есть значения приведённой толщины металла, для которой определена огнезащитная эффективность стальных конструкций до 90 минут включительно, можно сделать вывод, что огнезащитная обработка подвесов воздуховода по соответствующему технологическому регламенту для обеспечения воздуховодом предела огнестойкости EI до 90 минут включительно не будет обеспечивать соответствующих пределов огнестойкости по R подвесов данных воздуховодов.

Как показывает расчёт, фактическое обеспечение предела огнестойкости воздуховода EI 120 возможно при условии, что приведённая толщина металла элементов крепления воздуховода будет составлять не менее
7,91 мм, что применительно к подвесу из круглого проката означает его фактический диаметр 31,64 мм.

При анализе информации, изложенной в сертификатах соответствия, выявлено, что ни в одном из сертификатов соответствия не указаны внутренние размеры поперечного сечения воздуховодов, результаты испытаний которых представлены в них. В данных сертификатах соответствия имеются ссылки на технологические регламенты по монтажу конструктивных систем огнезащиты воздуховодов, в которых отсутствуют указания о том, для воздуховодов с какими внутренними размерами поперечного сечения применимы данные технологические регламенты.

Согласно ГОСТ Р 53299-2009 «Воздуховоды. Метод испытаний на огнестойкость» на испытания поставляется образец воздуховода прямоугольного сечения с соотношением внутренних размеров поперечного сечения 1,5 ≤ ≤ 2, где b и a – внутренние размеры поперечного сечения. Результаты испытаний воздуховода могут быть распространены на воздуховоды аналогичной конструкции прямоугольного и круглого сечения, если значение величины их гидравлического диаметра не превышает значения величины гидравлического диаметра испытанного воздуховода более чем
на 50%, а внутренние размеры их поперечного сечения (диаметр или длина большей стороны) не превышают 1000 мм. В свою очередь, величина
гидравлического диаметра определяется геометрическими размерами сечения воздуховода.

Отсутствие, как в сертификате соответствия, так и в технологическом регламенте, информации о внутренних размерах поперечного сечения воздуховода, для которого могут быть применимы результаты сертификационных испытаний, может привести к необоснованному применению системы конструктивной огнезащиты. Необоснованное применение системы конструктивной огнезащиты может, в свою очередь, привести к необеспечению воздуховодом, подвергнутым огнезащите даже в строгом соответствии с технологическим регламентом, требуемого предела огнестойкости.

Огнестойкость — это один из основных эксплуатационных показателей сооружения характеризующий способность несущих элементов, стен и перекрытий здания сопротивляться воздействию огня и высокой температуры во время пожара. Этот показатель является обязательным при проектировании сооружения.

На основании определения степени огнестойкости зданий и сооружений различных инженерных коммуникаций: электропроводки, газо и водопровода. Данный показатель является основополагающим для определения мощности, типа и структуры различных систем пожарной безопасности:

  • Сигнализации;
  • Установок и автономных модулей пожаротушения;
  • Эвакуации и аварийного освещения;
  • Дымоудаления.

В соответствии с актуальными различают 8 основных степеней огнестойкости.

Свойство материала комбинированной из нескольких материалов конструкции сопротивляться открытому пламени и высоким температурам без потери основных несущих способностей и функциональных характеристик называется пределом огнестойкости. Выражается в цифровом эквиваленте времени с буквенным шифром:

  • R — потеря строительной конструкцией несущей способности;
  • E — потеря целостности конструкции;
  • I — утрата материалом теплоизолирующей способности.

К примеру, предел огнестойкости ei 30 означает, что будет сохранять свою целостность и защищать от воздействия высокой температуры на протяжении 30 мин.

