Главная · Прочее · Поршневой жидкостный насос презентации урока по физике. Поршневой жидкостный насос. Формула гидравлической машины

Поршневой жидкостный насос презентации урока по физике. Поршневой жидкостный насос. Формула гидравлической машины




Виды гидронасосов По характеру силового воздействия, а следовательно, и по виду рабочей камеры различают насосы динамические и объемные. В динамическом насосе силовое воздействие на жидкость осуществляется в проточной камере, постоянно сообщающейся со входом и выходом насоса. В объемном насосе силовое воздействие на жидкость происходит в рабочей камере, периодически изменяющей свой объем и попеременно сообщающейся со входом и выходом насоса. К динамическим насосам относятся: 1) лопастные:а) центробежные; б) осевые; 2) электромагнитные; 3) насосы трения: а) вихревые; б) шнековые; в) дисковые; г) струйные и др К объемным насосам относятся: 1) возвратно-поступательные: а) поршневые и плунжерные; б) диафрагменные; 2) крыльчатые; 3) роторные: а) роторно-вращательные; б) роторно-поступательные. Агрегат, состоящий из насоса (или нескольких насосов) и приводящего двигателя, соединенных друг с другом, называется насосным агрегатом.


Шестеренные насосы с наружным зацеплением - очень широкий диапазон частот вращения приводного вала - широкий диапазон рабочих давлений до 30МПа, объем до 16,6 л/с - очень широкий диапазон вязкостей рабочей жидкости - высокий уровень шума - средний срок службы - низкая цена


Лопастные гидронасосы Рис Лопастный (шиберный) насос серии МГ-16: 1 лопасть; 2 отверстия; 3 статор; 4 вал; 5 манжета; 6 шарикоподшипники; 7 дренажное отверстие; 8 полости под лопастями; 9 резиновое кольцо} 10 сливное отверстие; 11 сливная полость; 12 кольцевой выступ; 13 крышка); 14 пружина; 15 золотник; 16 задний диск; 17 коробка; 18 полость; 19 отверстие для подвода жидкости с высоким давлением; 20 отверстие в заднем диске 21 ротор; 22 передний диск; 23 кольцевой канал; 24 подводящее отверстие; 25 корпус - средний диапазон частот вращения приводного вала - средний диапазон рабочих давлений до 10 Мпа, подача до 4 л/с - средний диапазон вязкостей рабочей жидкости - низкий уровень шума - очень большой срок службы - средняя цена


Радиально-поршневой гидронасос Схема радиально-поршневого насоса: 1 - ротор; 2 - поршень; 3 - барабан (статор); 4 - цапфа; 5 - полость всасывания; 6 - полость нагнетания - средний диапазон частот вращения приводного вала - широкий диапазон рабочих давлений до 50 МПа, подача до 15 л/с - средний диапазон вязкостей рабочей жидкости - низкий уровень шума -очень большой срок службы


Аксиально-поршневые гидронасосы наклонные 1 -в приводной вал; 2, 3 шарикоподшипники; 4 поворотная шайба; 5 шатунз 6 -э поршень; 7 ротор; 8 сферический распределитель; 9 крышка; 10 центральный шип; 11 корпус - широкий диапазон частот вращения приводного вала - очень широкий диапазон рабочих давлений до 40МПа, подача до 15 л/с - очень широкий диапазон вязкостей рабочей жидкости - высокий уровень шума - большой срок службы - высокая цена












Гидрораспределители При эксплуатации гидросистем возникает необходимость изменения направления потока рабочей жидкости на отдельных ее участках с целью изменения направления движения исполнительных механизмов машины, требуется обеспечивать нужную последовательность включения в работу этих механизмов, производить разгрузку насоса и гидросистемы от давления и т.п.


Шестеренный насос – роторный насос с рабочими звеньями в виде шестерен (зубчатых колес), обеспечивающих геометрическое замыкание рабочих камер и предающих вращательный момент.

Шестеренные насосы применяются в гидроприводах как самостоятельные источники питания невысокого давления или как вспомогательные насосы для подпитки гидросистем.

Шестеренный насос состоит из корпуса, ведущей шестерни и ведомой шестерни, вала, оси, двух боковых крышек. Шестерни находятся в зацеплении и имеют одинаковые модули и число зубьев.

Корпус является статором, ведущая шестерня ротором, а ведомая – вытеснителем. Рабочие камеры образуются рабочими поверхностями корпуса, двух боковых крышек и зубьев шестерен. Корпус имеет полость всасывания и нагнетания.

