Главная · Электробезопасность · Набор прочности бетона при отрицательных температурах снип. Электропрогрев бетона в зимнее время: схемы и способы. Методы прогрева бетона

Набор прочности бетона при отрицательных температурах снип. Электропрогрев бетона в зимнее время: схемы и способы. Методы прогрева бетона

Выдержки из СНиП имеющие отношение к бетонным работам в зимнее время: транспортировка, укладка бетонной смеси, как заливать бетон зимой при отрицательных температурах.

СНиП. ПРОИЗВОДСТВО БЕТОННЫХ РАБОТ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ ВОЗДУХА

2.53. Настоящие правила выполняются в период производства бетонных работ при ожидаемой среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С.

2.54. Приготовление бетонной смеси следует производить в обогреваемых бетоносмесительных установках, применяя подогретую воду, оттаянные или подогретые заполнители, обеспечивающие получение бетонной смеси с температурой не ниже требуемой по расчету. Допускается применение неотогретых сухих заполнителей, не содержащих наледи на зернах и смерзшихся комьев. При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.55. Способы и средства транспортирования должны обеспечивать предотвращение снижения температуры бетонной смеси ниже требуемой по расчету.

2.56. Состояние основания, на которое укладывается бетонная смесь, а также температура основания и способ укладки должны исключать возможность замерзания смеси в зоне контакта с основанием. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания.

При температуре воздуха ниже минус 10 °С бетонирование густоармированных конструкций с арматурой диаметром больше 24 мм, арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры или местным вибрированием смеси в приарматурной и опалубочной зонах, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45 °С). Продолжительность вибрирования бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.57. При бетонировании элементов каркасных и рамных конструкций в сооружениях с жестким сопряжением узлов (опор) необходимость устройства разрывов в пролетах в зависимости от температуры тепловой обработки, с учетом возникающих температурных напряжении, следует согласовывать с проектной организацией. Неопалубленные поверхности конструкций следует укрывать паро- и теплоизоляционными материалами непосредственно по окончании бетонирования.

Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

2.58. Перед укладкой бетонной (растворной) смеси поверхности полостей стыков сборных железобетонных элементов должны быть очищены от снега и наледи.

2.59. Бетонирование конструкций на вечномерзлых грунтах следует производить в соответствии со СНиП II-18-76.

Ускорение твердения бетона при бетонировании монолитных буронабивных свай и замоноличивании буроопускных следует достигать путем введения в бетонную смесь комплексных противоморозных добавок, не снижающих прочность смерзания бетона с вечномерзлым грунтом.

2.60. Выбор способа выдерживания бетона при зимнем бетонировании монолитных конструкций следует производить в соответствии с рекомендуемым приложением 9.

2.61. Контроль прочности бетона следует осуществлять, как правило, испытанием образцов, изготовленных у места укладки бетонной смеси. Образцы, хранящиеся на морозе, перед испытанием надлежит выдерживать 2-4 ч при температуре 15-20 °С.

Допускается контроль прочности производить по температуре бетона в процессе его выдерживания.

2.62. Требования к производству работ при отрицательных температурах воздуха установлены в таблице. 6

6. Требования к производству бетонных работ при отрицательных температурах.
Параметр Величина параметра Контроль (метод, объем, вид регистрации)
Заливать бетон при отрицательных температурах.
1. Прочность бетона монолитных и сборно-монолитных конструкций к моменту замерзания: Измерительный по ГОСТ 18105-86, журнал работ
для бетона без противоморозных добавок:
конструкций, эксплуатирующихся внутри зданий, фундаментов под оборудование, не подвергающихся динамическим воздействиям, подземных конструкций Не менее 5 МПа
конструкций, подвергающихся атмосферным воздействиям в процессе эксплуатации, для класса: Не менее, % проектной прочности:
В7,5-В10 50
В12,5-В25 40
В30 и выше 30
конструкций, подвергающихся по окончании выдерживания переменному замораживанию и оттаиванию в водонасыщенном состоянии или расположенных в зоне сезонного оттаивания вечномерзлых грунтовпри условии введения в бетон воздухововлекающих или газообразующих ПАВ 70
в преднапряженных конструкциях 80
для бетона с противоморозными добавками К моменту охлаждения бетона до температуры, на которую рассчитано количество добавок, не менее 20 % проектной прочности
2. Загружение конструкций расчетной нагрузкой допускается после достижения бетоном прочности Не менее 100 % проектной -
3. Температура воды и бетонной смеси на выходе из смесителя, приготовленной: Измерительный, 2 раза в смену, журнал работ
на портландцементе, шлакопортландцементе, пуццолановом портландцементе марок ниже М600 Воды не более 70 °С, смеси не более 35 °С
на быстротвердеющем портландцементе и портландцементе марки М600 и выше Воды не более 60°С,смеси не более 30 °С
на глиноземистом портландцементе Воды не более 40 С, смеси не более 25 °С
Температура бетонной смеси, уложенной в опалубку, к началу выдерживания или термообработки: Измерительный, в местах, определенных ППР, журнал работ
при методе термоса Устанавливается расчетом, но не ниже 5°С
с противоморозными добавками Не менее чем на 5 С выше температуры замерзания раствора затворения
при тепловой обработке Не ниже 0 °С
5. Температура в процессе выдерживания и тепловой обработки для бетона на: Определяется расчетом, но не выше, °С: При термообработке - через каждые 2 ч в период подъема температуры или в первые сутки. В последующие трое суток и без термообработки - не реже 2 раз в смену. В остальное время выдерживания - один раз в сутки
портландцементе 80
шлакопортландцементе 90
6. Скорость подъема температуры при тепловой обработке бетона: Измерительный, через каждые 2 ч, журнал работ
для конструкций с модулем поверхности: Не более, °С/ч:
до 4 5
от 5 до 10 10
св. 10 15
для стыков 20
7. Скорость остывания бетона по окончании тепловой обработки для конструкций с модулем поверхности: Измерительный, журнал работ
до 4 Определяется расчетом
от 5 до 10 Не более 5°С/ч
св. 10 Не более 10°С/ч
8. Разность температур наружных слоев бетона и воздуха при распалубке с коэффициентом армирования до 1 %, до 3 % и более 3 % должна быть соответственно для конструкций с модулем поверхности: То же
от 2 до 5 Не более 20, 30, 40 °С
св. 5 Не более 30, 40, 50 °С

Методы прогрева бетона в зимний период при минусовых температурах сегодня многочисленны. Они отличаются соблюдением специфических правил и требований при применении технологий. Выбор зависит от локальных условий, температуры воздуха в период года, когда проводятся работы.

Какой бы способ не был выбран, при прогреве бетона зимой следует досконально соблюдать условия процесса, сочетающего комплекс мер, применяемых при возведении сооружений монолитного и любого другого типа.

Основное требование к зимним работам по бетонированию – выполнение процесса в заданном темпе и строгой последовательности. Благодаря безошибочности действий с соблюдением технологического регламента добиваются гарантированного качества конструкций и оснований, заливаемых при минусовых температурах. Условия профессиональных бетонных работ регламентируются:

  • нормами и правилами СНиП 3.03.01-87;
  • СНиП 3.06.04-91;
  • несколькими другими документами, на основе которых разработаны строительные стандарты для районов с холодным климатом.

Запрещено выполнять прогрев бетона в зимнее время с отступлениями от проекта строительных работ.

Основные методы прогрева бетона

Существует несколько методов прогрева бетона в зимний период. Следует понимать, что при применении технологий не всегда ведущим параметром становится цена. Зачастую при незначительном увеличении расходов получают результаты в разы технологичнее и прочнее аналогов.

Метод термоса

Один из давних и недорогих способов бетонирования на морозе – метод термоса. В его основе лежит эффект гидратации. Он основан на том, что экзотермическая теплота, выделяемая в процессе отвердения бетона, суммируется с теплотой, занесенной в смесь еще при изготовлении бетона на заводе.

  • Привезенный с завода бетон доставляют на объект с максимально высокой, насколько это возможно, температурой.
  • При этом раствор следует быстро поместить в подготовленную заранее опалубку и укрыть теплоизоляцией.
  • Во время гидратационного процесса 1 кг смеси выделяет примерно 80 килокалорий тепла, что способствует получению бетонных изделий с критической прочностью, приобретаемой ко времени замерзания.

Метод на основе комплексных противоморозных добавок

При выборе противоморозных добавок необходимо строго соблюдать технологию и придерживаться следующих требований:

  • термическое сопротивление опалубки должно быть выше расчетного значения (только в этом случае бетон способен достигнуть отметки критической прочности);
  • тонкие элементы конструкции, выступы и прочие части, которые остывают/затвердевают быстрее, чем основание, должны подогреваться дополнительно (так достигается равномерное твердение бетона);
  • поверхность конструкции, незащищенную опалубкой для предотвращения потери влаги или, наоборот, исключения переувлажнения за счет чрезмерного попадания снега по отвердевании, нужно укрыть гидроизоляцией (используют полиэтилен или другие плотные материалы);
  • при явной угрозе падения температуры ниже расчетного значения (следите за прогнозами по местности) конструкцию нужно либо утеплять, либо подогревать.

Электропрогрев бетона

Самый экономичный способ термообработки бетона – электропрогрев, а именно электродный прогрев бетона. Электроток проходит через проводник, которым является бетон, и разогревает изнутри весь объем раствора. Метод отлично зарекомендовал себя в армированных и малоармированных блоках, ростверках фундамента.

Важно: использование электродов для конструкций с большим количеством арматуры крайне нежелательно.

Периферийный прогрев выполняют с помощью ленточных электродов, изготовленных из широких полос кровельной, стали, закрепленных на опалубке. В качестве стержневых электродов используют стальную гладкую арматуру толщиной от 5 мм.

Подключение электродов выполняется отпайками (отводами). Соединение отпайки с электродом идет путем скрутки, с применением петель, кольца или зажима. Для подключения необходимо использовать понижающий трансформатор или сварочный аппарат. После отвердевания бетона электроды остаются внутри, контакты, выглядывающие наружу, обрезают.

Альтернативой электродному способу прогрева выступают инновационные термоэлектроматы «ФлексиХИТ». Они в 4,4 раза сокращают энергозатраты.

  • При использовании термомата инфракрасные лучи равномерно прогревают конструкцию. Марочный бетон за 11 часов набирает прочность, которую он приобрел бы за 28 суток в естественных условиях.
  • С их помощью избавляются от лишних конструкций. Важная характеристика термомата – скорость укладки., Оборудуя фундаменты и ростверки термоматами для прогрева буронабивных бетонных свай повышается скорость гидратации.
  • Мастеру потребуется всего полчаса на монтаж термоматов, а при подключении электродов тратится минимум полдня на сборку схемы и присоединение ее к источнику напряжения.

Обогрев бетона в опалубке

Способ греющей опалубки подразумевает передачу тепла от нее наружным слоям бетонной конструкции. Оттуда нагрев идет в толще бетона за счет теплопроводности. Альтернатива греющей опалубке – монтаж все тех же термоматов «ФлексиХИТ» с аналогичными выгодами.

  • Оба способа используются для тонкостенных и средней величины бетонных стен с армированием и без него.
  • Тепло от опалубки или ИК-нагрева термоматом компенсирует тепловые потери пристенными слоями бетона в крупных монолитных блоках большой массы и объема. В основе — принцип «регулируемый термос» для фундамента.
  • Однако если в виде нагревающей опалубки для бетона используют греющие провода и углеграфитовые изолируемые стеклотканью ленты размером 10 см, то применение термомата заключается в плотном прилегании изделия к поверхности ростверка.

В том и другом случае для поддержания изотермического процесса необходимо избегать появления воздушных прослоек, по возможности утеплить конструкцию. Монтаж оборудования для нагрева происходит с наружной стороны опалубки.

Применение для обогрева греющего провода, 2-сегментного или цельного термомата

В основе традиционного способа — выделение тепла от проводника, находящегося в конструкции. Обогрев идет путем кондуктивного тепловыделения.

Новейший способ, используемый для изготовления колонн в зимнее время, основан на применении цельных термоматов или 2-сегментных инфракрасных обогревателей для прогрева бетонных колонн. Устройства оборудованы встроенным терморегулятором в каждом сегменте нагревающего устройства.


Цельный термомат применяется, если размер колонны известен заранее. При производстве перекрытий и балок термоэлектроматы укладывают в нижней части бетонируемого изделия.

