Главная · Электробезопасность · Тепловой расчет системы отопления. Обзор систем отопления жилых и административных зданий: примеры расчета, нормативные документы Вычисление тепловых потерь зданий

Тепловой расчет системы отопления. Обзор систем отопления жилых и административных зданий: примеры расчета, нормативные документы Вычисление тепловых потерь зданий

На этой вкладке сайта мы попытаемся помочь подобрать для вашего дома правильные части системы. Любой узел важную роль. Поэтому выбор частей монтажа нужно планировать технически грамотно. Система отопления имеет терморегуляторы, систему соединения, крепежи, развоздушки, бак для расширения, батареи, коллекторы, трубы котел, увеличивающие давление насосы. Монтаж обогрева квартиры включает различные элементы.

Чтобы производить расчеты по отоплению, необходимо подсчитать сколько тепла потребуется для поддержания оптимальной температуры в холодное время года. Эта величина будет равна теплу, которое теряет квартира при минимальных температурах (около 30 градусов).

При учете теплопотерь обращается внимание на уровень теплоизоляции окон и дверей, толщину стен и материал самой постройки. Если расчет системы отопления квартиры равен в итоге 10 кВт, это значение будет определять не только мощность котла , но и количество радиаторов.

Чем выше энергосбережение квартиры, тем меньше потребуется энергии для ее обогрева. Для достижения такого результата следует заменить окна на современные энергосберегающие, уделить внимание дверным проемам и вентиляционной системе, утеплить стены внутри или снаружи квартиры.

На степень обогрева квартиры зависит движение теплоносителя . Его скорость может зависеть от нескольких факторов:

  • Сечение труб . Чем больше будет диаметр, тем быстрее произойдет движение теплоносителя.
  • Изгибы и длина участка. По сложной схеме жидкость медленнее циркулирует
  • Материал труб. При сравнении железа и пластика, то в последнем варианте будет происходить меньшее сопротивление, а значит, скорость теплоносителя – выше.

Все эти показатели и определяют гидравлическое сопротивление.

Расчет отопления в промышленных зданиях

Наиболее распространенным вариантом является водяное отопление . Оно имеет множество схем, которые следует учитывать согласно индивидуальным особенностям строения. Главными расчетами являются гидравлический и теплотехнический. Избежать многих проблем в будущем помогут качественно проложенные теплопроводы и теплотрассы. Такой вид отопления наиболее приемлем для жилых и административных типов зданий, офисов.

Воздушный тип основан на работе теплогенератора, который нагревает воздух для его циркуляции по всей системе. Расчет системы воздушного отопления является основным этапом для создания эффективной системы. Целесообразно применять в ТЦ, в зданиях промышленного и производственного типа.

Непосредственный расчет системы отопления промышленного здания требует подхода квалифицированных специалистов и внимания, иначе может возникнуть много негативных последствий.

Распространенные ошибки и как их исправить

Сам расчет системы отопления представляет собой важный и сложный этап при разработке отопления. Выполнять все вычисления помогают специалистам особые компьютерные программы. Однако ошибки все же могут встречаться.

Одной из распространенных проблем является неправильный расчет тепловой мощности системы отопления или отсутствие такового. Кроме высокой стоимости на радиаторы, их большая мощность станут причинами убыточности всей системы. То есть отопление будет работать более, чем необходимо, тратя на это топливо. Высокая температура в помещении будет сжигать много кислорода, и требовать регулярного проветривания для снижения ее показателя.

Выполнил: ст. гр.VI-12

Циватый И.И.

Днепропетровск 2011

1 . Вентиляция как средство защиты в оздушной среды производственных помещений

Задачей вентиляции является обеспечение чистоты воздуха и заданных метеорологических условий в производственных помещениях . Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха.

По месту действия вентиляция бывает обще обменной и местной. Действие обще обменной вентиляции основано на разбавлении загрязненного, нагретого, влажного воздуха помещения свежим воздухом до предельно допустимых норм. Эту систему вентиляции наиболее часто применяют в случаях, когда вредные вещества, теплота, влага выделяются равномерно по всему помещению. При такой вентиляции обеспечивается поддержание необходимых параметров воздушной среды во всем объеме помещения.

Воздухообмен в помещении можно значительно сократить, если улавливать вредные вещества в местах их выделения. С этой целью технологическое оборудование, являющееся источником выделения вредных веществ, снабжают специальными устройствами, от которых производится отсос загрязненного воздуха. Такая вентиляция называется местной вытяжкой. Местная вентиляция по сравнению с обще обменной требует значительно меньших затрат на устройство и эксплуатацию.