Шестеренные насосы

Принцип работы шестеренного насоса следующий. В насосе полость всасывания находится с той стороны, где зубья шестерен выходят из зацепления. При выходе из зацепления зубьев шестерен объем полости увеличивается, и в полости создается разрежение. Происходит процесс всасывания рабочей жидкости. После этого каждая из шестерен перемещает в противоположных кольцевых направлениях рабочую жидкость, находящуюся во впадинах зубьев, из полости всасывания в полость нагнетания. Происходит процесс нагнетания, при котором встречные объемы жидкости сначала соединяются в полости нагнетания, а затем жидкость вытесняется из полости нагнетания на выход насоса зубьями шестерен, входящих в зацепление.

Шестеренные насосы

Рабочий объем шестеренного насоса находится по формуле:

где m – модуль зубьев; z – число зубьев шестерни; b – ширина венца шестерни.

Шестеренные насосы являются нерегулируемыми, так как параметры, определяющие рабочий объем насоса, постоянные.

Шестеренные насосы используются также в качестве гидромоторов.

Преимущества шестеренных насосов – простота устройства, надежность в эксплуатации, компактность и малая стоимость.

Недостатки шестеренных насосов – пульсация потока жидкости, чувствительность к перегреву, малый объемный КПД при высоких температурах, значительный шум.

Аксиально-поршневые насосы

Аксиально-поршневой насос – это роторный насос, у которого рабочие камеры образованы рабочими поверхностями цилиндров и поршней, а оси поршней параллельны (аксиальны) оси блока цилиндров или составляют с ней угол не более 45º.

Аксиально-поршневые насосы находят широкое применение в гидравлических трансмиссиях самоходных сельскохозяйственных и строительно-дорожных машин.

Аксиально-поршневые насосы в зависимости от расположения ротора разделяют на насосы с наклонным диском (оси ведущего звена и вращения ротора совпадают) и насосы с наклонным блоком (оси ведущего звена и вращения ротора расположены под углом).

Аксиально-поршневые насосы

Насосы с наклонным диском имеют наиболее простые схемы. Поршни связаны с наклонным диском точечным касанием или шатуном. Блок цилиндров с поршнями приводится во вращение от вала.

Для подвода и отвода рабочей жидкости к рабочим камерам в торцевом распределительном диске выполнены два дугообразных окна - всасывающее и нагнетательное. Для обеспечения движения поршней во время всасывания применяют принудительное ведение поршней через шатун, а для поршней с точечным касанием используют цилиндрические пружины.

Принцип работы насоса следующий. При вращении вала насоса крутящий момент передается блоку цилиндров. При этом из-за наличия угла наклона диска поршни совершают сложное движение – они вращаются вместе с блоком цилиндров и одновременно совершают возвратно-поступательное движение в цилиндрах блока, при котором происходят рабочие процессы всасывания и нагнетания.

Аксиально-поршневые насосы

При вращении вала по часовой стрелке рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с всасывающим окном.

Поступательное движение поршней в этих камерах происходит в направлении от распределительного диска. При этом объемы камер увеличиваются, и жидкость под действием перепада давлений заполняет их. Так происходит процесс всасывания.

Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетательным окном. При этом поршни перемещаются по направлению к распределительному диску и вытесняют жидкость из рабочих камер.

Аксиально-поршневые насосы

Рабочий объем аксиально- поршневого насоса с наклонным диском определяют по формуле:

q0 = Sпhz = πd²/4 · zDtgβ ,

где Sп – площадь поршня; h – максимальный ход поршня (h = Dtgβ); z – число поршней; dп – диаметр поршня; D – диаметр окружности расположения осей цилиндров в блоке; β – угол наклона диска.

Рабочий объем насоса зависит от угла наклона диска.

Можно изменять рабочий объем, изменяя угол наклона диска. Чем больше угол наклона β, тем больше рабочий объем насоса. Предельно допустимый угол наклона диска не превышает обычно 25º.

Аксиально-поршневые насосы

Регулирование подачи аксиально-поршневого насоса достигается изменением угла наклона диска.

Аксиально-поршневые насосы обратимы: при подаче в них масла под давлением от другого насоса они становятся гидродвигателями вращательного движения.

Преимущества аксиально-поршневых насосов – стабильность параметров при длительной эксплуатации с переменными внешними условиями; высокие объемный и механический КПД; достаточная долговечность.

Недостатки аксиально-поршневых насосов – высокая стоимость; высокая чувствительность к вибрациям; повышенные требования к тонкости фильтрации рабочей жидкости.