Способ воздушного прогрева

Способ воздушного прогрева бетона относится к конвективному типу и заключается в равномерном нагреве конструкции от подводимого снаружи теплого воздуха. Применяют для этого гибкий шланг или прорезиненный рукав. Воздух вырабатывает теплогенератор, запитанный от электросети переменного напряжения или работающий на дизтопливе.

Воздушный обогрев используется для заливки бетоном опалубки в закрытом пространстве с воздушной циркуляцией воздуха, усиленной вентилятором для равномерного прогрева бетона. При воздушном обогреве рекомендуется применение утепленных брезентовых воздухонепроницаемых материалов для создания тепляка над бетонной конструкции.

Контроль за проведением бетонных работ в зимнее время

Согласно нормам СНиП 152-01-2003 качество бетонных изделий подтверждается после проведения контрольных мероприятий. Используется контроль:

  • входной (проверяется соответствие смеси наличию всех составляющих);
  • операционный контроль (производится во время выполнения действий укладки и прочих работ);
  • приемочный контроль (проверка качества конструкции в целом).

Таким образом, проверяется правильность принципа бетонирования фундамента и возведения монолитных конструкций в зимнее время.

Способов бетонирования зимой много. Они широко используется в районах с холодным климатом. Современные методы с использованием инфракрасного прогрева более эффективны и безопасны, именно поэтому их все чаще выбирают квалифицированные мастера.

Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.

В современных условиях существует множество технологий, благодаря которым удается не прекращать строительный процесс даже зимой. Если температура снижается, требуется поддерживать определенный уровень прогрева бетонной смеси. В этом случае возведение домов, различных объектов не прекращается ни на минуту.

Главным условием проведения таких работ является поддержание технологического минимума, при котором раствор не будет замерзать. Электропрогрев бетона является фактором, который обеспечивает выполнение технологических норм даже в зимний период. Этот процесс довольно сложен. Но тем не менее его активно применяют повсеместно на различных строительных объектах.

Электропрогрев

Электропрогрев бетона является довольно сложным и дорогостоящим процессом. Однако для предотвращения влияния низких температур на застывающую цементную смесь ей требуется обеспечить ряд условий. В зимнее время цемент застывает неравномерно. Чтобы предотвратить такое отклонение от нормы, следует применять технологию электрообогрева. Она способствует постоянному по всей площади процессу застывания смеси.

Бетон способен застывать равномерно при температуре, которая будет близкой к +20 ºС. Принудительный электропрогрев становится эффективным инструментом в приготовлении строительных растворов.

Чаще всего в подобных целях применяется технология электроподогрева. Если простого утепления объекта становится недостаточно, такая альтернатива сможет решить проблему с неравномерно застывающим бетоном.

Строительные компании могут выбрать один из нескольких подходов. Например, электроподогрев может осуществляться при помощи такого проводника, как кабель ПНСВ, или при помощи электродов. Также некоторые компании прибегают к принципу подогрева самой опалубки. В настоящее время могут также в подобных целях применять индукционный подход или инфракрасные лучи.

Независимо от того, какой способ выберет руководство, обогреваемый объект в обязательном порядке следует утеплить. Иначе равномерного прогрева будет добиться нереально.

Прогрев электродами

Самым востребованным методом обогрева бетона является применение электродов. Такой метод стоит относительно недорого, ведь нет потребности приобретать дорогостоящее оборудование и устройства (например, провод типа ПНСВ 1,2; 2; 3 и т. д.). Технология его выполнения также не представляет больших трудностей.

За основополагающий принцип представленной технологии взяты физические свойства и особенности электрического тока. При прохождении через бетон он выделяет некоторое количество тепловой энергии.

При использовании этой технологии не стоит подавать напряжение на систему электродов выше 127 В, если внутри изделия находится металлическая конструкция (каркас). Инструкция на электропрогрев бетона в монолитных конструкциях позволяет использовать ток 220 В или 380 В. Однако большее напряжение применять не рекомендуется.

Процесс нагрева выполняется при помощи переменного тока. Если в данном процессе участвует постоянный ток, он проходит через воду в растворе и образует электролиз. Этот процесс химического разложения воды будет препятствовать выполнению ее функций, которые имеет субстанция в процессе затвердения.

Виды электролитов

Электропрогрев бетона в зимнее время может осуществляться при помощи одного из основных Они могут быть струнными, стержневыми и выполненными в виде пластины.

Стержневые электролиты устанавливаются в бетон на небольшом расстоянии друг от друга. Чтобы создать представленный продукт, ученые применяют металлическую арматуру. Ее диаметр может составлять от 8 до 12 мм. Стержни подключаются к различным фазам. Особенно незаменимы представленные устройства при наличии сложных конструкций.

Электролиты, которые имеют форму пластин, характеризуются довольно простой схемой подключения. Их устройства необходимо располагать на противоположных сторонах опалубки. Эти пластины подключают к разным фазам. Проходящий между ними ток и будет нагревать бетон. Пластины могут быть широкими или узкими.

Струнные электроды необходимы при изготовлении и прочих изделий вытянутой формы. После установки оба конца материала подключают к разным фазам. Так происходит нагрев.

Обогрев кабелем ПНСВ

Электропрогрев бетона проводом ПНСВ, которого будет рассмотрена немного дальше, считается одной из самых эффективных технологий. В качестве нагревателя в этом случае выступает провод, а не бетонная масса.

При укладке в бетон представленного провода получается равномерно прогреть бетон, обеспечив его качество при высыхании. Преимуществом такой системы является предсказуемость периода работы. Для качественного прогрева бетона в условиях снижения температуры очень важно, чтобы она повышалась плавно и равномерно по всей площади цементного раствора.

Аббревиатура ПНВС означает, что проводник имеет стальную жилу, которая упакована в ПВХ-изоляцию. Сечение провода при проведении представленной процедуры выбирается определенным образом (ПНСВ 1,2; 2; 3). Эта характеристика берется во внимание при расчете количества провода на 1 м кубический смеси цемента.

Технология подогрева бетона проводом относительно простая. Вдоль каркаса арматуры электрокоммуникации допускаются. Крепить провод следует в соответствии с рекомендациями производителя. В этом случае при подаче смеси в траншею, опалубку или смесь проводник не повредят заливка и эксплуатация застывшего вещества.

Провод при раскладке не должен касаться земли. После заливки он полностью погружается в бетонную среду. На показатель длины провода будут иметь влияние его толщина, минусовые температуры в этом климатическом поясе, сопротивление. Подаваемое напряжение будет составлять 50 В.

Методика применения кабеля

Электропрогрев бетона проводом ПНСВ, технологическая карта которого заключается в укладке продукта в емкость непосредственно перед заливкой, считается надежной системой. Провод должен иметь определенную длину (в зависимости от условий его эксплуатации). Из-за хорошей нагрев плавно распределяется по всей толщине материала. Благодаря такой особенности удается повысить температуру бетонной смеси до 40 ºС, а иногда и выше.

Кабель ПНСВ допускается запитывать в сеть, электричество которой поставляют или 80/86. Они обладают несколькими степенями напряжения пониженного типа. Одна подстанция представленного типа способна обогреть до 30 м³ материала.

Чтобы повысить температуру раствора, на 1 м³ необходимо потратить около 60 м провода марки ПНСВ 1,2. При этом температура окружающей среды может составлять до -30 ºС. Способы нагрева могут комбинироваться. Это зависит от массивности конструкции, погодных условий, заданных показателей прочности. Также немаловажным фактором для создания комбинации методов является наличие ресурсов на стройплощадке.

Если бетон сумеет набрать требуемую прочность, он может противостоять разрушению вследствие низких температур.

Другие варианты проводного обогрева

Технология прогрева бетона ПНСВ кабелем эффективна при условии соблюдения всех инструкций и требований производителя. Если провод выйдет за пределы бетона, он с большой долей вероятности перегреется и выйдет из строя. Также провод не должен касаться опалубки или земли.

Длина представленного провода будет зависеть от условий, в которых применяется провод. Для их работы требуется работа трансформатора. Если, используя провод ПНСВ, применение такой системы не очень удобно, существуют и другие разновидности проводниковых изделий.

Существуют кабели, для работы которых не потребуется применять запитку к Это дает возможность немного сэкономить средства на обслуживание представленной системы. Обычный провод имеет широкий ряд применения. Однако провод ПНСВ, который рассматривался выше, обладает более широкими возможностями и областью применения.

Схема применения тепловой пушки

Прогрев бетона проводом считается одной из самых новых и эффективных технологий. Однако совсем еще недавно о ней никто не знал. Поэтому применялся довольно затратный, но простой метод. Над поверхностью цемента строилось укрытие. Для этого метода бетонное основание должно было иметь небольшую площадь.

В построенную палатку привозили тепловые пушки. Они нагнетали требуемую температуру. Такой метод не был лишен определенных недостатков. Он считается одним из самых трудоемких. Рабочим необходимо возвести палатку, а потом контролировать работу оборудования.

Если сравнивать прогрев бетона проводом и метод применения тепловых агрегатов, то станет ясно, что затрат больше потребует именно старый подход. Чаще всего закупается определенное оборудование автономного типа работы. Они работают на дизельном топливе. Если доступа к обычной стационарной сети на участке нет, этот вариант будет наиболее выигрышным.

Термоматы

Прогревочный провод или могут послужить основой для создания специальных термоматов. Они довольно эффективны. Единственное условие - это плоская поверхность бетонного основания. Некоторые разновидности представленных обогревателей могут работать в качестве обмотки на колонны, вытянутые блоки, столбы и т. д.

В сам же раствор при использовании матовой технологии добавляется пластификатор, позволяющий ускорить процесс высыхания. При этом они же могут препятствовать образованию кристаллизации воды.

При использовании представленных технологий следует помнить, что существуют специальные документы, регламентирующие электропрогрев бетона в зимнее время. СНиП обращает внимание строительных организаций на необходимость постоянного отслеживания температурных показателей этого вещества.

Цементная смесь не должна перегреваться свыше +50 ºС. Это так же неприемлемо для технологии его производства, как и большие морозы. При этом скорость остывания и нагрева не должна быть быстрее, чем 10 ºС в час. Чтобы избежать ошибок, расчет электропрогрева бетона выполняется в соответствии с действующими нормами и санитарными требованиями.

Инфракрасные маты могут заменить кабельные аналоги. Их допускается применять для обертывания фигурных колонн, прочих вытянутых объектов. Этот подход характеризуется небольшими энергозатратами. Бетонные конструкции под воздействием инфракрасных лучей начинают быстро терять влагу. Чтобы этого не происходило, нужно накрывать поверхности обычной полиэтиленовой пленкой.

Опалубка с подогревом

Электропрогрев бетона в зимнее время может осуществляться сразу же в опалубке. Это один из новых способов, который является очень эффективным. В щиты опалубки устанавливаются нагревательные элементы. В случае выхода из строя одного или нескольких из них, производится демонтаж неисправного оборудования. Его заменяют новым.

Оснащать инфракрасными обогревателями непосредственно форму, в которой застывает бетон, стало одним из удачных решений, которые принимали управленцы строительных компаний. Эта система способна обеспечить требуемыми условиями бетонное изделие, находящееся в опалубке, даже при температуре -25 ºС.

Помимо высокой эффективности представленные системы обладают высоким показателем полезного действия. Затрачивается совсем немного времени на подготовку к обогреву. Это крайне важно в условиях сильных морозов. Рентабельность нагревательной опалубки определяется выше, чем у обычных проводных систем. Их можно применять многоразово.

Однако стоимость представленной разновидности электрообогрева довольно высока. Она считается невыгодной, если нужно обогреть постройку нестандартных габаритов.

Принцип индукционного и инфракрасного обогрева

В представленных выше системах термоматов и опалубки с подогревом может использоваться принцип инфракрасного обогрева. Чтобы четче понимать принцип работы этих систем, необходимо вникнуть в вопрос, что собой представляют инфракрасные волны.

Электропрогрев бетона при помощи представленной технологии берет за основу способность солнечных лучей нагревать непрозрачные, темные предметы. После обогрева поверхности вещества тепло равномерно распределяется по всему его объему. Если бетонную конструкцию в этом случае обмотать прозрачной пленкой, при нагреве она будет пропускать лучи внутрь бетона. При этом тепло будет задерживаться внутри материала.

Преимуществом инфракрасных систем является отсутствие требований по использованию трансформаторов. Недостатком же эксперты называют невозможность представленного обогрева равномерно распределять тепло по всей конструкции. Поэтому его применяют только для относительно тонких изделий.

Индукционный подход в современном строительстве применяется довольно редко. Он больше подходит для таких конструкций, как прогоны, балки. На это влияет сложность устройства представленного оборудования.