Естественная вентиляция

Воздухообмен при естественной вентиляции происходит вследствие разности температур воздуха в помещении и наружного воздуха, а также в результате действия ветра. Естественная вентиляция может быть неорганизованной и организованной. При неорганизованной вентиляции поступление и удаление воздуха происходит через не плотности и поры наружных ограждений (инфильтрация), через окна, форточки, специальные проемы (проветривание). Организованная естественная вентиляция осуществляется аэрацией и дефлекторами, и поддается регулировке.

Аэрация осуществляется в холодных цехах за счет ветрового давления, а в горячих цехах за счет совместного и раздельного действия гравитационного и ветрового давлений. В летнее время свежий воздух поступает в помещение через нижние проемы, расположенные на небольшой высоте от пола (1-1,5 м), а удаляется через проемы в фонаре здания.

Механическая вентиляция

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях эжекторами. Приточная вентиляция. Установки приточной вентиляции обычно состоят из следующих элементов: воздухозаборное устройство для забора чистого воздуха; воздуховоды, по которым воздух подается в помещение; фильтры для очистки воздуха от пыли; калориферы для нагрева воздуха; вентилятор; приточные насадки; регулирующие устройства, которые устанавливаются в воздухоприемном устройстве и на ответвлениях воздуховодов. Вытяжная вентиляция. Установки вытяжной вентиляции включают в себя: вытяжные отверстия или насадки; вентилятор; воздуховоды; устройство для очистки воздуха от пыли и газов; устройство для выброса воздух, которое должно быть расположено на?1,5 м выше конька крыши. При работе вытяжной системы чистый воздух поступает в помещение через не плотности в ограждающих конструкциях. В ряде случаев это обстоятельство является серьезным недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания. Приточно-вытяжная вентиляция. В этой системе воздух подается в помещение приточной вентиляцией, а удаляется вытяжной вентиляцией, работающими одновременно.

Местная вентиляция

Местная вентиляция бывает приточной и вытяжной. Местная приточная вентиляция служит для создания требуемых условий воздушной среды в ограниченной зоне производственного помещения . К установкам местной приточной вентиляции относятся: воздушные души и оазисы, воздушные и воздушно-тепловые завесы. Воздушное душирование применяют в горячих цехах на рабочих местах под воздействием лучистого потока теплоты интенсивностью 350 Вт/м и более. Воздушный душ представляет собой направленный на рабочего поток воздуха. Скорость обдува составляет 1-3,5 м/с в зависимости от интенсивности облучения. Эффективность душирующих агрегатов повышается при распылении воды в струе воздуха.

Воздушные оазисы - это часть производственной площади, которая отделяется со всех сторон легкими передвижными перегородками и заполняется воздухом более холодным и чистым, чем воздух помещения. Воздушные и воздушно-тепловые завесы устраивают для защиты людей от охлаждения проникающим через ворота холодным воздухом. Завесы бывают двух типов: воздушные с подачей воздуха без подогрева и воздушно-тепловые с подогревом подаваемого воздуха в калориферах.

Работа завес основана на том, что подаваемый воздух к воротам выходит через специальный воздуховод с щелью под определенным углом с большой скоростью (до 10-15 м/с) навстречу входящему холодному потоку и смешивается с ним. Полученная смесь более теплого воздуха поступает на рабочие места или (при недостаточном нагреве) отклоняется в сторону от них. При работе завес создается дополнительное сопротивление проходу холодного воздуха через ворота.

Местная вытяжная вентиляция. Ее применение основано на улавливании и удалении вредных веществ непосредственно у источника их образования. Устройства местной вытяжной вентиляции делают в виде укрытий или местных отсосов. Укрытия с отсосом характерны тем, что источник вредных выделений находится внутри них.

Они могут быть выполнены как укрытия - кожухи, полностью или частично заключающие оборудование (вытяжные шкафы, витринные укрытия, кабины и камеры). Внутри укрытий создается разрежение, в результате чего вредные вещества не могут попасть в воздух помещения. Такой способ предотвращения выделения вредных веществ в помещении называется аспирацией.

Аспирационные системы обычно блокируют с пусковыми устройствами технологического оборудования с тем, чтобы отсос вредных веществ производился не только в месте их выделения, но и в момент образования.

Полное укрытие машин и механизмов, выделяющих вредные вещества, наиболее совершенный и эффективный способ предотвращения их попадания в воздух помещения. Важно еще на стадии проектирования разрабатывать технологическое оборудование таким образом, чтобы такие вентиляционные устройства органически входили бы в общую конструкцию, не мешая технологическому процессу и одновременно полностью решая санитарно-гигиенические задачи.