Таблица 1: Предел огнестойкости строительных конструкций

Талица 2: Предел огнестойкости противопожарных преград, специальных строительных конструкций, используемых для локализации возгорания

Талица 3: Предел огнестойкости конструкций, заполняющих проемы (окна, двери, ворота) в противопожарных преградах

Способы увеличения предела огнестойкости стройматериалов

Существует целый ряд способов, способствующих увеличению времени сопротивления конструкций и материалов огню:

Обмазки и штукатурки . Один из наиболее распространенных и доступных способов. Может применяться для таких материалов, как дерево и древесно-стружечные изделия, железобетон, бетонные блоки, металл, полимерные стройматериалы. Может применяться как на несущих, так и ограждающих конструкциях. Эффективная толщина слоя защиты не менее 25мм. Хорошие показатели защиты продемонстрированы такие обмазки, как: известково-цементная штукатурка, вермикулит, перлит. Использование асбест-вермикулита является более , но допускается только в помещениях с ограниченной посещаемостью из-за вредного влияния асбеста.

Облицовка . Может осуществляться как специальными материалами вроде гипсовых плит или шамотного кирпича, так и обычным керамическим кирпичом. Эффективность защиты зависит от толщины изоляции. Глиняная плита толщиной до 80 мм повышает предел огнестойкости бетонной колонны до 4,8 ч. А облицовка такого же элемента обычным глиняным кирпичом — всего до 2 ч.

Защитные экраны . Чаще всего такими конструкциями в виде подвесных потолков с несгораемыми плитами закрываются панели перекрытия. Современные производители отделочных материалов выпускают довольно большое количество трудносгораемых листовых облицовок и сайдинга, который можно устанавливать на стены и колонны. Экраны могут различаться по своему защитному эффекту: теплоотводящие и поглощающие. Последние, как правило, защищают от лучистой энергии открытого пламени. Различается и конструктивное исполнение, бывают стационарные экраны и передвижные (временные).

Одной из разновидностей защитных экранов являются водяные завесы. Они создаются различными установками автоматического пожаротушения, как правило дренчерными. Их можно причислить к отдельному способу увеличения огнестойкости. Однако при стремительном распространении очага возгорания по большой площади такой способ малоэффективен. С недавнего времени существует решения, позволяющие более эффективно защищать . Несущие колонны охлаждаются путём циркуляции воды во внутренних полостях изделия.

Химические средства защиты . Обычно антипиреновые составы в виде пропиток применяются для обработки древесины. Однако такой способ является довольно дорогостоящим и трудоемким. Кроме того его эффективность в значительной мере зависит от типа древесины — строения и плотности древесных волокон. В большинстве случаев приобретённые защитные свойства материала значительно ниже тех, которые рекламирует производитель антипиреновой грунтовки.

Защитные лакокрасочные материалы . Наносятся на поверхность строительной конструкции и пригодны для использования на любом стройматериале. Принцип действия большинства таких защит состоит в термореактивном эффекте. Под воздействием температуры краска вспучивается, создавая дополнительный слой теплоизоляции. Такие покрытия имеют сравнительно доступную стоимость, просты в предварительной подготовке основания и самой смеси. Легко наносятся на поверхности любой сложности. Имеют хорошие огнезащитные показатели и широкий спектр применения. Как правило, используются для повышения предела огнестойкости металлических конструкций.

Наиболее распространенными на данный момент являются следующие средства:

  • Германия — Пироморс, Унитерм;
  • Финляндия — Винтер;
  • Венгрия — Фламс САФЕ;
  • Россия — Файрекс;
  • Украина — ОВК — 2, Эндотерм – ХТ — 150.

Несмотря на высочайшую эффективность, таким материалы можно приготовить самостоятельно. Для этого необходимо смешать истолченный в порошок асбест и жидкое стекло в пропорциях 4 к 10 соответственно. Смесь тщательно перемешать. В зависимости от консистенции она может наноситься щеткой, валиком или при помощи краскопульта. Ориентировочный расход защитной смеси 0,5-1 кг/м 2 при слое 2-3 мм.

При использовании многокомпонентных защитных химических средств необходимо помнить, что в состав некоторых из них входят органические компоненты. При превышении температуры более 300°С такие средства разлагаются с выделением в атмосферу токсичных веществ. Предпочтительнее использовать вспучивающиеся покрытия на минеральной основе с жидким стеклом в виде вяжущего ВЗП-1 — ВЗП-12.