Принцип индукционного обогрева основывается на том, что вокруг стального стержня намотан провод. Он имеет слой изоляции. При подключении электрического тока система производит индукционное возмущение. Именно так происходит нагрев бетонной смеси.

Рассмотрев электропрогрев бетона, а также его основные методы и технологии, можно сделать вывод о целесообразности применения того или иного способа в условиях производства. В зависимости от типа выпускаемых конструкций, условий производства технологи выбирают подходящий вариант. Скрупулезный подход к технологии застывания бетонной смеси позволяет производить высококачественные изделия, стяжку, фундаменты и т. д. Правила работы с цементом в зимний период должен знать каждый строитель.

2.1. Выбор цементов для приготовления бетонных смесей следует производить в соответствии с настоящими правилами (рекомендуемое приложение 6) и ГОСТ 23464-79. Приемку цементов следует производить по ГОСТ 22236-85, транспортирование и хранение цементов - по ГОСТ 22237-85 и СНиП 3.09.01-85.

2.2. Заполнители для бетонов применяются фракционированными и мытыми. Запрещается применять природную смесь песка и гравия без рассева на фракции (обязательное приложение 7). При выборе заполнителей для бетонов следует применять преимущественно материалы из местного сырья. Для получения требуемых технологических свойств бетонных смесей и эксплуатационных свойств бетонов следует применять химические добавки или их комплексы в соответствии с обязательным приложением 7 и рекомендуемым приложением 8.

БЕТОННЫЕ СМЕСИ

2.3. Дозирование компонентов бетонных смесей следует производить по массе. Допускается дозирование по объему воды добавок, вводимых в бетонную смесь в виде водных растворов. Соотношение компонентов определяется для каждой партии цемента и заполнителей, при приготовлении бетона требуемой прочности и подвижности. Дозировку компонентов следует корректировать в процессе приготовления бетонной смеси с учетом данных контроля показателей свойств цемента, влажности, гранулометрии заполнителей и контроля прочности.

2.4. Порядок загрузки компонентов, продолжительность перемешивания бетонной смеси должны быть установлены для конкретных материалов и условий применяемого бетоносмесительного оборудования путем оценки подвижности, однородности и прочности бетона в конкретном замесе. При введении отрезков волокнистых материалов (фибр) следует предусматривать такой способ их введения, чтобы они не образовывали комков и неоднородностей.

При приготовлении бетонной смеси по раздельной технологии надлежит соблюдать следующий порядок:

  • в работающий скоростной смеситель дозируется вода, часть песка, тонкомолотый минеральный наполнитель (в случае его применения) и цемент, где все перемешивается;
  • полученную смесь подают в бетоносмеситель, предварительно загруженный оставшейся частью заполнителей и воды, и еще раз все перемешивают.

2.5. Транспортирование и подачу бетонных смесей следует осуществлять специализированными средствами, обеспечивающими сохранение заданных свойств бетонной смеси. Запрещается добавлять воду на месте укладки бетонной смеси для увеличения ее подвижности.

2.6. Состав бетонной смеси, приготовление, правила приемки, методы контроля и транспортирование должны соответствовать ГОСТ 7473-85.

2.7. Требования к составу, приготовлению и транспортированию бетонных смесей приведены в табл. 1.

Таблица 1

Параметр

Величина параметра

1. Число фракций крупного заполнителя при крупности зерен, мм:

Измерительный по ГОСТ 10260-82, журнал работ

Не менее двух

Не менее трех

2. Наибольшая крупность заполнителей для:

железобетонных конструкций

Не более 2/3 наименьшего расстояния между стержнями арматуры

Не более 1/2 толщины плиты

тонкостенных конструкций

Не более 1/3-1/2 толщины изделия

при перекачивании бетононасосом:

Не более 0,33 внутреннего диаметра трубопровода

в том числе зерен наибольшего размера лещадной и игловатой форм

Не более 15 % по массе

при перекачивании по бетоноводам содержание песка крупностью менее, мм:

Измерительный по ГОСТ 8736-85, журнал работ

УКЛАДКА БЕТОННЫХ СМЕСЕЙ

2.8. Перед бетонированием скальные основания, горизонтальные и наклонные бетонные поверхности рабочих швов должны быть очищены от мусора, грязи, масел, снега и льда, цементной пленки и др. Непосредственно перед укладкой бетонной смеси очищенные поверхности должны быть промыты водой и просушены струей воздуха.

2.9. Все конструкции и их элементы, закрываемые в процессе последующего производства работ (подготовленные основания конструкций, арматура, закладные изделия и др.), а также правильность установки и закрепления опалубки и поддерживающих ее элементов должны быть приняты в соответствии со СНиП 3.01.01-85.

2.10. Бетонные смеси следует укладывать в бетонируемые конструкции горизонтальными слоями одинаковой толщины без разрывов, с последовательным направлением укладки в одну сторону во всех слоях.

2.11. При уплотнении бетонной смеси не допускается опирание вибраторов на арматуру и закладные изделия, тяжи и другие элементы крепления опалубки. Глубина погружения глубинного вибратора в бетонную смесь должна обеспечивать углубление его в ранее уложенный слой на 5 - 10 см. Шаг перестановки глубинных вибраторов не должен превышать полуторного радиуса их действия, поверхностных вибраторов - должен обеспечивать перекрытие на 100 мм площадкой вибратора границы уже провибрированного участка.

2.12. Укладка следующего слоя бетонной смеси допускается до начала схватывания бетона предыдущего слоя. Продолжительность перерыва между укладкой смежных слоев бетонной смеси без образования рабочего шва устанавливается строительной лабораторией. Верхний уровень уложенной бетонной смеси должен быть на 50 - 70 мм ниже верха щитов опалубки.

2.13. Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа. Рабочие швы по согласованию с проектной организацией допускается устраивать при бетонировании:

  • колонн - на отметке верха фундамента, низа прогонов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;
  • балок больших размеров, монолитно соединенных с плитами - на 20 - 30 мм ниже отметки нижней поверхности плиты, а при наличии в плите вутов - на отметке низа вута плиты;
  • плоских плит - в любом месте параллельно меньшей стороне плиты;
  • ребристых перекрытий - в направлении, параллельном второстепенным балкам;
  • отдельных балок - в пределах средней трети пролета балок, в направлении, параллельном главным балкам (прогонам) в пределах двух средних четвертей пролета прогонов и плит;
  • массивов, арок, сводов, резервуаров, бункеров, гидротехнических сооружений, мостов и других сложных инженерных сооружений и конструкций - в местах, указанных в проектах.

2.14. Требования к укладке и уплотнению бетонных смесей даны в табл. 2.

Таблица 2

Параметр

Величина параметра

Контроль (метод, объем, вид регистрации)

1. Прочность поверхностей бетонных оснований при очистке от цементной пленки:

Не менее, МПа:

Измерительный по ГОСТ 10180-78, ГОСТ 18105-86, ГОСТ 22690.0-77, журнал работ

водной и воздушной струей

механической металлической щеткой

гидропескоструйной или механической фрезой

2. Высота свободного сбрасывания бетонной смеси в опалубку конструкций:

Не более, м:

перекрытий

неармированных конструкций

слабоармированных подземных конструкций в сухих и связных грунтах

густоармированных

3. Толщина укладываемых слоев бетонной смеси:

Измерительный, 2 раза в смену, журнал работ

при уплотнении смеси тяжелыми подвесными вертикально расположенными вибраторами

На 5-10 см меньше длины рабочей части вибратора

при уплотнении смеси подвесными вибраторами, расположенными под углом к вертикали (до 30°)

Не более вертикальной проекции длины рабочей части вибратора

при уплотнении смеси ручными глубинными вибраторами

Не более 1,25 длины рабочей части вибратора

при уплотнении смеси поверхностными вибраторами в конструкциях:

Не более, см:

неармированных

с одиночной арматурой

с двойной арматурой

ВЫДЕРЖИВАНИЕ И УХОД ЗА БЕТОНОМ

2.15. В начальный период твердения бетон необходимо защищать от попадания атмосферных осадков или потерь влаги, в последующем поддерживать температурно-влажностный режим с созданием условий, обеспечивающих нарастание его прочности.

2.16. Мероприятия по уходу за бетоном, порядок и сроки их проведения, контроль за их выполнением и сроки распалубки конструкций должны устанавливаться ППР.

2.17. Движение людей по забетонированным конструкциям и установка опалубки вышележащих конструкций допускаются после достижения бетоном прочности не менее 1,5 МПа.

ИСПЫТАНИЕ БЕТОНА ПРИ ПРИЕМКЕ КОНСТРУКЦИЙ

2.18. Прочность, морозостойкость, плотность, водонепроницаемость, деформативность, а также другие показатели, установленные проектом, следует определять согласно требованиям действующих государственных стандартов.

БЕТОНЫ НА ПОРИСТЫХ ЗАПОЛНИТЕЛЯХ

2.19. Бетоны должны удовлетворять требованиям ГОСТ 25820-83.

2.20. Материалы для бетонов следует выбирать в соответствии с обязательным приложением 7, а химические добавки - с рекомендуемым приложением 8.

2.21. Подбор состава бетона следует производить в соответствии с ГОСТ 27006-86.

2.22. Бетонные смеси, их приготовление, доставка, укладка и уход за бетоном должны отвечать требованиям ГОСТ 7473-85.

2.23. Основные показатели качества бетонной смеси и бетона должны контролироваться в соответствии с табл. 3.

Таблица 3

КИСЛОТОСТОЙКИЕ И ЩЕЛОЧЕСТОЙКИЕ БЕТОНЫ

2.24. Кислотостойкие и щелочестойкие бетоны должны соответствовать требованиям ГОСТ 25192-82. Составы кислотостойких бетонов и требования к материалам приведены в табл. 4

Таблица 4

Материал

Количество

Требования к материалам

1. Вяжущее - жидкое стекло:

натриевое

Не менее 280 кг/м 3 (9-11 % по массе)

1,38-1,42 (удельная масса) с кремнеземистым модулем 2,5-2,8

калиевое

1,26-1,36 (удельная масса) с кремнеземистым модулем 2,5-3,5

2. Инициатор твердения - кремнефтористый натрий:

От 25 до 40 кг/м 3 (1,3-2 % по массе)

в том числе для бетона:

кислотостойкого (КБ)

8-10 % массы натриевого жидкого стекла

кислотоводостойкого (КВБ)

18-20 % массы натриевого жидкого стекла или 15 % массы калиевого жидкого стекла

3. Тонкомолотые наполнители - андезитовая, диабазовая или базальтовая мука

В 1,3-1,5 раза больше расхода жидкого стекла (12-16 %)

Кислотостойкость не ниже 96 %, тонкость помола, соответствующая остатку не более 10 % на сите № 0315, влажность не более 2 %

4. Мелкий заполнитель - кварцевый песок

В 2 раза больше расхода жидкого стекла (24-26 %)

Кислотостойкость не ниже 96 %, влажность не более 1 %. Предел прочности пород, из которых получается песок и щебень, должен быть не ниже 60 МПа. Запрещается применение заполнителей из карбонатных пород (известняков, доломитов), заполнители не должны содержать металлических включений

5. Крупный заполнитель-щебень из андезита, бештаунита, кварца, кварцита, фельзита, гранита, кислотостойкой керамики

В 4 раза больше расхода жидкого стекла (48-50 %)


2.25. Приготовление бетонных смесей на жидком стекле следует осуществлять в следующем порядке. Предварительно в закрытом смесителе в сухом виде перемешивают просеянные через сито № 03 инициатор твердения, наполнитель и другие порошкообразные компоненты. Жидкое стекло перемешивают с модифицирующими добавками. Вначале в смеситель загружают щебень всех фракций и песок, затем - смесь порошкообразных материалов и перемешивают в течение 1 мин, затем добавляют жидкое стекло и перемешивают 1-2 мин. В гравитационных смесителях время перемешивания сухих материалов увеличивают до 2 мин, а после загрузки всех компонентов - до 3 мин. Добавление в готовую смесь жидкого стекла или воды не допускается. Жизнеспособность бетонной смеси - не более 50 мин при 20 °С, с повышением температуры она уменьшается. Требования к подвижности бетонных смесей приведены в табл. 5.

2.26. Транспортирование, укладку и уплотнение бетонной смеси следует производить при температуре воздуха не ниже 10°С в сроки, не превышающие ее жизнеспособности. Укладку надлежит вести непрерывно. При устройстве рабочего шва поверхность затвердевшего кислотоупорного бетона насекается, обеспыливается и грунтуется жидким стеклом.