Защитно-обеспыливающие кожухи устанавливаются на станки, на которых обработка материалов сопровождается пылевыделением и отлетанием крупных частиц, которые могут нанести травму. Это шлифовальные, обдирочные, полировальные, заточные станки по металлу, деревообрабатывающие станки и др.

Вытяжные шкафы находят широкое применение при термической и гальванической обработке металлов, окраске, развеске и расфасовке сыпучих материалов, при различных операциях, связанных с выделением вредных газов и паров.

Кабины и камеры представляют собой емкости определенного объема, внутри которых производятся работы, связанные с выделением вредных веществ (пескоструйная и дробеметная обработка, окрасочные работы и т.д.).Вытяжные зонты применяют для локализации вредных веществ, поднимающихся вверх, а именно при тепло - и влаговыделениях.

Всасывающие панели применяют в тех случаях, когда применение вытяжных зонтов недопустимо по условию попадания вредных веществ в органы дыхания работающих. Эффективным местным отсосом является панель Чернобережского, применяемая при таких операциях, как газовая сварка, пайка и т.п.

Пылегазоприемники, воронки применяются при проведения пайки и сварочных работ. Они располагаются в непосредственной близости от места пайки или сварки. Бортовые отсосы. При травлении металлов и нанесении гальванопокрытий с открытой поверхности ванн выделяются пары кислот, щелочей, при цинковании, меднении, серебрении - чрезвычайно вредный цианистый водород, при хромировании - окись хрома и т.д.

Для локализации этих вредных веществ используют бортовые отсосы, представляющие собой щелевидные воздуховоды шириной 40-100 мм, устанавливаемые по периферии ванн.

2. Исходные данные для проектирования

теплопоступление вытяжная приточная вентиляция

· наименование объекта - деревообрабатывающий цех;

· вариант - В;

· район строительства - г. Одесса;

· высота помещения -10 м;

Наличие станков:

1 Торцовый ЦПА - 1,9 кВт;

2 Строгательный СП30-І 4-х сторонний - 25,8 кВт;

3 Прирезной ПДК-4-2- 14,8 кВт;

4 Рейсмусовый односторонний СР6-6- 9,5 кВт;

5 Фуговальный СФ4-4- 3,5 кВт;

6 Шипорезный 2-х сторонний ШД-15-3- 28,7 кВт;

7 Шипорезный односторонний ШОІО-А- 11,2 кВт;

8 Для высверливания и заделки сучков СВСА-2- 3,5 кВт;

9 Ленточная пила- 5,9 кВт;

10 Горизонтально сверлильный- 5,9 кВт;

11 Сверлильно-пазовальный СВП-2- 3,5 кВт;

12 Рейсмусовый односторонний СР12-2- 33,7 кВт;

13 Шлифовальный 3-х цилиндровый ШПАЦ 12-2- 30,7 кВт;

14 Настольно - сверлильный - 1,4 кВт;

15 Для выборки гнезд под петли С-4 - 4,4 кВт;

16 Для выборки гнезд под замки С-7 - 3,3 кВт;

17 Цепнодолбежный ДЦА - 6,2 кВт;

18 Универсальный Ц-6 - 7,8 кВт;

Уют и комфорт жилья начинаются не с выбора мебели, отделки и внешнего вида в целом. Они начинаются с тепла, которое обеспечивает отопление. И просто приобрести для этого дорогой нагревательный котел () и качественные радиаторы недостаточно – сначала необходимо спроектировать систему, которая будет поддерживать в доме оптимальную температуру. Но чтобы получить хороший результат, нужно понимать, что и как следует делать, какие существуют нюансы и как они влияют на процесс. В этой статье вы ознакомитесь с базовыми знаниями о данном деле – что такое системы отопления, как он проводится и какие факторы на него влияют.

Для чего необходим тепловой расчет

Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы. С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести. , вы можете прочитать в нашей статье.

  1. Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
  2. Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
  3. Тепловой расчет позволяет более точно подобрать , трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.

Исходные данные для теплового расчета системы отопления

Прежде чем приступать к подсчетам и работе с данными, их необходимо получить. Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже.

  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.

Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м 2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м 2 потребуется примерно 15 000 Вт.

Совет! В некоторых случаях владельцы коттеджей разделяют внутреннюю площадь жилья на ту часть, которой требуется серьезный обогрев, и ту, для которой подобное излишне. Соответственно, для них применяются разные коэффициенты – к примеру, для жилых комнат это 100, а для технических помещений – 50-75.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м 2 , комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так. «Как сделать , Вы можете прочитать в нашей статье».

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м 3 .