Гидравлические цилиндры

Гидроцилиндры – объемный гидравлический двигатель с ограниченным возвратно- поступательным движением выходного звена.

В зависимости от конструкции рабочей камеры гидроцилиндры разделяют на поршневые, плунжерные, телескопические, мембранные и сильфонные.

Наибольшее применение в объемных гидроприводах получили поршневые цилиндры благодаря простой конструкции и высокой надежности. Рабочая камера поршневого гидроцилиндра образована рабочими поверхностями корпуса и поршня со штоком. В корпусе находится поршень, жестко соединенный со штоком.

Гидроцилиндры

Цилиндр имеет две полости - поршневую и штоковую. Поршневая полость – часть рабочей камеры, ограниченная рабочими поверхностями корпуса и поршня. Штоковая полость – часть рабочей камеры, ограниченная рабочими поверхностями корпуса, поршня и штока.

Принцип работы поршневого гидроцилиндра следующий. При соединении поршневой полости с напорной линией поршень со штоком под действием силы давления рабочей жидкости перемещается вправо. При этом одновременно происходит вытеснение рабочей жидкости из штоковой полости. При подводе рабочей жидкости в штоковую полость поршень со штоком под действием силы давления перемещается в противоположном направлении.

«Гидравлические механизмы» - Поршневой жидкостный насос. Гидравлические прессы. Водопровод. Схема гидравлического пресса. Устройство, позволяющее получить большой выигрыш в силе. Гидравлический пресс. Решение задач. Гидравлические тормоза. Какую силу нужно приложить к меньшему поршню. Гидравлические подъемники и домкраты. Цель урока.

«Задачи по физике на давление» - Другие единицы давления. Опыт. Ответы к тестам. Приборы для измерения. Тесты. Опыт: МОЖНО ЛИ СТОЯТЬ НА ЛАМПОЧКАХ? Такая конструкция выдерживает даже взрослого человека. Способы уменьшения и увеличения. Давление твёрдых тел. Аналогичный опыт можно провести и с одной лампочкой, поставленной посредине!

«Газовое давление» - От чего зависит давление газа. Почему газ давит. Газы и жидкости. Вареное яйцо. Давление газа на стенки сосуда. Круглые отверстия. Шарик увеличивает свой объем. Давление. Металлический кубик. Давление газов. Формула расчета давления. Поршень.

«Давление вещества» - Выполните задание. Давление газа увеличится. Давление газа. Причина давления газа. Что такое давление. Конспект. Решите качественные задачи. Карточки с формулами. Тайна сокровищ. Экспериментальное задание. Что вы узнали нового. Давление воздуха. Выполните тренировочный тест.

«Объёмные гидромашины» - Изменение энергии жидкости. Объемные гидромашины. Число поршней. Детали обгонного механизма. Частота вращения вала. Основные показатели и характеристики ОГМ. Торцовые распределители. Пластинчатые ОГМ. Рабочие камеры ОГМ. Краткие сведения об объемных гидромашинах. Применение ОГМ. Рабочие камеры. Соотношение мощностей.

«Решение задач «Давление»» - Воздушный фронт. Почему давление воздуха различно на вершине горы и у её основания. Острие шипа имеет очень малую площадь сечения. Непрерывное тепловое движение молекул и сила тяжести. Поднимаемся мы в гору, стало трудно нам дышать. Трубы для подачи воды на большую высоту делают из прочного материала.

Всего в теме 30 презентаций

Муниципальное автономное общеобразовательное учреждение

«Лицей № 7» г. Бердск

Манометры Поршневой жидкостный насос Гидравлический пресс

7 класс

Учитель физики И.В.Торопчина


Манометры

Для измерения большего или меньшего

атмосферного давления используют манометры

(от греч. «манос» - неплотный, «метрео» - измеряю).

Манометры бывают жидкостные и металлические .


Жидкостный манометр

Жидкостный манометр состоит из двухколенной стеклянной трубки,

в которую наливают какую-нибудь жидкость. С помощью гибкой

трубки одно из колен манометра соединяют с круглой плоской

коробочкой, затянутой резиновой плёнкой.


Жидкостный манометр

Работа манометра основана на сравнении давления в закрытом

колене с внешним давлением в открытом колене. Чем глубже

погружают в жидкость коробочку, тем больше становится

разность высот столбов жидкости в коленях манометра, и тем

большее давление производит жидкость.


Металлический манометр

С помощью металлического манометра

измеряют давление сжатого воздуха и других газов.