2.27. Влажность поверхности бетона или кирпича, защищаемых кислотоупорным бетоном, должна быть не более 5 % по массе, на глубине до 10 мм.

2.28. Поверхность железобетонных конструкций из бетона на портландцементе перед укладкой на них кислотостойкого бетона должна быть подготовлена в соответствии с указаниями проекта или обработана горячим раствором кремнефтористого магния (3-5 %-ный раствор с температурой 60 °С) или щавелевой кислоты (5-10 %-ный раствор) или прогрунтована полиизоцианатом или 50 %-ным раствором полиизоцианата в ацетоне.

Таблица 5

Параметр

Величина параметра

Контроль (метод, объем, вид регистрации)

Подвижность бетонных смесей в зависимости от области применения кислотостойкого бетона для:

Измерительный по ГОСТ 10181.1-81, журнал работ

полов, неармированных конструкций, футеровки емкостей, аппаратов

Осадка конуса 0-1 см, жесткость 30-50 с

конструкций с редким армированием толщиной свыше 10 мм

Осадка конуса 3-5 см, жесткость 20-25 с

густоармированных тонкостенных конструкций

Осадка конуса 6-8 см, жесткость 5-10 с


2.29. Бетонную смесь на жидком стекле следует уплотнять вибрированием каждого слоя толщиной не более 200 мм в течение 1-2 мин.

2.30. Твердение бетона в течение 28 сут должно происходить при температуре не ниже 15 °С. Допускается просушивание с помощью воздушных калориферов при температуре 60-80 °С в течение суток. Скорость подъема температуры - не более 20-30 °С/ч.

2.31. Кислотонепроницаемость кислотостойкого бетона обеспечивается введением в состав бетона полимерных добавок 3-5 % массы жидкого стекла: фурилового спирта, фурфурола, фуритола, ацетоноформальдегидной смолы АЦФ-3М, тетрафурфурилового эфира ортокремневой кислоты ТФС, компаунда из фурилового спирта с фенолформальдегидной смолой ФРВ-1 или ФРВ-4.

2.32. Водостойкость кислотостойкого бетона обеспечивается введением в состав бетона тонкомолотых добавок, содержащих активный кремнезем (диатомит, трепел, аэросил, кремень, халцедон и др.), 5-10 % массы жидкого стекла или полимерных добавок до 10-12 % массы жидкого стекла: полиизоцианата, карбамидной смолы КФЖ или КФМТ, кремнийорганической гидрофобизирующей жидкости ГКЖ-10 или ГКЖ-11, эмульсии парафина.

2.33. Защитные свойства кислотостойкого бетона по отношению к стальной арматуре обеспечиваются введением в состав бетона ингибиторов коррозии 0,1-0,3 % массы жидкого стекла: окись свинца, комплексная добавка катапина и сульфонола, фенилантранилата натрия.

2.34. Распалубка конструкций и последующая обработка бетона допускаются при достижении бетоном 70 % проектной прочности.

2.35. Повышение химической стойкости конструкций из кислотостойкого бетона обеспечивается двукратной обработкой поверхности раствором серной кислоты 25-40 %-ной концентрации.

2.36. Материалы для щелочестойких бетонов, контактирующих с растворами щелочей при температуре до 50 °С, должны удовлетворять требованиям ГОСТ 10178-85. Не допускается применение цементов с активными минеральными добавками. Содержание гранулированных или электротермофосфорных шлаков должно быть не менее 10 и не более 20 %. Содержание минерала С 3 А в портландцементе и шлакопортландцементе не должно превышать 8 %. Применение глиноземистого вяжущего запрещено.

2.37. Мелкий заполнитель (песок) для щелочестойкого бетона, эксплуатируемого при температуре до 30 °С, следует применять в соответствии с требованиями ГОСТ 10268-80, выше 30 °С - следует применять дробленый из щелочестойких пород - известняка, доломита, магнезита и т. п. Крупный заполнитель (щебень) для щелочестойких бетонов, эксплуатируемых при температуре до 30 °С, следует применять из плотных изверженных пород - гранита, диабаза, базальта и др.

2.38. Щебень для щелочестойких бетонов, эксплуатируемых при температуре выше 30 °С, следует применять из плотных карбонатных осадочных или метаморфических пород - известняка, доломита, магнезита и т. п. Водонасыщение щебня должно быть не более 5 %.

ЖАРОСТОЙКИЕ БЕТОНЫ

2.39. Материалы для приготовления обычного бетона, эксплуатируемого при температуре до 200 °С, и жаростойкого бетона следует применять в соответствии с рекомендуемым приложением 6 и обязательным приложением 7.

2.40. Дозирование материалов, приготовление и транспортирование бетонных смесей должно удовлетворять требованиям ГОСТ 7473-85 и ГОСТ 20910-82.

2.41. Увеличение подвижности бетонных смесей для обычных бетонов, эксплуатируемых при температуре до 200 °С, допускается за счет применения пластификаторов и суперпластификаторов.

2.42. Применение химических ускорителей твердения в бетонах, эксплуатируемых при температуре выше 150°С, не допускается.

2.43. Бетонные смеси следует укладывать при температуре не ниже 15°С, и процесс этот должен быть непрерывным. Перерывы допускаются в местах устройства рабочих или температурных швов, предусмотренных проектом.

2.44. Твердение бетонов на цементном вяжущем должно происходить в условиях, обеспечивающих влажное состояние поверхности бетона.

Твердение бетонов на жидком стекле должно происходить в условиях воздушно-сухой среды. При твердении этих бетонов должна быть обеспечена хорошая вентиляция воздуха для удаления паров воды.

2.45. Сушку и разогрев жаростойкого бетона следует производить согласно ППР.

БЕТОНЫ ОСОБО ТЯЖЕЛЫЕ И ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ

2.46. Производство работ с применением особо тяжелых бетонов и бетонов для радиационной защиты надлежит осуществлять по обычной технологии. В случаях, когда обычные способы бетонирования неприменимы из-за расслоения смеси, сложной конфигурации сооружения, насыщенности арматурой, закладными деталями и коммуникационными проходками, следует применять метод раздельного бетонирования (способ восходящего раствора или способ втапливания крупного заполнителя в раствор). Выбор метода бетонирования должен определяться ППР.

2.47. Материалы, применяемые для бетонов радиационной защиты, должны соответствовать требованиям проекта.

2.48. Требования к гранулометрическому составу, физико-механическим характеристикам минеральных, рудных и металлических заполнителей должны соответствовать требованиям, предъявляемым к заполнителям для тяжелого бетона. Металлические заполнители перед употреблением должны быть обезжирены: На металлических заполнителях допускается наличие неотслаивающейся ржавчины.

2.49. В паспортах на материалы, применяемые для изготовления бетонов радиационной защиты, должны указываться данные полного химического анализа этих материалов.

2.50. Производство работ с применением бетонов на металлических заполнителях допускается только при положительных температурах окружающего воздуха.

2.51. При укладке бетонных смесей запрещается применение ленточных и вибрационных транспортеров, вибробункеров, виброхоботов, сбрасывание особо тяжелой бетонной смеси допускается с высоты не более 1 м.

2.52. Испытании бетона следует производить в соответствии с 18">п. 2.18.

ПРОИЗВОДСТВО БЕТОННЫХ РАБОТ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ ВОЗДУХА

2.53. Настоящие правила выполняются в период производства бетонных работ при ожидаемой среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С.

2.54. Приготовление бетонной смеси следует производить в обогреваемых бетоносмесительных установках, применяя подогретую воду, оттаянные или подогретые заполнители, обеспечивающие получение бетонной смеси с температурой не ниже требуемой по расчету. Допускается применение неотогретых сухих заполнителей, не содержащих наледи на зернах и смерзшихся комьев. При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.55. Способы и средства транспортирования должны обеспечивать предотвращение снижения температуры бетонной смеси ниже требуемой по расчету.

2.56. Состояние основания, на которое укладывается бетонная смесь, а также температура основания и способ укладки должны исключать возможность замерзания смеси в зоне контакта с основанием. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания. При температуре воздуха ниже минус 10 °С бетонирование густоармированных конструкций с арматурой диаметром больше 24 мм, арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры или местным вибрированием смеси в приарматурной и опалубочной зонах, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45°С). Продолжительность вибрирования бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.57. При бетонировании элементов каркасных и рамных конструкций в сооружениях с жестким сопряжением узлов (опор) необходимость устройства разрывов в пролетах в зависимости от температуры тепловой обработки, с учетом возникающих температурных напряжении, следует согласовывать с проектной организацией. Неопалубленные поверхности конструкций следует укрывать паро- и теплоизоляционными материалами непосредственно по окончании бетонирования.

Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

2.58. Перед укладкой бетонной (растворной) смеси поверхности полостей стыков сборных железобетонных элементов должны быть очищены от снега и наледи.

2.59. Бетонирование конструкций на вечномерзлых грунтах следует производить в соответствии со СНиП II-18-76.

Ускорение твердения бетона при бетонировании монолитных буронабивных свай и замоноличивании буроопускных следует достигать путем введения в бетонную смесь комплексных противоморозных добавок, не снижающих прочность смерзания бетона с вечномерзлым грунтом.

2.60. Выбор способа выдерживания бетона при зимнем бетонировании монолитных конструкций следует производить в соответствии с рекомендуемым приложением 9.

2.61. Контроль прочности бетона следует осуществлять, как правило, испытанием образцов, изготовленных у места укладки бетонной смеси. Образцы, хранящиеся на морозе, перед испытанием надлежит выдерживать 2-4 ч при температуре 15-20°С.

Допускается контроль прочности производить по температуре бетона в процессе его выдерживания.

2.62. Требования к производству работ при отрицательных температурах воздуха установлены в табл. 6

Таблица 6

Параметр

Величина параметра

Контроль (метод, объем, вид регистрации)

1. Прочность бетона монолитных и сборно-монолитных конструкций к моменту замерзания:

Измерительный по ГОСТ 18105-86, журнал работ

для бетона без противоморозных добавок:

конструкций, эксплуатирующихся внутри зданий, фундаментов под оборудование, не подвергающихся динамическим воздействиям, подземных конструкций

Не менее 5 МПа

конструкций, подвергающихся атмосферным воздействиям в процессе эксплуатации, для класса:

Не менее, % проектной прочности:

В30 и выше

конструкций, подвергающихся по окончании выдерживания переменному замораживанию и оттаиванию в водонасыщенном состоянии или расположенных в зоне сезонного оттаивания вечномерзлых грунтов при условии введения в бетон воздухововлекающих или газообразующих ПАВ

в преднапряженных конструкциях

для бетона с противоморозными добавками

К моменту охлаждения бетона до температуры, на которую рассчитано количество добавок, не менее 20 % проектной прочности

2. Загружение конструкций расчетной нагрузкой допускается после достижения бетоном прочности

Не менее 100 % проектной

3. Температура воды и бетонной смеси на выходе из смесителя, приготовленной:

Измерительный, 2 раза в смену, журнал работ

на портландцементе, шлакопортландцементе, пуццолановом портландцементе марок ниже М600

Воды не более 70 °С, смеси не более 35 °С

на быстротвердеющем портландцементе и портландцементе марки М600 и выше

Воды не более 60 °С, смеси не более 30 °С

на глиноземистом портландцементе

Воды не более 40 °С, смеси не более 25 °С

4. Температура бетонной смеси, уложенной в опалубку, к началу выдерживания или термообработки:

Измерительный, в местах, определенных ППР, журнал работ

при методе термоса

Устанавливается расчетом, но не ниже 5 °С

с противоморозными добавками

Не менее чем на 5 °С выше температуры замерзания раствора затворения

при тепловой обработке

Не ниже 0 °С

5. Температура в процессе выдерживания и тепловой обработки для бетона на:

Определяется расчетом, но не выше, °С:

При термообработке - через каждые 2 ч в период подъема температуры или в первые сутки. В последующие трое суток и без термообработки - не реже 2 раз в смену. В остальное время выдерживания - один раз в сутки

портландцементе

шлакопортландцементе

6. Скорость подъема температуры при тепловой обработке бетона:

Измерительный, через каждые 2 ч, журнал работ

для конструкций с модулем поверхности:

Не более, °С/ч:

для стыков

7. Скорость остывания бетона по окончании тепловой обработки для конструкций с модулем поверхности:

Измерительный, журнал работ

Определяется расчетом

Не более 5 °С/ч

Не более 10 °С/ч

8. Разность температур наружных слоев бетона и воздуха при распалубке с коэффициентом армирования до 1 %, до 3 % и более 3 % должна быть соответственно для конструкций с модулем поверхности:

Не более 20, 30, 40 °С

Не более 30, 40, 50 °С

ПРОИЗВОДСТВО БЕТОННЫХ РАБОТ ПРИ ТЕМПЕРАТУРЕ ВОЗДУХА ВЫШЕ 25°С

2.63. При производстве бетонных работ при температуре воздуха выше 25 °С и относительной влажности менее 50 % должны применяться быстротвердеющие портландцементы, марка которых должна превышать марочную прочность бетона не менее чем в 1,5 раза. Для бетонов класса В22,5 и выше допускается применять цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза при условии применения пластифицированных портландцементов или введения пластифицирующих добавок.