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑ S ок / S п

S ок – суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8 ;

— х = 0,11 ÷ 0,2 → j = 0,9 ;

— х = 0,21 ÷ 0,3 → j = 1,0 ;

— х = 0,31 ÷ 0,4 → j = 1,1 ;

— х = 0,41 ÷ 0,5 → j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

Назначение здания: жилое или промышленное.

Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

Наличие комнат специального назначения (баня, сауна и пр.).

Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных - количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

Расход тепла, взятый по максимуму за один час работы системы отопления,

Максимальный поток тепла, исходящий от одного радиатора,

Общие затраты тепла в определенный период (чаще всего - сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях - в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула - Q от = q 0 * a * V H * (t ЕН - t НРО), где:

  • q 0 - удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a - поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • V H - объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь - 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 - 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

Высота потолков (стандартная - 2,7 м),

Тепловая мощность (на кв. м - 100 Вт),

Одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

Q т = 100 Вт/м 2 × S(помещения)м 2 × q 1 × q 2 × q 3 × q 4 × q 5 × q 6 × q 7 , где:

  • q 1 - тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q 2 - стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q 3 - соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% - 0.9, 10% = 0.8);
  • q 4 - уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q 5 - число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q 6 - тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q 7 - высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Условия таковы. Минимальная температура в холодное время года - -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т 1 - Т 2) / 1000, где:

  • V - количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т 1 - число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название - энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т 2 - температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом - 15.
  • 1 000 - коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Q от = α * q о * V * (t в - t н.р) * (1 + K н.р) * 0,000001, где


Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап - обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап - обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

При проектировании отопления и вентиляции предприятий по обслуживанию автомобилей должны соблюдаться требования СНиП 2.04.05-86 и настоящих ВСН

Расчетные температуры воздуха в холодный период в производственных зданиях следует принимать:

в помещениях хранения подвижного состава - + 5С

в складских помещениях - + 10С

в остальных помещениях - по требованиям табл.1 ГОСТ 12.1.005 -86

К категории Iб относятся работы, выполняемые сидя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий на предприятиях связи, контролеры, мастера).

К категориям IIа относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие незначительного физического напряжения (ряд профессий в прядильно-ткацком производстве, механосборочных цехах).

К категории IIб относятся работы, связанные с ходьбой и перемещением грузов массой до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий машиностроения, металлургии).

К категории III относятся работы, связанные с постоянными передвижениями, перемещением и переноской значительных (более 10 кг) тяжести и требующие значительных физических усилий (ряд профессий с выполнением ручных операций металлургических, машиностроительных, горнодобывающих предприятий).

Отопление помещений хранения, постов ТО и ТР подвижного состава, как правило, следует предусматривать воздушное, совмещенное с приточной вентиляцией.

Отопление местными нагревательными приборами с гладкой поверхностью без оребрения допускается в помещениях хранения автомобилей в одноэтажных зданиях, объемом до 10000 м 3 включительно, а также в помещениях хранения автомобилей в многоэтажных зданиях независимо от объема.

4.4. В помещениях хранения, постов ТО и ТР подвижного состава следует предусматривать дежурное отопление с применением:

Приточной вентиляции, переключаемой на рециркуляцию во внерабочее время;

Отопительно-рециркуляционных агрегатов;

Воздушно-тепловых завес;

Местных нагревательных приборов с гладкой поверхностью без оребрения.

4.5. Потребность в тепле на обогрев въезжающего в помещение подвижного состава следует принимать в количестве 0,029 вт в час на один кг массы в снаряженном состоянии на один градус разницы температур наружного и внутреннего воздуха.

4.6. Наружные ворота помещений хранения, постов ТО и ТР подвижного состава следует оборудовать воздушно-тепловыми завесами в районах со средней расчетной температурой наружного воздуха – 15 С, и ниже при следующих условиях:

При количестве пять и более въездов или выездов в час, приходящихся на одни ворота в помещениях постов ТО и ТР подвижного состава;

При расположении постов ТО на расстоянии 4-х и менее метров от наружных ворот;

При количестве 20-ти и более въездов и выездов в час, приходящихся на одни ворота в помещении хранения подвижного состава, кроме легковых автомобилей, принадлежащих гражданам;

При хранении в помещении 50-ти и более легковых автомобилей, принадлежащих гражданам.

Включение и выключение воздушно-тепловых завес должно осуществляться автоматически.

4.7. Для обеспечения требуемых условий воздушной среды в помещениях хранения, постов ТО и ТР подвижного состава следует предусматривать общеобменную приточно-вытяжную вентиляцию с механическим побуждением с учетом режима работы предприятия и количества вредных выделений, устанавливаемых в технологической части проекта.