1.Согнутая в дугу металлическая трубка

2. Стрелка

3.Зубчатка

4. Кран

5. Рычаг


Устройство металлического манометра

Конец трубки с помощью крана 4 сообщается с сосудом, в котором измеряют давление.

При увеличении давления трубка

разгибается. Движение закрытого

конца её при помощи рычага 5 и

зубчатки 3 передаётся стрелке

2, движущейся около шкалы прибора.

При уменьшении давления трубка

(благодаря своей упругости)

возвращается в прежнее положение, а

стрелка - к нулевому делению

шкалы.


Применение манометров

Манометры применяются во всех случаях, когда

необходимо знать, контролировать и регулировать

давление. Наиболее часто манометры применяют в

теплоэнергетике, на химических, нефтехимических

предприятиях, предприятиях пищевой отрасли.



Манометр для измерения артериального давления называется: тонометр


Поршневой жидкостный насос

Действие поршневых жидкостных насосов основано

на том, что под действием атмосферного давления

вода в трубке поднимается за поршнем .


Устройство поршневого жидкостного насоса

1 – поршень 2 – 2 – клапаны


Принцип действия насоса

При движении поршня вверх вода под действием атмосферного давления входит в трубу, поднимает нижний клапан и движется за поршнем. При движении поршня вниз вода, находящаяся под поршнем, давит на нижний клапан, и он закрывается.


Принцип действия насоса

Одновременно под давлением воды открывается клапан внутри

поршня, и вода переходит в пространство над поршнем. При

последующем движении поршня вверх вместе с ним поднимается и

находящаяся над ним вода, которая выливается в бочку. За поршнем

поднимается новая порция воды, которая при последующем опускании поршня

окажется над ним, и т.д.


Как работает поршневой насос с воздушной камерой?

1-поршень

2-всасывающий клапан

3-нагнетательный клапан

4-воздушная камера

5-рукоятка


  • Механизмы, работающие при помощи какой-нибудь жидкости, называются гидравлическими (греч. "гидро" - вода, жидкость).

  • Основной частью гидравлической машины служат два цилиндра разного диаметра, снабжённые поршнями и соединённые трубкой.
  • Пространство под поршнями и трубку заполняют жидкостью (обычно минеральным маслом).
  • Высоты столбов жидкости в обоих цилиндрах одинаковы, пока на поршни не действуют силы.

Формула гидравлической машины

  • Обозначим силы, действующие на поршни, - F 1 и F 2 , площади поршней - S 1 и S 2 .
  • Тогда давление под малым поршнем: p 1 = F 1 S 1 , а под большим: p 2 = F 2 S 2 .
  • По закону Паскаля, давление жидкостью передаётся по всем направлениям одинаково, поэтому p 1 = p 2 Подставив соответствующие значения, получим

F 1 S 1 = F 2 S 2



При работе гидравлической машины создается выигрыш в силе, равный отношению площади большего поршня к площади меньшего.

С помощью гидравлической машины можно малой силой уравновесить большую силу!


Гидравлический пресс

Гидравлическую машину, служащую для прессования (сдавливания), называют гидравлическим прессом (от греч. «гидравликос» - водяной).


Гидравлический пресс

Гидравлические прессы применяются там, где

требуется большая сила. Например, для выжимания масла из

семян на маслобойных заводах, для прессования фанеры,

картона, сена. На металлургических заводах гидравлические

прессы используют при изготовлении стальных валов машин,

железнодорожных колёс и многих других изделий.


Современные гидравлические прессы могут

развивать силу в десятки и сотни

миллионов ньютонов.



Решите задачи

Задача 1

Какой выигрыш в силе даёт гидравлический пресс?

Вычислите его, если F 1 = 500 Н,

S 1 = 100 см 2 , F 2 = 5 кН, S 2 = 1000 см 2


Задача 2

Площади поршней гидравлического пресса 200 см 2 и 0,5 см 2 .

На большой поршень действует сила 4 кН. Какая сила, прилагаемая к малому поршню, её уравновесит?


Задача 3

Гидравлический пресс обеспечивает выигрыш в силе в 7 раз. Его малый поршень имеет площадь, равную 300 см 2 . Какова площадь большого поршня?


Ответы

Задача 1

Задача 2

F 1 = 100 Н

Задача 3 S 2 = 2100 см 2


Домашнее задание

§ 47, 48, 49,

упр. 24 (3), стр. 141,

упр.25, стр. 144,

задание 1, стр. 144