Не допускается применение пуццоланового портландцемента, шлакопортландцемента ниже М400 и глиноземистого цемента для бетонирования надземных конструкций, за исключением случаев, предусмотренных проектом. Цементы не должны обладать ложным схватыванием, иметь температуру выше 50°С, нормальная густота цементного теста не должна превышать 27 %.

2.64. Температура бетонной смеси при бетонировании конструкций с модулем поверхности более 3 не должна превышать 30-35 °С, а для массивных конструкций с модулем поверхности менее 3-20 °С.

2.65. При появлении на поверхности уложенного бетона трещин вследствие пластической усадки допускается его повторное поверхностное вибрирование не позднее чем через 0,5-1 ч после окончания его укладки.

2.66. Уход за свежеуложенным бетоном следует начинать сразу после окончания укладки бетонной смеси и осуществлять до достижения, как правило, 70 % проектной прочности, а при соответствующем обосновании - 50 %.

Свежеуложенная бетонная смесь в начальный период ухода должна быть защищена от обезвоживания.

При достижении бетоном прочности 0,5 МПа последующий уход за ним должен заключаться в обеспечении влажного состояния поверхности путем устройства влагоемкого покрытия и его увлажнения, выдерживания открытых поверхностей бетона под слоем воды, непрерывного распыления влаги над поверхностью конструкций. При этом периодический полив водой открытых поверхностей твердеющих бетонных и железобетонных конструкций не допускается.

2.67. Для интенсификации твердения бетона следует использовать солнечную радиацию путем укрытия конструкций рулонным или листовые светопрозрачным влагонепроницаемым материалом, покрытия их пленкообразующими составами или укладывать бетонную смесь с температурой 50-60 °С.

2.68. Во избежание возможного возникновения термонапряженного состояния в монолитных конструкциях при прямом воздействии солнечных лучей свежеуложенный бетон следует защищать саморазрушающимися полимерными пенами, инвентарными тепловлагоизоляционными покрытиями, полимерной пленкой с коэффициентом отражения более 50 % или любым другим теплоизоляционным материалом.

СПЕЦИАЛЬНЫЕ МЕТОДЫ БЕТОНИРОВАНИЯ

2.69. Исходя из конкретных инженерно-геологических и производственных условий, в соответствии с проектом допускается применение следующих специальных методов бетонирования:

  • вертикально перемещаемой трубы (ВПТ);
  • восходящего раствора (ВР);
  • инъекционного;
  • вибронагнетательного;
  • укладки бетонной смеси бункерами;
  • втрамбовывания бетонной смеси;
  • напорного бетонирования;
  • укатки бетонных смесей;
  • цементирования буросмесительным способом.

2.70. Метод ВПТ следует применять при возведении заглубленных конструкций при их глубине от 1,5 м и более; при этом используют бетон проектного класса до В25.

2.71. Бетонирование методом ВР с заливкой наброски из крупного камня цементно-песчаным раствором следует применять при укладке под водой бетона на глубине до 20 м для получения прочности бетона, соответствующей прочности бутовой кладки.

Метод ВР с заливкой наброски из щебня цементно-песчаным раствором допускается применять на глубинах до 20 м для возведения конструкций из бетона класса до В25.

При глубине бетонирования от 20 до 50 м, а также при ремонтных работах для усиления конструкций и восстановительного строительства следует применять заливку щебеночного заполнителя цементным раствором без песка.

2.72. Инъекционный и вибронагнетательный методы следует применять для бетонирования подземных конструкций преимущественно тонкостенных из бетона класса В25 на заполнителе максимальной фракции 10-20 мм.

2.73. Метод укладки бетонной смеси бункерами следует применять при бетонировании конструкций из бетона класса В20 на глубине более 20 м.

2.74. Бетонирование методом втрамбовывания бетонной смеси следует применять на глубине менее 1,5 м для конструкций больших площадей, бетонируемых до отметки, расположенной выше уровня воды, при классе бетона до В25.

2.75. Напорное бетонирование путем непрерывного нагнетания бетонной смеси при избыточном давлении следует применять при возведении подземных конструкций в обводненных грунтах и сложных гидрогеологических условиях при устройстве подводных конструкций на глубине более 10 м и возведении ответственных сильноармированных конструкций, а также при повышенных требованиях к качеству бетона.

2.76. Бетонирование путем укатки малоцементной жесткой бетонной смеси следует применять для возведения плоских протяженных конструкций из бетона класса до В20. Толщина укатываемого слоя должна приниматься в пределах 20-50 см.

2.77. Для устройства цементно-грунтовых конструкций нулевого цикла при глубине заложения до 0,5 м допускается использование буросмесительной технологии бетонирования путем смешивания расчетного количества цемента, грунта и воды в скважине с помощью бурового оборудования.

2.78. При подводном (в том числе под глинистым раствором) бетонировании необходимо обеспечивать:

изоляцию бетонной смеси от воды в процессе ее транспортирования под воду и укладки в бетонируемую конструкцию;

плотность опалубки (или другого ограждения);

непрерывность бетонирования в пределах элемента (блока, захватки);

контроль за состоянием опалубки (ограждения) в процессе укладки бетонной смеси (при необходимости силами водолазов либо с помощью установок подводного телевидения).

2.79. Сроки распалубливания и загружения подводных бетонных и железобетонных конструкций должны устанавливаться по результатам испытания контрольных образцов, твердевших в условиях, аналогичных условиям твердения бетона в конструкции.

2.80. Бетонирование способом ВПТ после аварийного перерыва допускается возобновлять только при условии:

  • достижения бетоном в оболочке прочности 2,0-2,5 МПа;
  • удаления с поверхности подводного бетона шлама и слабого бетона;

обеспечения надежной связи вновь укладываемого бетона с затвердевшим бетоном (штрабы, анкеры и т. д.).

При бетонировании под глинистым раствором перерывы продолжительностью более срока схватывания бетонной смеси не допускаются; при превышении указанного ограничения конструкцию следует считать бракованной и не подлежащей ремонту с применением метода ВПТ.

2.81. При подаче бетонной смеси под воду бункерами не допускается свободное сбрасывание смеси через слой воды, а также разравнивание уложенного бетона горизонтальным перемещением бункера.

2.82. При бетонировании методом втрамбовывания бетонной смеси с островка необходимо втрамбовывание вновь поступающих порций бетонной смеси производить не ближе 200-300 мм от уреза воды, не допуская сплыва смеси поверх откоса в воду.

Надводная поверхность уложенной бетонной смеси на время схватывания и твердения должна быть защищена от размыва и механических повреждений.

2.83. При устройстве конструкций типа «стена в грунте» бетонирование траншей следует выполнять секциями длиной не более 6 м с применением инвентарных межсекционных разделителей.

Таблица 7

Параметр

Величина параметра

Контроль (метод, объем, вид регистрации)

1. Подвижность бетонных смесей при методе бетонирования:

Измерительный по ГОСТ 10181.1-81 (попартионно), журнал работ

ВПТ без вибрации

ВПТ с вибрацией

напорном

укладки бункерами

втрамбовывании

2. Растворы при бетонировании методом ВР:

То же, по ГОСТ 5802-86 (попартионно), журнал работ

подвижность

12 - 15 см по эталонному конусу

водоотделение

Не более 2,5 %

3. Заглубление трубопровода в бетонную смесь при методе бетонирования:

Измерительный, постоянный

всех подводных, кроме напорного

Не менее 0,8 м и не более 2 м

напорном

Не менее 0,8 м. Максимальное заглубление принимается в зависимости от величины давления нагнетательного оборудования


При наличии в траншее глинистого раствора бетонирование секции производится не позднее чем через 6 ч после заливки раствора в траншею; в противном случае следует заменить глинистый раствор с одновременной выработкой шлама, осевшего на дно траншеи.

Арматурный каркас перед погружением в глинистый раствор следует смачивать водой. Продолжительность погружения от момента опускания арматурного каркаса в глинистый раствор до момента начала бетонирования секции не должна превышать 4 ч.

Расстояние от бетонолитной трубы до межсекционного разделителя следует принимать не более 1,5 м при толщине стены до 40 см и не более 3 м при толщине стены более 40 см.

2.84. Требования к бетонным смесям при их укладке специальными методами приведены в табл. 7.

ПРОРЕЗКА ДЕФОРМАЦИОННЫХ ШВОВ, ТЕХНОЛОГИЧЕСКИХ БОРОЗД, ПРОЕМОВ, ОТВЕРСТИЙ И ОБРАБОТКА ПОВЕРХНОСТИ МОНОЛИТНЫХ КОНСТРУКЦИЙ

2.85. Инструмент для механической обработки следует выбирать в зависимости от физико-механических свойств обрабатываемого бетона и железобетона с учетом требований, предъявляемых к качеству обработки действующим ГОСТом на алмазный инструмент, и рекомендуемого приложения 10.

2.86. Охлаждение инструмента следует предусматривать водой под давлением 0,15-0,2 МПа, для снижения энергоемкости обработки - растворами поверхностно-активных веществ концентрации 0,01-1 %.

2.87. Требования к режимам механической обработки бетона и железобетона приведены в табл. 8.

Таблица 8

Параметр

Величина параметра

Контроль (метод, объем, вид регистрации)

1. Прочность бетона и железобетона при обработке

Не менее 50 % проектной

Измерительный по ГОСТ 18105-86

2. Окружная скорость режущего инструмента при обработке бетона и железобетона, м/с:

Измерительный, 2 раза в смену

резанием

сверлением

фрезерованием

шлифованием

3. Расход охлаждающей жидкости на 1 см 2 площади режущей поверхности инструмента, м 3 /с при:

Измерительный, 2 раза в смену

сверлении

фрезеровании

шлифовании

ЦЕМЕНТАЦИЯ ШВОВ. РАБОТЫ ПО ТОРКРЕТИРОВАНИЮ И УСТРОЙСТВУ НАБРЫЗГ-БЕТОНА

2.88. Для цементации усадочных, температурных, деформационных и конструкционных швов следует применять портландцемент не ниже М400. При цементации швов с раскрытием менее 0,5 мм используют пластифицированные цементные растворы. До начала работ по цементации производится промывка и гидравлическое опробование шва для определения его пропускной способности и герметичности карты (шва).

2.89. Температура поверхности шва при цементации бетонного массива должна быть положительной. Для цементации швов при отрицательной температуре следует применять растворы с противоморозными добавками. Цементацию следует выполнять до поднятия уровня воды перед гидротехническим сооружением после затухания основной части температурно-усадочных деформаций.

2.90. Качество цементирования швов проверяется: обследованием бетона посредством бурения контрольных скважин и гидравлического опробования их и кернов, взятых из мест пересечения швов; замером фильтрации воды через швы; ультразвуковыми испытаниями.

2.91. Заполнители для торкретирования и устройства набрызг-бетона должны отвечать требованиям ГОСТ 10268-80.

Крупность заполнителей не должна превышать половины толщины каждого торкретируемого слоя и половины размера ячейки арматурных сеток.

2.92. Поверхность для торкретирования должна быть очищена, продута сжатым воздухом и промыта струей воды под давлением. Не допускается наплывов по высоте более 1/2 толщины торкретируемого слоя. Устанавливаемая арматура должна быть зачищена и закреплена от смещения и колебаний.

2.93. Торкретирование производится в один или несколько слоев толщиной 3-5 мм по неармированной или армированной поверхности согласно проекту.

2.94. При возведении ответственных конструкций контрольные образцы следует вырезать из специально заторкретированных плит размером не менее 50´50 см или из конструкций. Для прочих конструкций контроль и оценка качества производятся неразрушающими методами.