4.8. В помещениях хранения подвижного состава, включая рампы, удаление воздуха, следует предусматривать из верхней и нижней зон помещения поровну; подача приточного воздуха в помещение должна, как правило, осуществляться сосредоточенно вдоль проездов.

4.10. В помещениях постов ТО и ТР подвижного состава удаление воздуха системами общеобменной вентиляции следует предусматривать из верхней и нижней зоны поровну с учетом вытяжки из смотровых канав, а подачу приточного воздуха - рассредоточено в рабочую зону и в смотровые канавы, а также в приямки, соединяющие смотровые канавы, и в тоннели, предусматриваемые для выхода из проездных канав.

Температура приточного воздуха в смотровые канавы, приямки и тоннели в холодный период года должна быть не ниже +16 С и не выше +25 С.

Количество приточного и вытяжного воздуха на один кубический метр объема смотровых канав, приямков и тоннелей следует принимать из расчета их десятикратного воздухообмена

4.12. В производственных помещениях, имеющих сообщение через двери и ворота без тамбура с помещениями хранения и постов ТО и ТР, объем приточного воздуха следует принимать с коэффициентом 1,05. При этом, в помещениях хранения и постов ТО и ТР объем приточного воздуха должен быть соответственно уменьшен.

4.13. В помещениях постов ТО и ТР подвижного состава на постах, связанных с работой двигателей автомобилей, следует предусматривать местные отсосы.

Количество удаляемого воздуха от работающих двигателей в зависимости от их мощности следует принимать:

до 90 кВт (120 л.с.) включительно - 350 м 3 /ч

св. 90 до 130 кВт (120 до 180 л.с.) - 500 м 3 /ч

св. 130 до 175 кВт (180 до 240 л.с.) - 650 м 3 /ч

св. 175 кВт (240 л.с.) - 800 м 3 /ч

Количество автомобилей, подключаемых в системе местных отсосов с механическим удалением, не ограничивается.

При размещении в помещении не более пяти постов для ТО и ТР автомобилей допускается проектировать местные отсосы с естественным удалением для автомобилей с мощностью не более 130 кВт (180 л.с.)

Количество отработавших газов двигателей, прорывающихся в помещение, следует принимать:

при шланговом отсосе - 10 %

при открытом отсосе - 25 %

4.16. Приемные устройства приточных вентиляционных систем должны располагаться на расстоянии не менее 12 метров от ворот с количеством въездов и выездов более 10-ти автомобилей в час.

При количестве въездов и выездов менее 10 автомобилей в час приемные устройства приточных вентиляционных систем могут располагаться на расстоянии не менее одного метра от ворот.

Расчет воздухообмена в боксе автомойки производится по избыткам влаги. Воздухообмен в помещениях с влаговыделениями определяется по формуле, м3/час: L=Lw,z+(W–1,2(dw,z–din)):1,2(dl–din), Lw,z - расход воздуха, удаляемого местными отсосами, м3/час;

W - избытки влаги в помещение, г/час;

tн - начальная температура стекающей воды С;

tк - конечная температура стекающей воды С;

r–скрытая теплота испарения,составляющая~585ккал/кг Согласно технологическому процессу в течение часа моется 3 автомобиля. 15 минут производится мойка автомобиля и 5 минут – сушка. Количество используемой воды – 510 л/час. Начальная температура воды - +40С, конечная - +16 С. Для расчёта принимаем, что на по-верхности автомобиля и на полу остаётся 10% используемой в технологии воды. Влагосодержание воздуха определяем по i – d диаграммам. Для приточного воздуха берём па-раметры для самого неблагоприятного по влагосодержанию периоду – переходному: температу-ра воздуха - + 8С, удельная энтальпия - 22,5 кДж/кг. Исходя из этого: W = 0,1 (510 х (40 – 16) : 585) = 2,092 кг/час= 2092 г/час. Lвл. =2092: 1,2 (9 –5,5) = 500 м3/ч.

СНиП 2.01.57-85

ПРИСПОСОБЛЕНИЕ ПОМЕЩЕНИЙ МОЙКИ И УБОРКИ АВТОМОБИЛЕЙ ДЛЯ СПЕЦИАЛЬНОЙ ОБРАБОТКИ ПОДВИЖНОГО СОСТАВА

6.1. При проектировании приспособления новых или реконструкции действующих автотранспортных предприятий, баз централизованного технического обслуживания автомобилей, станций технического обслуживания автомобилей посты мойки и уборки автомобилей следует предусматривать проездными.