Прессование древесины . Сравнительно новый и дорогостоящий метод, который заключается во введении в толщу древесины специальных химических веществ, размягчающих целлюлозу. После этого осуществляется прессование под большим давлением. После этого материал приобретает значительную плотность и прочность, а также устойчивость к огню с повышением категории до трудносгораемых.

Особенности определения предела огнестойкости строительных конструкций

Перед определением огнестойкости сооружения необходимо осуществить расчет огнестойкости строительных конструкций, которые его составляют. При таком расчете необходимо учитывать определенные нюансы.

  1. Во-первых, слоистые ограждения значительно превосходит по своим теплоизоляционным характеристикам каждый отдельно взятый материал, из которых они изготовлены.
  2. Во-вторых, изделия, имеющие в своем составе воздушные прослойки, повышают свой уровень огнестойкости в среднем на 10% по сравнению с аналогичными изделиями, не имеющими такой прослойки.

В-третьих, при расчете необходимо учитывать направление теплового потока и соответствующим образом размещать защитные слои, вплоть до их несимметричного нанесения.

Под термином «потеря несущей способности грунта» мы понимаем явление выдавливания грунта по сторонам фундамента с выпучиванием его вверх; при этом сооружение опускается и может одновременно покоситься, т. е. дать крен. Потеря несущей способности грунта под подошвой фундамента происходит в том случае, когда прочность грунта на сдвиг по поверхности скольжения недостаточно велика по сравнению с фактическими напряжениями, возникающими от нагрузки (рис. 7). Нагрузка на фундамент, при которой происходит потеря несущей способности грунта, называется предельной нагрузкой, или наибольшей несущей способностью; во избежание потери несущей способности грунта основание должно иметь определенный запас прочности, который регламентируется нормами DIN 4017, чч. 1 и 2 (примеры исследований потери несущей способности грунта - см. ). Если осадки, возникающие из-за сжимаемости грунта при определенных нагрузках от веса сооружений, представляют собой деформационную задачу, то при потере несущей способности дальнейшая осадка грунта невозможна; здесь в зоне вытеснения грунта из-под фундамента возникает проблема равновесия. Опасность потери несущей способности грунта тем больше, чем меньше ширина фундамента, глубина его заложения и Прочность грунта на сдвиг; к потере несущей способности грунта может привести и внецентренное загружение фундамента.

При традиционных методах строительства с обычными нагрузками от зданий на грунт, достаточно широкими фундаментами и достаточно глубоким их заложением для определения допустимых нагрузок на подошву фундамента рекомендуется, как правило, сначала сделать расчет фундаментов по деформациям и лишь затем приступить к определению возможной потери несущей способности грунтов основания.
Следует указать на то, что опасность потери несущей способности грунта под нагрузкой может усилиться при подъеме грунтовых вод и уменьшении объемной массы грунта. При первых признаках потери несущей способности грунта (наклон и перекос сооружения, горизонтальные сдвиги, вспучивание грунта в непосредственной близости от здания) необходимо немедленно принять такие контрмеры, как установка дополнительных креплений, пригруз поверхности грунта, понижение уровня грунтовых вод или упрочнение грунта (например, с помощью инъектирования) .

Для полноты картины следует еще упомянуть о потере несущей способности грунтов на всем участке строительства. Это явление возникает при наличии перепадов уровня территории строительства (подпорные стенки, откосы, крутопадающие слои грунта), когда нагрузка от здания и собственный вес грунта превышают сопротивление грунта сдвигу, и сооружение с примыкающими к нему участками почвы сдвигается по поверхности скольжения. Причиной этого часто бывают исключительно сильные атмосферные осадки и вызванное ими усиление давления воды в порах грунта.

Если в непосредственной связи со строительством многоэтажного здания планируется устройство грунтовых откосов, то из соображений обеспечения устойчивости грунтов на планируемой территории следует производить расчет устойчивости откосов, ибо существует опасность сдвига откоса вдоль поверхности скольжения, т. е. сползание откоса (DIN 4084, ч. 2). Методику расчета откосов см. .