АРМАТУРНЫЕ РАБОТЫ

2.95. Арматурная сталь (стержневая, проволочная) и сортовой прокат, арматурные изделия и закладные элементы должны соответствовать проекту и требованиям соответствующих стандартов. Расчленение пространственных крупногабаритных арматурных изделий, а также замена предусмотренной проектом арматурной стали должны быть согласованы с заказчиком и проектной организацией.

2.96. Транспортирование и хранение арматурной стали следует выполнять по ГОСТ 7566-81.

2.97. Заготовку стержней мерной длины из стержневой и проволочной арматуры и изготовление ненапрягаемых арматурных изделий следует выполнять в соответствии с требованиями СНиП 3.09.01-85, а изготовление несущих арматурных каркасов из стержней диаметром более 32 мм прокатных профилей - согласно разд. 8.

2.98. Изготовление пространственных крупногабаритных арматурных изделий следует производить в сборочных кондукторах.

2.99. Заготовку (резку, сварку, образование анкерных устройств), установку и натяжение напрягаемой арматуры следует выполнять по проекту в соответствии со СНиП 3.09.01-85.

(Разъяснение, БСТ 10-88)

2.100. Монтаж арматурных конструкций следует производить преимущественно из крупноразмерных блоков или унифицированных сеток заводского изготовления с обеспечением фиксации защитного слоя согласно табл. 9.

2.101. Установку на арматурных конструкциях пешеходных, транспортных или монтажных устройств следует осуществлять в соответствии с ППР, по согласованию с проектной организацией.

2.102. Бессварочные соединения стержней следует производить:

стыковые - внахлестку или обжимными гильзами и винтовыми муфтами с обеспечением равнопрочности стыка;

крестообразные - вязкой отожженной проволокой. Допускается применение специальных соединительных элементов (пластмассовых и проволочных фиксаторов).

2.103. Стыковые и крестообразные сварные соединения следует выполнять по проекту в соответствии с ГОСТ 14098-85.

2.104. При устройстве арматурных конструкций следует соблюдать требования табл. 9.

Таблица 9

Параметр

Величина параметра, мм

Контроль (метод, объем, вид регистрации)

1. Отклонение в расстоянии между отдельно установленными рабочими стержнями для:

Технический осмотр всех элементов, журнал работ

колонн и балок

плит и стен фундаментов

массивных конструкций

2. Отклонение в расстоянии между рядами арматуры для:

плит и балок толщиной до 1 м

конструкций толщиной более 1 м

3. Отклонение от проектной толщины защитного слоя бетона не должно превышать:

при толщине защитного слоя до 15 мм и линейных размерах поперечного сечения конструкции, мм:

от 101 до 200

при толщине защитного слоя от 16 до 20 мм включ. и линейных размерах поперечного сечения конструкций, мм:

от 101 до 200

от 201 до 300

при толщине защитного слоя свыше 20 мм и линейных размерах поперечного сечения конструкций, мм:

от 101 до 200

от 201 до 300

ОПАЛУБОЧНЫЕ РАБОТЫ

Раздел признан не действующим Постановлением Госстроя России от 22.05.2003 г. № 42.

2.105. Типы опалубок следует применять в соответствии с ГОСТ 23478-79. Нагрузки на опалубку следует рассчитывать в соответствии с требованиями настоящих норм и правил (обязательное приложение 11).

2.106. Древесные, металлические, пластмассовые и другие материалы для опалубки должны отвечать требованиям ГОСТ 23478-79; деревянные клееные конструкции - ГОСТ 20850-84 или ТУ; фанера ламинированная - ТУ 18-649-82; ткани пневматических опалубок - утвержденным техническим условиям. Материалы несъемных опалубок должны удовлетворять требованиям проекта в зависимости от функционального назначения (облицовка, утеплитель, изоляция, защита от коррозии и т. д.). При использовании опалубки в качестве облицовки она должна удовлетворять требованиям соответствующих облицовочных поверхностей.

2.107. Комплектность определяется заказом потребителя.

2.108. Завод - изготовитель опалубки должен производить контрольную сборку фрагмента на заводе. Схема фрагмента определяется заказчиком по согласованию с заводом-изготовителем.

Испытания элементов опалубки и собранных фрагментов на прочность и деформацию проводятся при изготовлении первых комплектов опалубки, а также замене материалов и профилей. Программу испытаний разрабатывают организация - разработчик опалубки, завод-изготовитель и заказчик.

2.109. Установка и приемка опалубки, распалубливание монолитных конструкций, очистка и смазка производятся по ППР.

2.110. Допустимая прочность бетона при распалубке приведена в табл. 10. При установке промежуточных опор в пролете перекрытия при частичном или последовательном удалении опалубки прочность бетона может быть снижена. В этом случае прочность бетона, свободный пролет перекрытия, число, место и способ установки опор определяются ППР и согласовываются с проектной организацией. Снятие всех типов опалубки следует производить после предварительного отрыва от бетона.

Таблица 10

Параметр

Величина параметра

Контроль (метод, объем, вид регистрации)

1. Точность изготовления опалубки:

инвентарной

По рабочим чертежам и техническим условиям - не ниже H14; h14; по ГОСТ25346-82 и ГОСТ 25347-82; для формообразующих элементов - h14

Технический осмотр, регистрационный

пневматической

По техническим условиям

2. Уровень дефектности

Не более 1,5 % при нормальном уровне контроля

Измерительный по ГОСТ 18242-72

3. Точность установки инвентарной опалубки:

по ГОСТ 25346-82 и ГОСТ 25347-82

Измерительный, всех элементов, журнал работ

в том числе:

уникальных и специальных сооружений

Определяется проектом

малооборачиваемой и (или) неинвентарной при возведении конструкций, к поверхности которых не предъявляются требования точности

По согласованию с заказчиком может быть ниже

для конструкций, готовых под окраску без шпатлевки

Перепады поверхностей, в том числе стыковых, не более 2 мм

для конструкций, готовых под оклейку обоями

То же, не более 1 мм

4. Точность установки и качество поверхности несъемной опалубки-облицовки

Определяется качеством поверхности облицовки

5. Точность установки несъемной опалубки, выполняющей функции внешнего армирования

Определяется проектом

6. Оборачиваемость опалубки

ГОСТ 23478-79

Регистрационный, журнал работ

7. Прогиб собранной опалубки:

Контролируется при заводских испытаниях и на строительной площадке

вертикальных поверхностей

1/400 пролета

перекрытий

1/500 пролета

8. Минимальная прочность бетона незагруженных монолитных конструкций при распалубке поверхностей:

Измерительный по ГОСТ 10180-78, ГОСТ 18105-86, журнал работ

вертикальных из условия сохранения формы

горизонтальных и наклонных при пролете:

70 % проектной

80 % проектной

9. Минимальная прочность бетона при распалубке загруженных конструкций, в том числе от вышележащего бетона (бетонной смеси)

Определяется ППР и согласовывается с проектной организацией

ПРИЕМКА БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЛИ ЧАСТЕЙ СООРУЖЕНИЙ

2.111. При приемке законченных бетонных и железобетонных конструкций или частей сооружений следует проверять:

  • соответствие конструкций рабочим чертежам;
  • качество бетона по прочности, а в необходимых случаях по морозостойкости, водонепроницаемости и другим показателям, указанным в проекте;
  • качество применяемых в конструкции материалов, полуфабрикатов и изделий.

2.112. Приемку законченных бетонных и железобетонных конструкций или частей сооружений следует оформлять в установленном порядке актом освидетельствования скрытых работ или актом на приемку ответственных конструкций.

2.113. Требования, предъявляемые к законченным бетонным и железобетонным конструкциям или частям сооружений, приведены в табл. 11.

Таблица 11

Параметр

Предельные отклонения

Контроль (метод, объем, вид регистрации)

1. Отклонение линий плоскостей пересечения от вертикали или проектного наклона на всю высоту конструкций для:

фундаментов

Измерительный, каждый конструктивный элемент, журнал работ

стен и колонн, поддерживающих монолитные покрытия и перекрытия

стен и колонн, поддерживающих сборные балочные конструкции

стен зданий и сооружений, возводимых в скользящей опалубке, при отсутствии промежуточных перекрытий

1/500 высоты сооружения, но не более 100 мм

Измерительный, всех стен и линий их пересечения, журнал работ

стен зданий и сооружений, возводимых в скользящей опалубке, при наличии промежуточных перекрытий

1/1000 высоты сооружения, но не более 50 мм

2. Отклонение горизонтальных плоскостей на всю длину выверяемого участка

Измерительный, не менее 5 измерений на каждые 50-100 м, журнал работ

3. Местные неровности поверхности бетона при проверке двухметровой рейкой, кроме опорных поверхностей

4. Длина или пролет элементов

Измерительный, каждый элемент, журнал работ

5. Размер поперечного сечения элементов

6 мм; -3 мм

6. Отметки поверхностей и закладных изделий, служащих опорами для стальных или сборных железобетонных колонн и других сборных элементов

Измерительный, каждый опорный элемент, исполнительная схема

7. Уклон опорных поверхностей фундаментов при опирании стальных колонн без подливки

То же, каждый фундамент, исполнительная схема

8. Расположение анкерных болтов:

То же, каждый фундаментный болт, исполнительная схема

в плане внутри контура опоры

в плане вне контура опоры

по высоте

9. Разница отметок по высоте на стыке двух смежных поверхностей

То же, каждый стык, исполнительная схема


Методическая документация в строительстве

ЗАО «ЦНИИОМТП»

ЗИМНЕЕ БЕТОНИРОВАНИЕ
С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

МДС 12-48.2009

Москва 2009

В настоящем методическом документе содержатся сведения о зимнем бетонировании с применением нагревательных проводов: технические требования к нагревательным проводам и силовому электрооборудованию, методические положения по расчету и выбору параметров режима термообработки бетона, рекомендации по организации работ, правила и приемы выполнения технологических операций, нормы и процедуры оценки качества работ. Приводятся примеры бетонирования типовых конструктивных элементов здания: колонн, стен и перекрытий.

Сведения, содержащиеся в документе, могут быть использованы для составления технологических документов на зимнее бетонирование: проектов производства работ, технологических карт, технических регламентов и т.п.

Методический документ предназначен для проектных и строительных организаций и специалистов-строителей, занимающихся вопросами производства бетонных работ в зимних условиях.

Методический документ разработан сотрудниками ЗАО «ЦНИИОМТП» - кандидатами техн. наук В.П. Володиным и Ю.А. Корытовым.

ВВЕДЕНИЕ

К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С. Считается, что зимнее бетонирование может производиться при температуре воздуха до минус 40°С. На практике зимнее бетонирование освоено до температуры минус 15-20°С.

Для набора бетоном необходимой прочности выполняют специальные мероприятия по подготовке и производству бетонных работ в зимнее время.

Для зимнего бетонирования применяют специальные бетоны с химическими противоморозными и пластифицирующими добавками.

При выполнении работ прогревают свежеуложенный бетон различными способами с применением водяного пара, нагретой воды или электроэнергии.

Свежеуложенный бетон предохраняют от потерь теплоты (метод термоса), укрывая различными утеплителями (матами, покрывалами, полотнищами).

Особые мероприятия, в частности по утеплению рабочих органов и бетоноводов, осуществляют при подготовке машин и технологического оборудования к зимнему бетонированию.

Основное требование при выполнении зимнего бетонирования заключается в создании благоприятных условий для приобретения бетоном в короткий срок необходимой проектной прочности.

Массивные монолитные конструкции (фундаментные плиты и блоки) с модулем поверхности охлаждения М п от 2 до 4 бетонируют способом термоса с применением быстротвердеющих цементов, ускорителей твердения и противоморозных и пластифицирующих добавок.

Конструкции (колонны, блоки, стены) с модулем поверхности охлаждения 4-6 бетонируют способом термоса с применением предварительного подогрева бетонной смеси, нагревательных проводов и греющей опалубки.

Относительно тонкостенные конструкции (перегородки, перекрытия, стены) с модулем поверхности охлаждения 6-12 бетонируют упомянутыми выше способами с применением нагревательных проводов, термоактивных гибких покрытий (ТАГП), греющих плоских элементов (ГЭП).

В данном документе рассматривается способ зимнего бетонирования с применением нагревательных проводов. Этот способ имеет ряд преимуществ по сравнению с нагревом водяным паром, горячей водой, инфракрасным облучением. Эффективность способа повышается в сочетании с другими упомянутыми выше мероприятиями и приемами зимнего бетонирования: использованием высококлассного бетона с химическими добавками, утеплителей, подготовкой машин и технологического оборудования.

Применение нагревательных проводов позволяет возводить здания и сооружения, не отличающиеся по своей прочности от возводимых в летний период.