6.2. Специальную обработку подвижного состава следует производить на поточных линиях и проездных постах помещений мойки и уборки автомобилей. На действующих предприятиях тупиковые посты мойки и уборки автомобилей не следует приспосабливать для специальной обработки подвижного состава. При проектировании специальной обработки подвижного состава необходимо учитывать последовательность операций:

контроль загрязненности подвижного состава (при его загрязнении РВ);

чистка и мойка наружных и внутренних поверхностей подвижного состава (при его загрязнении РВ);

нанесение на поверхность подвижного состава обезвреживающих веществ (при дегазации и дезинфекции);

выдержка (при дезинфекции) нанесенных веществ на поверхности подвижного состава;

смывание (снятие) обеззараживающих веществ;

повторный контроль степени загрязненности РВ подвижного состава и в случае необходимости повторение дезактивации;

смазка поверхностей деталей и инструмента, изготовленных из легкокорродирующих материалов.

6.3. При специальной обработке подвижного состава следует принимать не менее двух последовательно расположенных рабочих постов.

Рабочий пост «чистой» зоны, предназначенный для повторного контроля загрязненности и для смазки, допускается располагать отдельно от «грязной» зоны в смежном помещении или вне здания - на территории предприятия.

Рабочие посты «грязной» и «чистой» зон, расположенные в одном помещении, следует отделять перегородками с проемами для проезда автомобилей. Проемы должны быть оснащены водонепроницаемыми шторами.

6.4. В одном помещении допускается размещать два и более параллельно расположенных потоков для специальной обработки подвижного состава, при этом посты «грязных» зон параллельных потоков должны быть изолированы один от другого перегородками или экранами высотой не менее 2,4 м.

Расстояния между боковыми сторонами подвижного состава и экранами должны быть не менее: легковых автомобилей - 1,2 м; грузовых автомобилей и автобусов - 1,5 м.

Расстояния между торцевыми сторонами подвижного состава, перегородками, шторами или наружными воротами следует принимать в соответствии с нормами .

6.5. На постах специальной обработки подвижного состава в «грязной» зоне следует предусматривать установку рабочих столов с металлическим или пластмассовым покрытием, а также металлических емкостей с обезвреживающими растворами для специальной обработки узлов, деталей и инструмента, снимаемых с автомобилей.

В «чистой» зоне следует предусматривать установку рабочих столов для повторного контроля и смазки снятых узлов, деталей и инструмента.

6.6. К моечному оборудованию и рабочим столам, расположенным в «грязной» и «чистой» зонах, следует предусматривать подвод через смеситель холодной и горячей воды, а также сжатого воздуха.

Температура воды для мойки подвижного состава с использованием механизированных установок не нормируется. При ручной шланговой мойке температура воды должна быть 20 - 40 °С.

6.7. Рабочие посты «грязной» и «чистой» зон для работ в нижней части подвижного состава должны быть оборудованы осмотровыми канавами, эстакадами или подъемниками. Габариты рабочей зоны осмотровых канав следует принимать в соответствии с табл. 6.

Таблица 6

Ступени в осмотровой канаве следует предусматривать в торцевой части со стороны въездов автомобилей на рабочие посты без устройства тоннелей (переходов).

6.8. Пропускная способность участка специальной обработки подвижного состава приведена в обязательном приложении 1 .

Примерные схемы размещения и оборудования рабочих постов в помещении на две параллельные поточные линии и на один проездной пост приведены в рекомендуемом приложении 2 .

6.9. В одном здании с помещением для специальной обработки подвижного состава необходимо предусматривать раздельные помещения для хранения средств специальной обработки и материалов. Площадь помещения следует принимать в зависимости от пропускной способности участка обеззараживания состава, но не менее 8 м 2 . Вход в помещение следует предусматривать из «чистой» зоны. Помещение должно быть оборудовано стеллажами.

6.10. Помещение для обслуживающего персонала и санитарный пропускник, как правило, следует располагать в одном здании с постами специальной обработки подвижного состава.

Помещение для обслуживающего персонала должно иметь вход со стороны «чистой» зоны.

Для санитарных пропускников допускается приспосабливать санитарно-бытовые помещения (с двумя душевыми сетками и более), находящиеся в других корпусах предприятия.

6.11. Требования к санитарному пропускнику для обслуживания персонала, водителей подвижного состава и сопровождающих лиц, к составу и размерам его помещений аналогичны требованиям, изложенным в разд. 3 .

6.12. Отделка стен и перегородок, а также устройство полов помещений специальной обработки подвижного состава должны соответствовать требованиям норм технологического проектирования , а также требованиям п.1.5 настоящих норм.

Полы помещений специальной обработки подвижного состава должны иметь уклон 0,02 в сторону осмотровых канав, полы которых должны иметь уклон в сторону выпуска сточных вод.

6.13. В помещениях специальной обработки подвижного состава, помещениях для обслуживающего персонала и на складе загрязненной одежды следует предусматривать поливочные краны для мытья полов.

6.14. Сточные воды из помещений, приспосабливаемых для специальной обработки подвижного состава, должны поступать на очистные сооружения оборотного водоснабжения. Используемые в обычное время при санитарной обработке транспорта очистные сооружения должны быть переведены на прямоточную схему без изменений схемы очистки.

Время пребывания сточных вод в очистных сооружениях должно быть не менее 30 мин. Сточные воды после очистки должны быть сброшены в бытовую или дождевую канализацию.

Осадок или масла из очистных сооружений следует вывозить в места, согласованные с местной санитарно-эпидемиологической станцией.

6.15. Приточно-вытяжная вентиляция должна обеспечивать в «грязной» зоне производственных помещений и санитарного пропускника часовую кратность обмена воздуха не менее 10. Приточный воздух следует подавать только в «чистую» зону.

Вытяжка должна быть сосредоточенной из верхней части помещения, причем из «грязной» зоны - 2/3, из «чистой» - 1/3 объема отсасываемого воздуха.

При расположении рабочих постов «чистой» зоны отдельно от «грязной» (вне здания - на территории предприятия) приточный воздух следует подавать к рабочим постам «грязной» зоны.

Объем воздуха при вытяжке должен быть на 20 % больше объема приточного воздуха.

ПРИЛОЖЕНИЕ 1 Обязательное

В настоящем обязательном приложении приведены данные к СНиП 2.01.57-85 «Приспособление объектов коммунально-бытового назначения для санитарной обработки людей, специальной обработки одежды и подвижного состава автотранспорта», разработанному взамен СН 490-77.

3.2 Расчет отопления

Расчет тепла для отопления производственного помещения рассчитываем по формуле:

Q т = V * q * (t в – t н), (3.5)

где V – расчетный объем помещения; V =120 м³

q – удельная норма расхода топлива на 1 м 3 ; q =2.5

t в – температура воздуха в помещении; t в = 18ºС

t н – минимальная температура наружного воздуха. t н = -35ºС

Q т = 120 * 2,5 * (18 - (- 35)) = 15900 Дж/час.

3.3 Расчет вентиляции

Необходимый ориентировочный воздухообмен в помещениях может быть определен через коэффициент кратности обмена воздуха по формуле:

где L – воздухообмен в помещении;

V – объем помещения;

K – кратность воздухообмена, К=3

L = 120 * 3 = 360 м 3 /час.

Выбираем центробежный вентилятор серии ВР № 2, тип электродвигателя АОА-21-4.

n - частота вращения – 1,5 тыс.об/мин;

L в – производительность вентилятора – 400 м 3 /час;

Н в – давление, создаваемое вентилятором – 25 кг/м 2 ;

η в – коэффициент полезного действия вентилятора – 0,48;

η п - коэффициент полезного действия передачи – 0,8.

Выбор электродвигателя по установочной мощности рассчитывается по формуле:

N дв = (1,2/1,5) * ------- (3.7)

3600 * 102 * η в* η п

N дв = (1,2/1,5) * --------- = 0,091 кВт

3600 * 102 * 0,48 * 0,8

Принимаем мощность N дв = 0.1 кВт

Список литературы.

  1. СНиП 2.04.05-86 Отопление, вентиляция и кондиционирование

  2. СНиП 21 - 02 - 99* "Стоянки автомобилей"

    ВСН 01-89 "Предприятия по обслуживанию автомобилей" раздел 4.

    ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны"

    ОНТП-01-91 "Общесоюзные нормы технологического проектирования предприятий автомобильного транспорта" Раздел 3.

    СНиП 2.01.57-85 ПРИСПОСОБЛЕНИЕ ОБЪЕКТОВ КОММУНАЛЬНО-БЫТОВОГО НАЗНАЧЕНИЯ ДЛЯ САНИТАРНОЙ ОБРАБОТКИ ЛЮДЕЙ, СПЕЦИАЛЬНОЙ ОБРАБОТКИ ОДЕЖДЫ И ПОДВИЖНОГО СОСТАВА АВТОТРАНСПОРТА раздел6.

    ГОСТ 12.1.005-88 раздел1.

ОБЩИЕ САНИТАРНО-ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К ВОЗДУХУ РАБОЧЕЙ ЗОНЫ

    СНиП 2.04.05-91*

    СНиП 2.09.04-87*

    СНиП 41-01-2003 раздел 7.