Настоящий документ содержит методические рекомендации и примеры, которые позволяют подбирать способы работ (режимы, приемы) и материалы для зимнего бетонирования для конкретного объекта строительства, с учетом местных условий и особенностей строительной организации. Выбор способа работ и материалов производится на стадии разработки проекта производства работ (технологических карт), согласовывается с заказчиком и утверждается в установленном порядке.

Настоящий документ необходим не только для разработки упомянутой выше технологической документации, но может быть полезен при лицензировании строительной организации (фирмы) на производство данного вида работ, при сертификации системы управления качеством, при аттестации качества зимнего бетонирования,

В основу документа положены научно-исследовательские работы, выполненные в ЦНИИОМТП и в других институтах строительной отрасли, а также обобщение опыта зимнего бетонирования российских строительных организаций.

При разработке документа использованы нормативные и методические документы, основные из которых приведены в разделе 2.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Документ распространяется на зимнее бетонирование с применением нагревательных проводов монолитных железобетонных строительных конструкций (плит, стен, перекрытий, колонн и т.п.), имеющих модуль поверхности охлаждения 4-10, при строительстве и ремонте жилых, общественных и производственных зданий и сооружений.

Зимнее бетонирование с применением нагревательных проводов производится при температуре окружающего воздуха, как правило, до минус 20°С.

Документ используется для разработки проектов производства работ (технологических карт), при сертификации монолитных железобетонных конструкций и лицензировании организаций, выполняющих зимнее бетонирование.

Применение документа способствует обеспечению проектной прочности монолитных железобетонных конструкций, возводимых в зимних условиях.

2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

Теплоизоляционные материалы

Коэффициент теплопередачи К , Вт/( м 2 ·°С), при скорости ветра, м/с

Пенопласт (ПХВ) толщиной 120 мм

Опилки сосновные толщиной 100 мм

Плиты минераловатные толщиной, мм:

Шлак толщиной слоя 150 мм

Доски деревянные толщиной, мм:

4.3.2 В качестве утеплителя для открытых бетонных поверхностей кроме приведенных в таблице 5 применяют также керамзит, перлит, совелитовые плиты, торфоплиты, камышит и другие теплоизоляционные материалы.

Для утепления щитов опалубки может быть применена заливная теплоизоляция на основе, например, пенополиуретана и фенопласта.

Эти же теплоизоляционные материалы используют для укрытия металлического каркаса опалубки и ребер, которые являются, как известно, «мостиками холода».

4.4 Автобетононасос и бетоновод

4.4.1 Подготовка рабочих органов автобетононасоса (бункера, других узлов) и бетоновода заключается, прежде всего, в утеплении их теплоизоляционными материалами. Утепление должно быть таким, чтобы потери теплоты бетонной смеси при загрузке ее в бункер, транспортировании и укладке в опалубку были минимальными и обеспечивали заданную проектом температуру смеси при укладке.

Бункер автобетононасоса регулярно очищают и защищают от снега и ветра.

В ряде случаев (например, при температуре наружного воздуха до минус 5°С, при бетонировании второстепенных конструкций) автобетононасос может использоваться без зимней подготовки, то есть в летнем исполнении.

4.4.2 Подготовка к зиме других органов, узлов и агрегатов автобетононасоса выполняется во время сезонного технического обслуживания, в состав которого входят регламентные операции по замене масел и рабочих жидкостей, регулировочные и другие операции по обеспечению бесперебойной работы автобетононасоса зимой.

4.4.3 Перед началом работы автобетононасоса (транспортирования и укладки бетонной смеси) бетоновод прогревают теплым воздухом, паром или горячей водой.

Очистку бункера автобетононасоса и бетоновода после работы производят теплой водой. Воду, оставшуюся после очистки, полностью удаляют.

4.4.4 В начальный момент работы автобетононасоса температура пускового раствора и бетонной смеси, заполнившей бетоновод, должна быть не ниже 30°С.

Температура бетонной смеси в процессе укладки должна соответствовать температуре, заданной проектом.

При утепленном бетоноводе допускается непреднамеренная остановка автобетононасоса до 30 минут. При более длительной остановке необходимо удалить бетонную смесь из бетоновода.

5 ТЕХНОЛОГИЯ ТЕРМООБРАБОТКИ БЕТОНА

5.1 До начала работ по укладке нагревательных проводов должны быть закончены, как правило, опалубочные и арматурные работы. В ряде случаев укладку нагревательных проводов целесообразно производить одновременно с арматурными и опалубочными работами.

В составе зимнего бетонирования выполняют следующие подготовительные и основные работы.

Выполняют подготовительные работы по организации рабочего места и оснащению его средствами труда и технологическим оборудованием, по созданию безопасных условий труда. Устраивают ограждение рабочего места, проводят сигнализацию и освещение. Устанавливают на ровной твердой площадке силовое оборудование и вдоль захватки - секции электроразводки. Подключают нагревательные провода к секциям электроразводки, а секции - к трансформатору.

Основные работы зимнего бетонирования (термообработка бетона) производятся после завершения бетоноукладочных работ. Открытые поверхности бетона укрывают гидроизоляционной пленкой, теплоизоляционным материалом и подают напряжение на нагревательные провода.

Скорость остывания бетона обычно принимают 2,0-3,0°С/ч.

5.3 Для обеспечения при данной температуре наружного воздуха и скорости ветра заданного режима термообработки железобетонной конструкции, характеризуемой модулем поверхности, классом бетона с известным расходом цемента, температурой уложенного в опалубку бетона, по параметрам имеющихся опалубки и утеплителя, проводов и силового оборудования определяют электрические параметры нагрева бетона: коэффициент теплопередачи, удельную мощность нагрева бетонной конструкции, линейную электрическую нагрузку, шаг и длину проводов.

5.4 Коэффициент теплопередачи K определяют по (в том числе с помощью линейной интерполяции или экстраполяции) или по формуле

где

α λ = 2,1 - 3,2 Вт/(м 2 ·°С) - коэффициент передачи теплоты от опалубки излучением;

δ i = 0,015 - 0,1 м - толщина слоя теплоизоляционного материала;

λ i = 0,02 - 0,8 Вт/(м 2 ·°С) - коэффициент теплопроводности теплоизоляционного материала;

α к = 20,0 - 43,0 Вт/(м 2 ·°С) - коэффициент передачи теплоты конвекцией:

при скорости ветра до 5 м/с α к = 20,0 Вт/ /(м 2 ·°С),

при 10 м/с α к = 30,0 Вт/(м 2 ·°С),

при 15 м/с α к = 43,0 Вт/(м 2 ·°С).

Примеры расчета К приведены в .

5.5 Удельная мощность нагрева бетонной конструкции Р уд определяется отношением общей мощности Р нагрева к нагреваемой площади бетонной конструкции. Определяется удельная мощность, необходимая для нагрева бетона до заданной температуры. Удельная мощность зависит от разности температуры нагревания бетона и наружного воздуха ∆Т , °С, массивности нагреваемой конструкции, характеризуемой модулем охлаждаемой поверхности М п, от коэффициента теплопередачи K и содержания цемента в бетонной смеси Ц .

Теоретически разность температуры нагревания бетона и наружного воздуха ∆Т , °С, может составлять от минус 40 до плюс 80, то есть 120°С; практически она составляет от минус 20 до плюс 50, то есть 70°С. Модуль охлаждаемой поверхности имеет практическое значение в диапазоне от 4 до 10 м -1 ; в этом диапазоне находятся типовые фундаментные плиты, колонны, полы, стены и перекрытия. Коэффициент теплопередачи в зависимости от вида применяемых теплоизоляционных материалов, а также толщины и конструкций утеплителей, скорости ветра изменяется в широких пределах: от 0,2 до 6,0 Вт/(м 2 ·°С); для утепленных щитов опалубки он не превышает 3,0 Вт/(м 2 ·°С). Так как твердение бетона - процесс экзотермический, то чем больше цемента, тем меньше требуется электрическая мощность для нагрева бетона. Так, при увеличении содержания цемента в зимней бетонной смеси в два раза (с 200 до 400 кг/м 3) потребная удельная мощность нагревания сокращается при прочих равных условиях с 960 до 600 Вт/м 2 , то есть на 37 %. Зависимость удельной мощности нагрева бетона от рассмотренных параметров была установлена экспериментально и представлена в виде номограммы (рис. 1).

5.6 с диаметром стальной токонесущей жилы 0,6- 3,0 мм уточняется экспериментально из интервала: для армированных конструкций 30-35 Вт/м, для неармированных 35-40 Вт/м. При линейной электрической нагрузке более 40 Вт/м температура провода превышает 100°С, что приводит к структурным нарушениям в бетоне и уменьшению его прочности. Кроме того, может быть нарушена электроизоляция провода и может произойти короткое замыкание на арматуру и закладные детали.

5.7 Шаг и длина проводов должны создать такую плотность их укладки, которая обеспечивает необходимую равномерность нагрева бетона в конструкции.

Шаг проводов b определяют по формуле

Длина проводов в зависимости от линейной электрической нагрузки, диаметра проводов (токонесущей жилы) и рабочего напряжения может быть ориентировочно определена по номограмме рис. 2 и уточнена по форме и размерам конструкции.

Шаг проводов выбирается из интервала 50- 150 мм. Для конструкций, контактирующих с грунтом, шаг может быть принят 150- 200 мм. В стыках элементов, в подливках под колонны и оборудование, в местных заделках шаг проводов сокращают до 25- 70 мм.

Длина проводов должна быть кратной высоте стен, колонн, фундаментов и ширине перекрытий.

Примеры определения шага и длины проводов приведены в .

Между прямыми 2 и 4 коэффициента теплопередачи K , Вт/(м 2 ·°С), проводим визуально прямую, равную 3,6 Вт/(м 2 ·°С).

T = 60°С с ординатой М п = 8,0 м -1 модуля поверхности колонны. Из этой точки проводим горизонталь до пересечения с упомянутой прямой, равной K = 3,6 Вт/(м 2 ·°С).

Ц = 350 кг/м 3 .

Проекция полученной точки на ординату удельной мощности нагрева провода указывает Р уд = 320 Вт/м 2 .

Шаг нагревательных проводов ( b ) определяем по

b = 1/(Р уд /р +1) = 1/(320/33 + 1) = 0,09 = 0,1 м,

где р = 33 Вт/м - удельная нагрузка на провод из рекомендуемого интервала р = 30-35 Вт/м для армированных конструкций.

Длина провода L , необходимого для навивки по схеме , г на арматурный каркас с шагом 10 см, составляет

L = 2(А + Б )С / b = 2(0,5 + 0,5)7,5/0,1 = 150 м.

d d = 1,2 мм.

р = 33 Вт/м проводим ординату до точки пересечения с кривой, затем из этой точки по горизонтали находим точку пересечения с кривой d U , В. Проекции точек пересечения на ординату длины нагревателя позволяют подобрать длину нагревателя l , м. Наиболее близким значением является длина нагревателя 25 м при рабочем напряжении U = 55 В. Таким образом, на поверхностях охлаждения колонны укладывается 6 нагревателей по 25 м каждый.

Удельный расход провода (на 1 м 3 бетона) составит 150,0/1,87 ≈ 80,0 м.

Режим термообработки бетона определим с учетом рекомендаций и при условии, что прочность бетона составит не менее 70 % R 28 . Продолжительность нагрева при скорости нагрева 4,0°С/ч составляет не менее 6 ч, изотермическая выдержка при +40°С по графику (см. ) - 60 ч и остывания до нуля при скорости остывания 2,0°С/ч - не менее 20 ч.

Аналогичные расчеты были выполнены при температуре воздуха -10 и -15°С.

Основные параметры термообработки бетона в колонне сведены в следующую таблицу 6.

Таблица 6

Температура воздуха, °С

Удельная мощность нагрева Р уд , Вт/м 2

Шаг нагревателя b , мм

Диаметр провода d , мм

Длина нагревателя, м

Напряжение тока U , В

6.2 Стена

Бетонирование (бетон класса В15, расход цемента 350 кг/м 3) стены с размерами А ´ В ´ С (3000 ´ 500 ´ 6000 мм) производится в инвентарной стальной опалубке с размерами щита 2000 ´ 1000 мм, утепленной минераловатными плитами толщиной 60 мм. Для термообработки бетона предусмотрены нагревательный провод ПНСВ 1 ´ 1,4 и трансформаторная подстанция типа КТПТО-80-86 VI

Температура бетонной смеси, уложенной в опалубку, +5°С;

Средняя температура наружного воздуха в течение суток -15°С;

Скорость ветра 3 м/с;

Температура изотермического выдерживания бетона +45°С.

Принимается, что потери теплоты через верхнюю и нижнюю поверхности стены незначительны (верхняя открытая поверхность надежно укрыта теплоизоляционным материалом) и поэтому не учитываются.

Модуль поверхности охлаждения стены М п равен

М п = F / V = 39,0/9,0 = 4,3 м -1 .

Коэффициент теплопередачи К опалубки определим по формуле (1)

K = 1/(1/ α λ + å δ i / λ i + 1/ α к ) = 1/(1/2,8 + 0,06/0,6 + 1/25) = 2,0 Вт/(м 2 ·°С),

где

α λ

δ i = 0,06 м - толщина слоя теплоизоляционного материала;

λ i = 0,6 Вт/(м 2 ·°С) - коэффициент теплопроводности теплоизоляционного материала;

α к = 25,0 Вт/(м 2 ·°С) - коэффициент передачи теплоты конвекцией при скорости ветра 3 м/с.

Находим разницу температуры нагретого бетона и наружного воздуха T , которая составляет

T = 45 - (-15) = 60°С.

Р уд определяем по номограмме рис. 1.

Находим точку пересечения прямой T = 60°С с ординатой М п = 4,3 м -1 модуля поверхности стены. Из этой точки проводим горизонталь до пересечения с прямой коэффициента теплопередачи, равной K = 2,0 Вт/(м 2 ·°С).

Опускаем перпендикуляр из этой точки на прямую расхода цемента Ц = 350 кг/м 3 .

Р уд = 250 Вт/м 2 .

Шаг нагревательных проводов b определяем по формуле (2)

b = 1/(Р уд /р + 1) = 1/(250/34 + 1) = 0,12 м,

где d = 1,1-1,4 из рекомендуемого интервала р = 30-35 Вт/м для армированных конструкций.

Длина провода L , необходимая для навивки по схеме рис. 3, в на арматурный каркас с шагом 12 см, составляет

L = 2А (С + В )/ b = 2·3(6 + 0,5)/0,12 ≈ 324 м.

Из точки на абсциссе удельной нагрузки р d = 1,4 мм. Опускаем перпендикуляр из этой точки на кривые рабочего напряжения U , В. Проекции точек пересечения на ординату длины нагревателя позволяют подобрать длину нагревателя. Наиболее близким значением является длина нагревателя 27 м при рабочем напряжении U = 58 В. Таким образом, на поверхностях охлаждения стены укладывается 12 нагревателей по 27 м каждый.

Удельный расход провода (на 1 м 3 бетона) составит 324,0/9,0 = 36,0 м.

Режим термообработки бетона определим с учетом рекомендаций раздела 5.2 и при условии, что прочность бетона составит не менее 70 % R 28 . Продолжительность нагрева при скорости нагрева 4,0°С/ч составляет не менее 10 ч, изотермическая выдержка при +45°С по графику рис. 7 - 48 ч и остывания до нуля при скорости остывания 2,0°С/ч - не менее 22 ч.

Аналогичные расчеты были выполнены при температуре воздуха -10 и -20°С.

Таблица 7

Температура возду ха, °С

Удельная мощность нагрева Р уд , Вт/м 2

Шаг нагревателя b , мм

Диаметр провода d , мм

Длина нагревателя, м

Напряжение тока U , в

Основные параметры термообработки бетона в стене сведены в следующую таблицу 7.

6.3 Перекрытие

Бетонирование (бетон класса В25, расход цемента 400 кг/м 3) перекрытия с размерами А ´ В ´ С (6000 ´ 6000 ´ 200 мм) производится в опалубке из ламинированной фанеры толщиной 21 мм. Открытая поверхность перекрытия утепляется минераловатными плитами толщиной 80 мм, термоактивными гибкими покрытиями (ТАГП) или греющими плоскими элементами (ГЭП).

Для термообработки бетона предусмотрены нагревательный провод ПНСВ 1 ´ 1,2 и трансформаторная подстанция типа КТПТО-80-86.

Условия бетонирования следующие:

Температура бетонной смеси, уложенной в опалубку, +10°С;

Температура изотермического выдерживания бетона +45°С;

Температура наружного воздуха: днем -16°С, ночью -20°С;

Скорость ветра 1,5 м/с.

Определение параметров режима термообработки бетона производится в следующей последовательности.

Принимается, что потери теплоты через открытую верхнюю поверхность перекрытия незначительны (надежно укрыта теплоизоляционным материалом) и поэтому не учитываются.

Модуль поверхности охлаждения перекрытия М п при этом равен

М п = F / V = 40,8/7,2 ≈ 6,0 м -1 .

Коэффициент теплопередачи K опалубки из ламинированной фанеры определим по формуле (1)

K = 1/(1/ α λ + å δ i / λ i + 1/ α к ) = 1/(1/2,8 + 0,021/0,4 + 1/20) = 2,2 Вт/(м 2 ·°С),

где

α λ = 2,8 Вт/(м 2 ·°С) - коэффициент передачи теплоты от опалубки излучением;

δ i = 0,021 м - толщина ламинированной фанеры;

λ i = 0,4 Вт/(м 2 ·°С) - коэффициент теплопроводности ламинированной фанеры;

α к = 20,0 Вт/(м 2 ·°С) - коэффициент передачи теплоты конвекцией при скорости ветра 1,5 м/с.

Находим разницу температуры T нагретого бетона и средней температуры наружного воздуха в течение суток (равна -18°С), которая составляет

T = 45 - (-18) = 63°С.

Необходимую удельную мощность нагрева бетона Р уд определяем по номограмме .

Находим точку пересечения прямой T = 63°С с ординатой М п = 6,0 м -1 модуля поверхности перекрытия. Из этой точки проводим горизонталь до пересечения с прямой коэффициента теплопередачи, равной K = 2,2 Вт/ (м 2 ·°С).

Опускаем перпендикуляр из этой точки на прямую расхода цемента Ц = 400 кг/м 3 .

Проекция полученной точки на ординату удельной мощности нагрева указывает Р уд = 300 Вт/м 2 .

Шаг нагревательных проводов b определяем по

b = 1/( P уд /р + 1 = 1/(300/34 + 1) = 0,10 м,

где d = 1,1-1,4 из рекомендуемого интервала р = 30-35 Вт/м для армированных конструкций.

Длина провода L , необходимого для укладки в нижнем уровне арматуры по схеме , б с шагом 10 см, составляет

L = B (A /b + 1) + А = 6(6/0,1 + 1) + 6 ≈ 372 м .

Между кривыми 1,4 и 1,1 мм диаметра провода d проводим визуально кривую, равную d = 1,2 мм.

Из точки на абсциссе удельной нагрузки р = 34 Вт/м проводим ординату до точки пересечения с кривой, затем из этой точки по горизонтали находим точку пересечения с кривой d = 1,2 мм. Опускаем перпендикуляр из этой точки на кривые рабочего напряжения U , В . Проекции точек пересечения на ординату длины нагревателя позволяют подобрать длину нагревателя. Наиболее близким значением является длина нагревателя 25 м при рабочем напряжении U = 55 В. Таким образом, в перекрытие укладывается 15 нагревателей по 25 м каждый.

Удельный расход провода (на 1 м 3 бетона) составит 372,0/7,2 ≈ 52,0 м.

Режим термообработки бетона определим с учетом рекомендаций и при условии, что прочность бетона составит не менее 70 % R 28 . Продолжительность нагрева при скорости нагрева 4,0°С/ч составляет не менее 9 ч, изотермическая выдержка при +45°С по графику - 48 ч и остывания до нуля при скорости остывания 2,0°С/ч - не менее 22 ч.

Аналогичные расчеты были выполнены при температуре воздуха -10°С.

Основные параметры термообработки бетона в перекрытии сведены в следующую таблицу 8.

Таблица 8

Температура воздуха, °С

Удельная мощность нагрева Р уд , Вт/м 2

Шаг нагревателя b , мм

Диаметр провода d , мм

Длина нагревателя, м

Напряжение тока U , В

Качество зимнего бетонирования должно обеспечить проектную прочность монолитных бетонных и железобетонных конструкций. Общие требования к контролю качества бетона изложены в СНиП 12-01-2004 и СНиП 3.03.01-87 .

Качество зимнего бетонирования зависит от выполнения подготовительных работ, выбранного режима термообработки и контроля качества работ.

До начала основных работ следует проверить работоспособность оборудования и системы автоматики, отсутствие повреждений проводов, надежность изоляции.

Режим термообработки необходимо проверить и при необходимости откорректировать по результатам лабораторных испытаний образцов бетона.

Перед укладкой проводов и бетонированием проверяют качество очистки от снега и льда основания, арматуры и опалубки.

В первые часы нагревания бетона и не реже двух раз в сутки измеряют ток и напряжение в питающей сети. Наблюдение за работой оборудования, осмотр проводов, кабелей и мест электрических соединений с целью выявления повреждений, искрения и т.п. производятся постоянно. Сопротивление изоляции нагревателей должно составлять не менее 1,0 МОм в холодном и 0,5 МОм в горячем состоянии.

После бетонирования проверяют соответствие согласно проекту и надежность укрытия открытых поверхностей бетона гидроизоляционными и теплоизоляционными материалами.

В процессе нагрева температуру бетона измеряют не реже чем через каждые два часа. Не реже двух раз в смену снимают показания датчиков температуры для построения графиков температуры нагревания, выдерживания и остывания бетона.

Контроль набора прочности бетона осуществляется по температурному режиму наиболее ответственных или менее нагретых участков конструкции. . Безопасность труда в строительстве. Часть 2. Строительное производство; и ГОСТ 12.4.059-89 .

Бетонные работы с электрообогревом должны производиться, как правило, в светлое время суток. Строительная площадка, участок работ, рабочее место в темное время суток должны быть освещены в соответствии с требованиями ГОСТ 12.1.046-85 «ССБТ. Строительство. Нормы освещения строительных площадок».

При подаче и уплотнении бетонной смеси опалубку и поддерживающие конструкции следует тщательно осматривать, проверять на надежность установку стоек, подкосов.

При уплотнении бетонной смеси электровибраторами перемещать вибратор за токоведущие шланги не допускается, а при перерывах в работе и при переходе с одного места на другое электровибраторы необходимо выключать.

Эксплуатация автобетононасоса и автобетоносмесителя должна осуществляться в соответствии с указаниями заводов-изготовителей, изложенными в инструкциях по эксплуатации.

Соединять стальные трубы бетоновода с резинотканевыми шлангами необходимо с помощью инвентарных хомутов на болтах.

Необходимо следить, чтобы шланги с движущейся бетонной смесью не имели перегибов.

Перед промывкой бетоновода посторонние лица (рабочие, не участвующие в данной работе) должны быть удалены на расстояние не менее чем на 10 м.

Под стрелой автобетононасоса любые работы запрещены.

Зона работы автобетононасоса должна иметь ограждение, перед зоной работы должны быть вывешены предупредительные знаки, отвечающие требованиям ГОСТ Р 12.4.026-2001 .

Ниже приведены основные правила техники безопасности при производстве электронагрева бетона.

Рабочие по электронагреву бетона должны быть снабжены резиновыми сапогами (диэлектрическими галошами) и резиновыми перчатками.

Подключение к сети нагревательных проводов производится после отключения напряжения.

В местах ограждения следует повесить красные лампочки, загорающиеся при подаче напряжения на провода.

Арматуру в опалубке, закладные детали, а также металлические нетоковедущие части оборудования заземляют, присоединяя к ним нулевой провод питающего кабеля. При использовании контура заземления перед включением напряжения следует измерить сопротивление контура, которое должно быть не более 4 Ом.

Около трансформатора, распределительных щитов и рубильников укладывают деревянные настилы, покрытые диэлектрическими коврами.

Не следует подавать рабочее напряжение на нагревательные провода, если они находятся не в бетоне, а на воздухе, если имеют механические повреждения или ненадежно соединены с кабелями.

Допускаются при соблюдении изложенных выше правил укладка и уплотнение бетона при неотключенных проводах, если рабочее напряжение не превышает 60 В и в зоне действия глубинного вибратора нет проводов, которые можно было бы повредить.

Не следует подключать проволочные нагреватели к сети напряжением выше 220 В.

Электротехнические работы при зимнем бетонировании выполняются специально обученными рабочими-электриками, проводятся под руководством и наблюдением инженерно-технического работника, назначенного приказом по организации.