  1. Сп 12.13130.2009 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности (с Изменением n 1)

  2. СНиП II-г.7-62 Отопление, вентиляция и кондиционирование воздуха. Нормы проектирования

13. СНиП 23 – 05 – 95. Естественное и искусственное освещение. –М.: ГУП ЦПП, 1999

Л.1 Расход приточного воздуха L , м 3 /ч, для системы вентиляции и кондиционирования следует определять расчетом и принимать больший из расходов, требуемых для обеспечения:

а) санитарно-гигиенических норм в соответствии с Л.2;

б) норм взрывопожарной безопасности в соответствии с Л.З.

Л.2 Расход воздуха следует определять отдельно для теплого и холодного периодов года и переходных условий, принимая большую из величин, полученных по формулам (Л.1) -(Л.7) (при плотности приточного и удаляемого воздуха, равной 1,2 кг/м 3):

а) по избыткам явной теплоты:

При одновременном выделении в помещение нескольких вредных веществ, обладающих эффектом суммации действия, воздухообмен следует определять, суммируя расходы воздуха, рассчитанные по каждому из этих веществ:

а) по избыткам влаги (водяного пара):

в) по нормируемой кратности воздухообмена:

,

г) по нормируемому удельному расходу приточного воздуха:

,

,

В формулах (Л.1) -(Л.7):

L wz - расход воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, м 3 /ч;

Q, Q hf - избыточный явный и полный тепловой потоки в помещение, Вт; с - теплоемкость воздуха, равная 1,2 кДж/(м 3 ∙°С);

t wz . - температура воздуха, удаляемого системами местных отсосов, в обслуживаемой или рабочей зоне помещения и на технологические нужды, °С;

t 1 - температура воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, °С;

t in - температура воздуха, подаваемого в помещение, °С, определяемая в соответствии с Л.6;

W - избытки влаги в помещении, г/ч;

d wz - влагосодержание воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, г/кг;

d 1 - влагосодержание воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, г/кг;

d in - влагосодержание воздуха, подаваемого в помещение, г/кг;

I wz - удельная энтальпия воздуха, удаляемого из обслуживаемой или рабочей зоны помещения системами местных отсосов, и на технологические нужды, кДж/кг;

I 1 - удельная энтальпия воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, кДж/кг;

I in - удельная энтальпия воздуха, подаваемого в помещение, кДж/кг, определяемая с учетом повышения температуры в соответствии с Л.6;

m ро - расход каждого из вредных или взрывоопасных веществ, поступающих в воздух помещения, мг/ч;

q wz , q 1 - концентрация вредного или взрывоопасного вещества в воздухе, удаляемом соответственно из обслуживаемой или рабочей зоны помещения и за ее пределами, мг/м 3 ;

q in - концентрация вредного или взрывоопасного вещества в воздухе, подаваемом в помещение, мг/м 3 ;

V р - объем помещения, м 3 ; для помещений высотой 6 м и более следует принимать

,

А - площадь помещения, м 2 ;

N - число людей (посетителей), рабочих мест, единиц оборудования;

n - нормируемая кратность воздухообмена, ч -1 ;

k - нормируемый расход приточного воздуха на 1 м 2 пола помещения, м 3 /(ч∙м 2);

m - нормируемый удельный расход приточного воздуха на 1 чел., м 3 /ч, на 1 рабочее место, на 1 посетителя или единицу оборудования.

Параметры воздуха t wz , d wz , I wz следует принимать равными расчетным параметрам в обслуживаемой или рабочей зоне помещения по разделу 5 настоящих норм, aq wz - равной ПДК в рабочей зоне помещения.

Л.З Расход воздуха для обеспечения норм взрывопожарной безопасности следует определять по формуле (Л.2).

При этом в формуле (Л.2) q wz и q 1 , следует заменить на 0,1 q g , мг/м 3 (где q g - нижний концентрационный предел распространения пламени по газо-, паро- и пылевоздушной смесям).

Л.4 Расход воздуха L he , м 3 /ч, для воздушного отопления, не совмещенного с вентиляцией, следует определять по формуле

,

Где Q he тепловой поток для отопления помещений, Вт

t he - температура подогретого воздуха, °С, подаваемого в помещение, определяется расчетом.

Л.5 Расход воздуха L mt от периодически работающих вентиляционных систем с номинальной производительностью L d , м 3 /ч, приводится исходя из n , мин, прерываемой работой системы в течение 1 ч по формуле

б) при наружном воздухе, охлажденном циркулирующей водой по адиабатному циклу, снижающем его температуру на ∆t 1 °С:

г) при наружном воздухе, охлажденном циркулирующей водой (см. подпункт «б»), и местном доувлажнении (см. подпункт «в»):

где р - полное давление вентилятора, Па;

t ext - температура наружного воздуха, °С.